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Abstract

In this note we are concerned with the strong maximum principle (SMP) and the compact support prin-
ciple (CSP) for non-negative solutions to quasilinear elliptic inequalities of the form

div
(
A

(|∇u|)∇u
) + G

(|∇u|) − f (u) � 0 in Ω,

and

div
(
A

(|∇u|)∇u
) + G

(|∇u|) − f (u) � 0 in R
N \ Br(0),

respectively. We give new conditions on the data (A,G,f ) to obtain (SMP) and (CSP). When these con-
ditions are particularized to the m-Laplacian and pure power nonlinearities we completely classify the data
according to the validity of the (CSP) or the (SMP). In doing so we clarify the general situation and we
consider a case not covered in the literature.
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1. Introduction

In this note we are concerned with the strong maximum principle (SMP) and the compact sup-
port principle (CSP) for non-negative solutions to quasilinear elliptic equations in the presence of
lower order terms, including the gradient. These two principles, which are somehow dual to each
other, have been investigated in the last decades by many authors. A very complete account of the
advances in this area since the seminal work of Eberhard Hopf can be found in the recent paper
by Pucci and Serrin [8], where a thorough discussion and a complete bibliography is presented.

We start by recalling the precise meaning of these principles. We say that (SMP) holds for the
inequality

div
(
A

(|∇u|)∇u
) + G

(|∇u|) − f (u) � 0 in Ω, (1.1)

if any non-negative solution u of (1.1) in the domain Ω which vanishes at some point in Ω ,
vanishes everywhere in Ω . We say that (CSP) holds for the inequality

div
(
A

(|∇u|)∇u
) + G

(|∇u|) − f (u) � 0 in R
N \ Br(0), (1.2)

if any non-negative solution u of (1.2) in R
N \Br(0), for r > 0, satisfying u(x) → 0 as |x| → ∞,

vanishes in R
N \BR(0), for some R � r . In this note a solution for these inequalities is a function

in C1 satisfying the inequalities in the weak sense. Our general assumptions on the function A

are the following:

(A1) A ∈ C(0,∞);
(A2) the function t → tA(t) is strictly increasing and tA(t) → 0 as t → 0+.

The case of the m-Laplacian is of particular interest for us, it is obtained with A(t) = |t |m−2,
with m > 1. In what follows we write �mu = div(|∇u|m−2∇u).

Let us start by reviewing the results when G ≡ 0, case where the theory in completely under-
stood. We consider the basic assumption on f :

(F1) f : [0,+∞) → R is an increasing, continuous function with f (0) = 0.

Regarding the (SMP), Vázquez proved in [12] that the (SMP) holds for (1.1), with G ≡ 0, if there
exists δ > 0 such that

δ∫
0

1

F(s)1/m
ds = ∞, (1.3)

where F(s) = ∫ s

0 f (τ) dτ . This condition is also necessary as shown by Benilan, Brezis and
Crandall in [2] for m = 2 and by Diaz [5] for all m > 1. It was then showed by Pucci, Serrin and
Zou in [10] that when condition (1.3) fails, that is, for some δ > 0

δ∫
1

F(s)1/m
ds < ∞, (1.4)
0
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then the (CSP) holds and that (1.4) is also a necessary condition for the (CSP) to hold. Thus,
the possible data (m,f ) for inequalities (1.1) and (1.2) with G ≡ 0 are completely classified
in terms of the validity of the (SMP) or the (CSP). These results have been extended by Pucci,
Serrin and Zou [10] and by Pucci and Serrin in [9] to the general class of operators characterized
by the function A. In order to describe these results we need to introduce some notation. Let
Ω(t) = tA(t) for t > 0, Ω(0) = 0, and

H(t) = tΩ(t) −
t∫

0

Ω(s)ds, t � 0. (1.5)

It is easy to see that the function H is strictly increasing and that

H(t) =
Ω(t)∫
0

Ω−1(s) ds. (1.6)

It is shown in [10] and [9] that the (SMP) and (CSP) hold if and only if

δ∫
0

1

H−1(F (s))
ds = ∞ (1.7)

and

δ∫
0

1

H−1(F (s))
ds < ∞, (1.8)

respectively. These integral conditions replace (1.3) and (1.4). Thus, the data (A,f ) of the prob-
lem are completely classified according to the validity of the (SMP) or (CSP) as above. See
also [8].

