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a b s t r a c t

We study a procedure for estimating an upper bound of an unknown noise factor in
the frequency domain. A learning algorithm using a Fourier transformation method was
originally given by Linial, Mansour and Nisan. While Linial, Mansour and Nisan assumed
that the learning algorithm estimates Fourier coefficients from noiseless data, Bshouty,
Jackson, and Tamon, and also Ohtsuki and Tomita extended the algorithm to ones that
are robust for noisy data. The noise process that we consider is as follows: for an
example ⟨x, f (x)⟩, where x ∈ {0, 1}n, f (x) ∈ {−1, 1}, each bit of x and f (x) gets
flipped independently with probability η during a learning process. The previous learning
algorithms for noisy data all assume that the noise factor η or an upper bound of η is known
in advance. The learning algorithm proposed in this paper works without this assumption.
We estimate an upper bound of the noise factor by evaluating a noisy power spectrum
in the frequency domain and by using a sampling trick. Combining this procedure with
Ohtsuki and Tomita’s algorithm, we obtain a quasi-polynomial-time learning algorithm
that can cope with noise without knowing any information about the noise in advance.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Linial et al. [5] gave a learning algorithm for Boolean functions in class AC0 under a uniform distribution. The learning
algorithm uses a Fourier transformation method via estimating Fourier coefficients from noiseless data.

Subsequently, Bshouty et al. [1] showed that learning is possible in cases where certain types of noise are mixed in.
They considered two types of noise: attribute noise and classification noise. Using the Fourier-based algorithm of Linial
et al. [5], they showed how learning can take place under the assumption that the precise values of these noise factors are
made available to the learner in advance. Meanwhile, Ohtsuki and Tomita [7] gave a learning algorithm that works even
when the noise factor itself remains unknown as long as an upper bound for the noise factor is provided to the learner
in advance. Bshouty et al. [2] also demonstrated a method that works when only an upper bound for the noise factor is
provided in advance with a sufficient approximation of the noise factor being provided by a certain type of special oracle
that characterizes the noise process, thereby eliminating their above-mentioned assumption [1].

There have beenmany previous studies on learning in cases where noise gets mixed in. In such cases, successful learning
critically depends on the availability of information about the noise. In many cases, the availability of suitable noise-related
information allows the learner to copewith effects of noise. Consequently, by assuming that the learner has prior knowledge
about the noise such as the noise factor or an upper bound of it, we are making things rather easy from the learner’s
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perspective. The noise factor η considered by Bshouty et al. [2] and by Ohtsuki and Tomita [7] is unknown to the learner, but
it is assumed that 0 ≤ η < 1/2; that is, the bound of the noise factor is away from 1/2. Laird [4] showed that it is possible
to estimate an upper bound for the noise factor when classification noise alone is mixed in.

It is preferable to restrict the noise-related information disclosed to the learner in advance, and if some way can be
found of making an a priori estimate of this noise-related information, then learning can take place under more natural
assumptions. Specifically, this would allow learning to take place under the assumption that noise is liable to be mixed in
with a noise factor of less than 1/2 and would further reduce the amount of information required in advance for learning to
take place.

This paper proposes amethod for estimating an upper bound of the noise factor directly from noisy samples by consider-
ing the frequency domain. This method involves comparing the power spectrummeasured from actual samples with values
related to the power spectrum computed from a hypothetical value for a noise factor upper bound.With thismethod, an up-
per bound of the noise factor can easily be estimated simply by estimating the amount of decay across the power spectrum,
so it is quite different from the method of Laird [4], where predicted and experiential mismatch factors of the hypothesis
on samples are evaluated. Our method can be applied not only to AC0 Boolean functions, but also to any function where the
function’s power spectrum is concentrated on lower frequencies.

Furthermore, by combining it with the learning algorithm of Ohtsuki and Tomita [7], we can obtain a more powerful
learning algorithm that operates under the sole assumption that examples provided to the learner are varied by an unknown
probability η (0 ≤ η < 1/2).

A preliminary version of this paper appeared in [6], in which all the necessary contents of [7] are quoted.