An extension of these results to the case of a nontrivial functions G was given in [9] and [10].
Assuming that there exists c > 0 such that

G(s) � −cΩ(s) for small s > 0, (1.9)

the authors proved that the (SMP) is still valid for (1.1) under (1.7). On the other hand, if (1.8)
holds and there exists c > 0 such that

G(s) � cΩ(s) for small s > 0, (1.10)

then (CSP) holds for (1.2). However, the following example was given in [10] for the case of the
m-Laplacian and pure powers. For q ∈ (0,m − 1) it is possible to find 0 < q < p < m − 1 such
that the inequality

�mu + |∇u|q − up � 0 (1.11)
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has u = const.|x|−� as solution in {|x| > R}, for R and � large, so that even if (1.4) holds the
(CSP) may fail for (1.11). Moreover, in page 37 of [6] it was shown that for this situation it is
actually the (SMP) that holds. In the case of inequality

�mu − |∇u|q − up � 0 (1.12)

it was shown in page 36 of [6] that for q ∈ (0,m − 1) the (CSP) is true even though (1.3) holds.
It is the purpose of this note to we give new conditions on the data (A,G,f ) to obtain (SMP)

and (CSP). We are not able to find conditions so that (A,G,f ) gets completely classified by
the validity of the (SMP) or the (CSP), as in the case of G ≡ 0. However in the case of the
m-Laplacian and pure powers we completely classify (m,q,p) with this criterion. In doing so
we will consider the case 0 < p � q < m − 1, a situation not covered before in the literature.
It is worth mentioning that the ordinary differential equations associated to the inequalities with
G �≡ 0 are not integrable, as in Vázquez situation [12], so an Osgood type condition is not directly
available.

We describe next our results in a precise way. On the function G we will consider the follow-
ing basic hypotheses:

(G1) G : [0,+∞) → R is a continuous function with G(0) = 0.

Our first two results have to do with the case of G positive. We assume:

(G2) G is a positive and increasing function.
(G3) For all c > 0 there exists δ > 0 such that

G(s) � cΩ(s) for every s ∈ [0, δ].

The main result for the case of G positive is the following.

Theorem 1.1. Assume (A1), (A2), (F1), (G1) and (G2).
(1) If for some δ > 0 we have

δ∫
0

1

�−1( 1
2F(s))

ds < ∞, (1.13)

then (CSP) holds for (1.2). Here �(t) := ∫ 2t

0 G(s)ds + H(t).
(2) In addition, if (G3) holds and for all δ > 0 small we have

δ∫
0

1

G−1(2f (s))
ds = ∞, (1.14)

then (SMP) holds for (1.1).

We observe that under hypothesis (G3), G satisfies (1.9) so the results of [10] apply if (1.3)
holds. The interesting case is when (1.4) holds.
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Remark 1.1. In the case of the m-Laplacian, and with f (t) = tp and G(t) = tq , for p > 0 and
q > 0, hypothesis (G3) implies q < m − 1. Part (1) of the theorem implies that (CSP) holds
for p < q < m − 1 and also for p < m − 1 � q . While part (2) implies that (SMP) holds for
q � p < m − 1. The case q � m − 1 was already covered in the work by Pucci, Serrin and
Zou [10], they proved that p < m − 1 implies (CSP), while for p � m − 1 (SMP) holds. Thus,
all possible cases of (m,q,p) are covered.

Now we consider the case of negative G. We assume

(G2)′ G is a negative and decreasing function.

The following is the main result for the case of G negative.