2. Definitions

A Boolean function f is a map f : {0, 1}n → {−1, 1}. For x in {0, 1}n, |x| represents the Hamming weight, i.e., the number
of 1s in x, and x[i] represents the ith bit of x. The bitwise exclusive-OR of two n-bit vectors x1 and x2 is denoted by x1 ⊕ x2.

Valiant [8] introduced the Probably Approximately Correctly (PAC) learning model. In this paper, we consider a problem
of PAC learning with respect to a uniform distribution over examples with attribute and classification noise. Let Fn be a set of
Boolean functions ( also called a concept class) and assume that f , h ∈ Fn. The learningmodel used in this paper is described
below.

The learning algorithm stops after obtaining a number of examples selected at random under a uniform distribution, and
then outputs a hypothesis h. An example ⟨x, f (x)⟩ comprises the combination of an input x ∈ {0, 1}n and its corresponding
output f (x) ∈ {1, −1}. Under a uniform distribution, the probability that hypothesis h differs from the target f is PrU [f (x) ≠

h(x)], which is expressed as PrU [f (x) ≠ h(x)] = errorf (h). The success of learning is evaluated by twoparameters: a precision
parameter ϵ and an accuracy parameter δ. For any values of f , ϵ (0 < ϵ < 1), and δ (0 < δ < 1) in Fn, the learning algorithm
L outputs hypothesis h in which the error rate error(h) is at most ϵ with a probability of at least 1 − δ.

A hypothesis h for which the error rate errorf (h) is less than or equal to ϵ is called an ϵ-good hypothesis; one whose error
rate is greater than ϵ is called an ϵ-bad hypothesis. When a learning algorithm exists for concept class, the concept class is
said to be ‘‘learnable’’ under the uniform distribution.

3. Learning algorithm based on Fourier transformation

Let f be a Boolean function from {0, 1}n to {−1, 1}. For α in {0, 1}n, an orthonormal basis χα(x) is given by χα(x) =

(−1)α·x (α · x =
∑

i α[i]x[i]). Using a Fourier transformation method, it is possible to express any Boolean function f by the
following formula, where f̂ (α) = EU [f (x)χα(x)] represents the Fourier coefficients of f in α, and |α| is called the frequency
of α:

f (x) =

−
α

f̂ (α)χα(x).

3.1. Learning of constant-depth circuits

Let f be a Boolean function that can be computed by a constant-depth, polynomial-size circuit (AC0 circuit). Linial et al.
[5] proposed an algorithm that can learn a Boolean function f of this sort in O(npolylog(n)) time under a uniform distribution
by using a Fourier transformation method. They showed that the Fourier coefficients f̂ (α) of f that can be computed
from an AC0 circuit have the property that the majority of the components

∑
α f̂ (α)2 are concentrated at low frequencies

(
∑

α f̂ (α)2 ≤ ϵ/2 for anyα such that |α| ≤ k). Let h(x) =
∑

α:|α|≤k ĥ(α)χα(x) be a hypothesis of f , where ĥ(α) is an empirical
value of f̂ (α), and let k = O(logd n/ϵ) be a frequency-related constant (where d is the depth of the AC0 circuit). There are

(
n
k ) Fourier coefficients ĥ(α) with Hamming weight k. It is possible to construct an ϵ-good hypothesis h(x) by making a

good estimate of these Fourier coefficients.
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4. Learning from noisy examples

4.1. Noise model

In this paper, we consider learning in environments where there are two types of noise, called ‘‘attribute noise’’ and
‘‘classification noise’’, as discussed in parts of references [6,7,2]. Specifically, in a process that receives examples ⟨x, f (x)⟩
from an oracle EX(), the noise process changes the examples into noisy examples ⟨x ⊕ xN , f (x)yN⟩ (xN ∈ {0, 1}n, yN ∈

{1, −1}) with a certain fixed probability. An oracle that provides these noisy examples is denoted by EX()η , where η is
called the noise factor (0 ≤ η < 1/2). The noisy oracle EX()η mixes examples with xN ∈ {0, 1}n and yN ∈ {−1, +1}, which
occur with respective probabilities∏

xN [i]=1

η
∏

xN [i]=0

(1 − η),
∏

yN=−1

η
∏
yN=1

(1 − η).