Theorem 1.2. Assume (A1), (A2), (F1), (G1) and (G2)′.
(1) If for some δ > 0 we have

either

δ∫
0

1

−G(Ω−1(s))
ds < ∞ or

δ∫
0

1

H−1(F (s))
< ∞, (1.15)

then (CSP) holds for (1.2).
(2) If for every small δ > 0 and all k > 0 we have

δ∫
0

1

ks − G(Ω−1(s)) + f (Ω−1(s))
ds = ∞, (1.16)

then (SMP) holds for (1.1).

Notice that for negative G condition (1.10) holds trivially, so the interesting case in part (1)
occurs when the first integral in (1.15) is finite and the second one is infinite, case not covered by
Pucci, Serrin and Zou in [10].

Remark 1.2. In the case of the m-Laplacian and for f (t) = tp and G(t) = −tq , with p > 0
and q > 0, we see that all cases are covered now. Part (1) of Theorem 1.2 implies that whenever
q < m − 1 (CSP), regardless the value of p > 0.

If p < m − 1 then part (1) of Theorem 1.2 implies (CSP), regardless the value of q > 0. If
p � m − 1 and q � m − 1 then (SMP) holds. This last two cases were already covered in [10].

Remark 1.3. Our Theorem 1.2 applies to the following two interesting examples in the case of
the m-Laplacian: Part (1) applies to G(t) = tq(log |t |)α and q � m−1 and α > 1. Part (2) applies
to f (t) = tm−1(| log t |)β , G(t) = tm−1(log t)α and max{β,α} � 1.

Remark 1.4. We observe that in Theorem 1.1 the integral conditions implying the (SMP) is
almost the converse to the integral condition implying (CSP). About Theorem 1.2 we could say
the same. We do not know if one can find integral conditions such that one is the converse of the
other.
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The results in Theorems 1.1 and 1.2 could be contrasted with those in [6]. The advantage
of those here is that conditions are given directly on the data of the problem, so they are easily
checkable. We cannot say the same about the uniqueness conditions given in [6].

Let us briefly look at a simple but illuminating consequence of our results. Consider the fol-
lowing ordinary differential equation, for p > 0 and q > 0,

u′′ = up ± (u′)q, u(0) = 0 and u′(0) = 0. (1.17)

One may ask for which values of p and q this equation has a unique solution. Of course when
p � 1 and q � 1 uniqueness holds, since in this case the involved functions are Lipschitz contin-
uous. All other situations give non-uniqueness, except when p � q < 1 and −(u′)q appears in
the equation. This is a consequence of Theorem 1.1, part (2). This case is very special because
both nonlinearities are non-Lipschitz, but its combination still gives uniqueness.

In this note we provide the proof of Theorems 1.1 and 1.2 only regarding the construction of
the appropriate super and sub-solutions for the corresponding problems. All extra work needed
to complete the proof of the theorems is to use a comparison principle to get the conclusions.
There are various versions of comparison theorems that can be used in our context, see [6–9]
and [10].

More precisely, under hypotheses (A1), (A2), (F1) and (G1), assumptions considered in this
note, we can use the comparison result proved in [6] for the m-Laplacian, but extendable to our
more general class of operator in a straightforward way. See Lemma 2.1 in [6].

On the other hand we could weaken assumption (F1) by assuming only that f is non-
decreasing near the origin. However in this case we need to use the comparison result proved
in [10] that requires differentiability of the function A, something we do not assumed here. See
Lemma 4 in [10].

We finally want to mention some other recent works concerning (SMP) in the context of
viscosity solution in [1] and [11] and for degenerate elliptic operators in [3].

This paper is organized as follows. In Section 2 we prove our theorems assuming the existence
of solutions for a boundary value problem. In Section 3 we prove the existence result for these
equations.

2. Proofs of the main results

As we mentioned above, we will only discuss the existence of the appropriate comparison su-
per and sub-solutions, and leave the reader to complete the proofs using the comparison theorem
given in [6–10].

The strategy for proving the (CSP) is to construct a super-solution of a one-dimensional
problem upon which we construct a super-solution on R

N \ B(0,R) having small values in
∂B(0,R) and vanishing outside a larger ball. For proving the (SMP) one constructs a positive
sub-solution v of an appropriate ODE in an interval (0, a) such that u′(0) > 0 and then we use it
for comparison following the usual Hopf proof.