When this noise is mixed into the examples, the Fourier coefficients obtained from the sample are reduced according to
the noise factor, as shown by the following lemma. (A proof of Lemma 1 can be found in [1,2,7], etc.)

Lemma 1 (Bshouty et al. [1,2], Ohtsuki and Tomita [7]). Let f be a Boolean function whose noise factor η lies in the range 0 ≤

η < 1/2. Then, the expectation values of the Fourier coefficients obtained from noisy samples {⟨xj ⊕ xjN , f (xj)yjN⟩}
m
j=1 are given by

EU [f (x)yNχα(x ⊕ xN)] = (1 − 2η)|α|+1 f̂ (α). �

According to Lemma 1, the Fourier coefficients obtained from noisy samples end up as Fourier coefficients with added
bias terms (1 − 2η)|α|+1, so if these reduced Fourier coefficients are used directly in the construction of a hypothesis, it is
not possible to obtain the desired ϵ-good hypothesis. It is thus necessary to somehow remove the bias terms (1 − 2η)|α|+1

by estimating η in order to recover the Fourier coefficients f̂ (α) before reduction.

4.2. Algorithm for learning from noisy examples

Bshouty et al. [2] demonstrated that learning is possible with this sort of noise model, and as one example of an
application, they demonstrated a learning algorithm for class AC0 Boolean functions under a uniform distribution. They
showed that learning is possible if the noise-related information assumed to be known in advance consists of the upper
bound of the noise factor and if a special oracle that can estimate η with adequate precision is provided.

On the other hand, as described in reference [6], Ohtsuki and Tomita [7] demonstrated a learning algorithm called Robust
k-lowdegree (rkl) that estimates η from only examples provided by an oracle EXη() even when the upper bound of the noise
factor is already known [7].

As demonstrated by Laird [4], in problems involving learning from noisy examples, the size of samples required for
learning is generally inversely proportional to the size of the noise factor (0 ≤ η < 1/2). Specifically, the sample size is
inversely proportional to 1 − 2η, and as η approaches 1/2, the required sample size becomes larger.

Accordingly, when no prior information whatsoever is available beforehand when learning from a noisy input, the
learning algorithm must achieve the complex task of estimating the noise factor while determining a suitable sample size
through trial and error.

4.3. Estimation of upper bound when classification noise is included

Laird [4] also showed that it is possible to estimate an upper bound η0 for the noise factor in the classification noise
model. Classification noise refers to cases where, for an example, in ⟨x, f (x)⟩, only the f (x) part changes with probability η.

The upper bound estimation algorithm described by Laird [4] evaluates the ratios at which a number of different
hypotheses held by the learning algorithm form a mismatch with a suitably sized sample. This is based on the idea that
the hypothesis with the smallest mismatch factor for the noise sample is likely to be an ϵ-good hypothesis. An attempt
is then made to obtain an upper bound estimate value by comparing this minimum mismatch factor with a hypothetical
mismatch factor predicted from a certain upper bound estimate value η̂. A stable estimate of the unknown noise factor
is made using a technique in which the noise factor’s estimated value is gradually increased while the sample size is also
gradually increased. For details, see Laird’s paper [4].

If attribute noise is also mixed in, the task of evaluating the mismatch becomes harder. With Laird’s method [4], the
desired hypothesis (an ϵ-good hypothesis) may not have the smallest mismatch factor for the noise sample. Thus, it is
currently impossible to apply Laird’s method [4] directly.