Proof of Theorem 1.1. (1) Let v be the function implicitly defined by

v(t)∫
1

�−1( 1
2F(s))

ds = t
0
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for 0 � t � T , where T is the value of integral in (1.13) and v(T ) = δ. Differentiating we find

�
(
v′(t)

) = 1

2
F

(
v(t)

)
. (2.1)

Then, using the fact that �−1 is positive and the monotonicity of G and f one obtain in the
interval (0, T )

G
(
v′(t)

)
v′(t) �

2v′(t)∫
0

G(s)ds

� �
(
v′(t)

) = 1

2
F

(
v(t)

)
� 1

2
f

(
v(t)

)
v(t), (2.2)

from where it follows that v′(0) = 0. Moreover, from (2.1) we also see that v′(t) is increasing.
In fact, we first observe that v′ is positive, then v is increasing, but then the left-hand side is
increasing implying that v′ is increasing. From here we get v(t) � v′(t) for small t > 0 and
from (2.2)

G
(
v′(t)

)
� 1

2
f

(
v(t)

)
. (2.3)

Next we observe that H(v′(t)) and
∫ 2v′(t)

0 G(s)ds are increasing functions, then they are differ-
entiable a.e. and consequently

{
H

(
v′(t)

)}′ � 1

2
f

(
v(t)

)
v′(t), a.e.

But we see that Ω(v′(s)) is also differentiable a.e., then from (1.6) we see find that

{
H

(
v′(t)

)}′ = v′(t)
{
Ω

(
v′(t)

)}′
, a.e.

so that {
Ω

(
v′(t)

)}′ � 1

2
f

(
v(t)

)
, a.e. (2.4)

Adding (2.3) and (2.4) we see that v satisfies

{
Ω

(
v′(t)

)}′ + G
(
v′(t)

)
� f

(
v(t)

)
for small t > 0. From here we construct a super-solution and we deduce (CSP).

(2) Given k > 0 we let δ > 0 so that (G3) holds with c = 2k. Next we use Lemma 3.1 to find
a nontrivial solution v to the two-point boundary value problem

{
Ω

(
v′(t)

)}′ + G
(|v′|) = kΩ

(|v′|) + f (v) in [0, δ],
v(0) = 0, v(δ) = b,
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with b > 0. Then by (G3) v satisfies

{
Ω

(
v′(t)

)}′ + 1

2
G

(|v′|) � f (v) in [0, δ].

Now by Lemma 3.1 again let u be a solution of

{
Ω

(
u′(t)

)}′ + 1

2
G

(|u′|) = f (u) in [0, δ],
u(0) = 0, u(δ) = v(δ).

We claim that u′(0) > 0. To prove this we assume by contradiction that u′(0) = 0. As a first
step we prove that {Ω(u′(t))}′ � 0 in (0, δ). Assume there exists ε > 0 and t1 ∈ (0, δ) such that
{Ω(u′(t))}′ < 0 in (t1, t1 +ε) and {Ω(u′(t1))}′ = 0. Then u′ is decreasing in (t1, t1 +ε) and since
u′ > 0 u is increasing. Thus, from the equation {Ω(u′(t))}′ is increasing in (t1, t1 + ε) since G

and f are increasing, which is a contradiction. Therefore we have

G
(|u′|) � 2f (u).

Inverting G and integrating, one obtain a contradiction to the hypothesis (1.14), proving our
claim.

Next we use comparison principle for u and v to conclude that u � v, therefore v′(0) > 0.
This function v is thus appropriate to obtain the (SMP) following the Hopf argument. �
Proof of Theorem 1.2. (1) Let h be the function defined by

h(t) =
t∫

0

1

−G(Ω−1(s))
ds,

which is an increasing and invertible function, as it is h ◦ Ω . Let v(t) = ∫ t

0 (h ◦ Ω)−1(s) ds.
Notice that this v satisfies

v′(t) = (h ◦ Ω)−1(t) and v′(0) = 0.

Since v is strictly increasing and h(Ω(v′(t)) = t , the derivative of Ω(v′(t) exists and satisfies{
Ω

(
v′(t)

)}′ = −G
(
v′(t)

)
.

Thus v is nontrivial and it satisfies{
Ω

(
v′(t)

)}′ + G
(|v′|) � f (v) in [0, δ]. (2.5)

The function v can be used as a super-solution to prove (CSP).
In case the other integral in finite, we define v implicitly as

t =
v(t)∫
0

1

H−1(F (s))
ds

and proceed as before differentiating to get
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{
Ω

(
v′(t)

)}′ = f
(
v(t)

)
,

from where we see that v can be used as a super-solution to prove (CSP).
(2) Let v be a nontrivial solution of the two-point boundary value problem with k > 0:{

Ω
(
v′(t)

)}′ + G
(|v′|) = kΩ

(|v′|) + f (v) in [0, δ], v(0) = 0, v(δ) = b,

as given by Lemma 3.1. We will prove that v′(0) > 0. Since G is negative, from the equation we
directly see that v′ is non-decreasing. Then, assuming that v′(0) = 0, we find that v � v′ for t

small. So v satisfies{
Ω

(
v′(t)

)}′ � −G
(|v′|) + kΩ

(|v′|) + f (v′) in [0, δ].
Integrating we get a contradiction. So, (SMP) by using this v as a sub-solution. �
3. Existence result for a boundary value problem

In this section we prove an existence lemma that is used to construct comparison functions.
We need to assume k � 0, because of the comparison Lemma 2.1 of [6].

Lemma 3.1. Assume (A1), (A2), (F1) and (G1) and let λ and k � 0 be real constants. If a > 0 is
small enough, then equation{

−(
Ω

(
u′(r)

))′ + λG
(∣∣u′(r)

∣∣) + kΩ
(∣∣u′(r)

∣∣) + f
(
u(r)

) = 0 in (0, T ),

u(0) = 0, u(T ) = a,
(3.6)

has a solution u ∈ C1[0, T ], in the weak sense, such that u(r) � 0, u′(r) � 0 for all r ∈ (0, T )

and u(r) > 0, u′(r) > 0 for all r ∈ (T0, T ) for some T0 ∈ [0, T ).

Proof. For every u in C1[0, T ] and σ ∈ [0,1] we define the integral operator

Hσ (u)(r) =
r∫

0

Ω−1

(
Kσ + σ

s∫
0

λG
(∣∣u′(t)

∣∣) + kΩ
(∣∣u′(t)

∣∣) + f
(
u(t)

)
dt

)
ds.

Here the constant Kσ is uniquely determined so Hσ (u)(T ) = σa is satisfied. Each pair (u,σ ) ∈
C1[0, T ] × [0,1] is mapped to Hσ (u) = v. Moreover, if Hσ (u) = u then u a solution of{

−(
Ω

(
u′(r)

))′ + σλG
(∣∣u′(r)

∣∣) + σkΩ
(∣∣u′(r)

∣∣) + σf
(
u(r)

) = 0 in (0, T ),

u(0) = 0, u(T ) = σa.
(3.7)

If we endow the space C1[0, T ] with the norm ‖u‖C1[0,T ] = ‖u‖L∞(0,T ) + ‖u′‖L∞(0,T ), then by
means of converging sequences in C1[0, T ] × [0,1] we easily infer the continuity of Hσ . Note
that if un → u in C1 and σn → σ , then the corresponding sequence of constants Kn

σn
converges

to Kσ .
For σ = 0, the unique fixed point of Hσ is u ≡ 0, because the unique solution of

−(Ω(u′(r)))′ = 0 in (0, T ) with u(0) = u(T ) = 0 is u ≡ 0.
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The compactness of Hσ for each σ ∈ [0,1] follows by the C1 a priori estimate below, since
the difference between Hσ u(r) and Hσ u(s) is controlled by |r − s|. And the same is true for the
derivatives of Hσ (u)(r), and this allows the use of Arzelá–Ascoli Theorem.