In this paper, therefore, we estimate the upper bound of the noise factor η by using a method that involves evaluating
the amount of reduction in the power spectrum obtained from the samples in the frequency domain.
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5. Method for estimating the noise factor’s upper bound

An algorithm for learning about noise factors under the assumption that the learner is provided in advancewith an upper
bound for the noise factor instead of accurate values of the actual noise factor has been demonstrated (Bshouty et al. [2],
Ohtsuki and Tomita [7]). Specifically, if we assume that noise factor remains unknown but that the learner is provided with
at least knowledge about its upper bound such that the noise factor is known to be less than or equal to a certain value, then
this information is sufficient for constructing the desired hypothesis.

The reasonwhy the desired hypothesis can be constructed by replacing the noise factorwith its upper bound is as follows.

• Since the upper bound of the noise factorη is provided, the learning algorithmcandetermine in advance a suitable sample
size for the learning process. In this way, the learning algorithm can determine the Fourier coefficients (1−2η)|α|+1 f̂ (α)
obtained from the noise sample within a fixed error range.

• In the limited range up to the upper bound η0, the learning algorithm can estimate the unknown noise factor η within a
fixed margin of error.

Furthermore, by using an upper bound, we can at least identify an adequate sample size necessary for learning, albeit not
the bare minimum necessary sample size.

On this basis, in this paper we propose a method for estimating the upper bound of the noise factor, which is expected
to be relatively effortless to estimate compared with the unknown noise factor itself.

5.1. Estimation idea

We know that the noise factor lies somewhere in the range 0 ≤ η < 1/2, even if the noise factor mixed into the samples
is unknown. Moreover, we know how the effects of noise appear in the Fourier domain. In a Fourier-based learning model,
the degree of reduction of each Fourier coefficient is expressed by a bias term (1 − 2η)|α|+1. As the noise factor η increases
or as the frequency |α| increases, the effects of noise become stronger and the observed power spectrum decreases.

Here, we introduce an estimated value η′ of an unknown noise factor η. We compare the power spectra obtained with
noise factors of η and η′. If η′ is larger than or equal to η, we find that the power spectrum obtained with η′ is lower than or
equal to that obtained with η.

On the basis of this idea, we can estimate the upper bound of the unknown noise factor η. We then determine the
(reduced) power spectrum predicted by this hypothetical value η′ and compare this assumed power spectrum with the
power spectrum actually measured by the learner from the samples. If the η′-based power spectrum is lower than the
power spectrum actually measured from the samples, then η′ is a possible upper bound of the unknown noise factor η.

In this power spectrum comparison, the sample size is an issue. We assume that due consideration is given to errors in
the power spectrum caused by the noise factor’s hypothetical value η′ because although a sufficiently large sample can be
used to correct the errors in these Fourier coefficients (1 − 2η)|α|+1 f̂ (α), the size of this unknown sample depends on the
unknown noise factor.
Theorem 1. Let η′ (0 ≤ η′ < 1/2) be an estimated value of the unknown noise factor η or its upper bound, and let
δ (0 ≤ δ < 1) be a parameter expressing the level of confidence in the estimated noise factor η′. Let n be the input size, d
the depth of AC0 circuits, and k the maximum Hamming weight of α related to the Fourier coefficients being estimated, given as
k = O(logd(n)) (0 ≤ k ≤ n)). Suppose that we obtained an empirical value cα for the expectation value (1− 2η)|α|+1 f̂ (α) of the
Fourier coefficients with bias terms from a sample of size m(η′), and let s(η′) be an upper bound of the error from the expectation
value for the power spectrum

∑
α:|α|≤k c

2
α , given as s(η′) = (1− 2η′)2k+2/2n. Then, when inequality (1) has been established for

a specific frequency i (0 ≤ i ≤ k), the estimated value η′ is the unknown noise factor η or its upper bound (η ≤ η′ < 1/2) with
a probability of at least 1 − δ.

(1 − 2η′)2i+2
≤

−
α:|α|=i,i≤k

c2α − s(η′). (1)

Here, the size m(η′) defined by the following formula is requested from the oracle EX()η;

m(η′) = 32n2k+2


1
1 − 2η′

4k+4

ln

2nk

δ


.