By definition of the operator Hσ we see that a fixed point u of Hσ is a weak solution of
(3.7) and the functions u(r) and Ω(u′(r)) are differentiable. Moreover, if u is a solution of (3.7),
then u � 0 in [0, T ], by comparison Lemma 2.1 in [6] and the conditions (F1) and (G1). By the
sliding method, introduced in [4], as it was applied in the proof of Theorem 2.2 of [6], we see
that u is non-decreasing and then u′ � 0 in [0, T ]. Now, in order to see the existence of T0 as in
the statement of the lemma, we assume that for some r̄ ∈ (0, T ) we have u′(r̄) > 0 and at r0 > r̄

we have u′(r0) = 0. Then r0 is a minimum point of u′ and u(r0) > 0, so that from Eq. (3.7)(
Ω

(
u′(r0)

))′ = σ
{
λG

(∣∣u′(r0)
∣∣) + kΩ

(∣∣u′(r0)
∣∣) + f

(
u(r0)

)} = σf
(
u(r0)

)
> 0.

Hence (Ω(u′(r)))′ > 0 in a neighborhood (r0 − ε, r0 + ε) for ε > 0 small. Since u′(r0) = 0 we
must have Ω(u′(r)) < 0 in (r0 − ε, r0) and applying the increasing function Ω−1 we conclude
that u′(r) < 0 in (r0 − ε, r0), The existence of T0 with the desired properties then follows, when
σ ∈ (0,1]. Thus, a fixed point u of H1 turns out to be the solution we are looking for.

To find a fixed point of H1 we apply the Leray–Schauder Theorem and for that we just need
to check that the solutions of (3.7) are a priori bounded in the C1 norm.

Since u′ � 0, it is easy to see that u attains its maximum on the boundary of the interval [0, T ]
and then ‖u‖L∞(0,T ) � σa � a. We now find an a priori estimate for u′. Since u satisfies (3.7)
we have (

H(u′)
)′ = (

Ω(u′)
)′
u′ = σ

{
λG(u′)u′ + kΩ(u′)u′ + f (u)u′}

and then

(H(u′))′

1 + |G(u′)| + Ω(u′)
� Cu′,

for C = max(|λ|, k, f (a)) and H as defined in (1.5) and (1.6). If c, d are two points in [0, T ]
such that u′(c) < u′(d), after integrating in r in the interval (c, d) we obtain

H(u′(r))∫
H(u′(c))

1

1 + |G(H−1(s))| + Ω(H−1(s))
ds

=
r∫

c

(H(u′(s)))′

1 + |G(u′(s))| + Ω(u′(s))
ds � Cu(d) � Ca. (3.8)

Now we claim that there exists a constant C1 > 0 such that for any solution of (3.7) there is a
point s ∈ [0, T ] such that u′(s) � C1. In fact, taking C1 such that C1T > a and assuming that
u′(r) � C1 for all r ∈ [0, T ], we find

a � u(T ) = σa =
T∫

0

u′(s) ds � C1T ,

that is a contradiction, from where the claim follows.
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Now we choose a constant M > 0 so that

M <

∞∫
C1

1

1 + |G(H−1(s))| + Ω(H−1(s))
ds, (3.9)

and then make a > 0 smaller if necessary so that Ca < M .
Let us assume now that there exists a sequence of solutions un and a sequence of points

sn ∈ [0, T ], such that |u′
n(sn)| → ∞ as n → ∞. As proved above there is a sequence rn ∈ [0, T ],

such that u′
n(rn) � C1. And we may apply (3.8) to un, with c = rn and d = sn to get

H(u′
n(sn))∫

C1

1

1 + |G(H−1(s))| + Ω(H−1(s))
ds � Ca.

But we have taken the constant a in such a way that Ca < M where M > 0 satisfy (3.9). Since
u′

n(sn) → ∞ as n → ∞, we get a contradiction. �
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