Proof. Before we start proving, we recall the following version of Hoeffding bounds [3]. To prove Theorem 1, we will use
Lemma 2.
Lemma 2 (Hoeffding Bounds [3]). Let Xi (1 ≤ i ≤ m) be independent, identically distributed randomvariables, where E[Xi] = µ
and |Xi| ≤ 1. Then

Pr

 1m
m−
i=1

Xi − µ




≤ δ,

whenever m ≥ (1/2γ 2) ln(2/δ). �
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There are two points to be proved:
(A) That a sample of size m(η′) is large enough to obtain an empirical value

∑
α:|α|≤k c

2
α of the power spectrum with a

probability of at least 1 − δ from the expectation value within the range of error s(η′) = (1 − 2η′)2k+2/2n.
(B) That when η′ satisfies inequality (1) of Theorem 1, it is the upper bound of the noise factor η.
We consider point (A) first.
A sample of sizem(η′) is large enough to obtain an empirical value cα with a probability of at least 1−δ for the expectation

values (1 − 2η)|α|+1 f̂ (α) of each Fourier coefficient with a range of error γ ′
c = (1 − 2η′)2k+2/(4nk+1). This can easily be

understood from Lemma 2 (Hoeffding bounds [3]). In other words, there is a high probability that |(1−2η)|α|+1 f̂ (α)− cα| ≤

γ ′
c .
On the basis of this fact, as shown below, from a sample m(η′), at an arbitrary frequency |α| less than or equal to k, it

is possible to obtain an empirical value
∑

α:|α|≤k c
2
α within a range of error s(η′) = (1 − 2η′)2k+2/2n for a power spectrum

expectation value of
∑

α:|α|≤k(1 − 2η)2|α|+2 f̂ (α)2. Here, we use the relationship 0 ≤ |(1 − 2η)|α|+1 f̂ (α)| and |cα| ≤ 1.

∵
−

α:|α|≤k

|(1 − 2η)2|α|+2 f̂ (α)2 − c2α| =

−
α:|α|≤k

|(1 − 2η)|α|+1 f̂ (α) + cα||(1 − 2η)|α|+1 f̂ (α) − cα|

≤ nk
× 2 × γ ′

c =
(1 − 2η′)2k+2

2n
.

It can thus be said that a sample of sizem(η′) is large enough to obtain an empirical value
∑

α:|α|≤k c
2
α of the expectation

value
∑

α:|α|≤k(1 − 2η)2|α|+2 f̂ (α)2 within an error of s(η′), as expressed by

Pr
U

 −
α:|α|≤k

|(1 − 2η)2|α|+2 f̂ (α)2 − c2α| ≤ s(η′)


≥ 1 − δ.

At the same time, we can derive inequality (2), which happens with a probability of at least 1 − δ. We use inequality (2) in
the proof of point (B).−

α:|α|≤k

c2α − s(η′) ≤

−
α:|α|≤k

(1 − 2η)2|α|+2 f̂ (α)2. � (2)

Point (B) is discussed next. A comparative value is introduced between the power spectra
∑

α:|α|≤k c
2
α obtained from the

unknown noise factor η. For the empirical value
∑

α:|α|≤k c
2
α of the power spectra considering error s(η′), we assume a real

number p that satisfies

p ≤

−
α:|α|≤k

c2α − s(η′).

This value p is a hypothetical value related to the power spectrum estimated from the noise factor’s estimated value η′, and
is determined as p = (1 − 2η′)2i+2 for a specific frequency i (0 ≤ i ≤ k). When i = k, this value p is equal to the value
of the power spectrum (1 − 2η)2k+2

· 1 (where
∑

α:|α|=k f̂ (α)2 = 1) when all the Fourier components are concentrated at
frequency k, which is equivalent to the case where the power spectrum is reduced the most by the effects of noise. When
we use the above inequality (2) and the relationship between this value p and the empirical value

∑
α:|α|≤k c

2
α of the power

spectrum for a specific frequency i (0 ≤ i ≤ k), the estimated value η′ becomes the upper bound of η:

p ≤

−
α:|α|=i,i≤k

c2α − s(η′) ≤ (1 − 2η)2i+2
−

α:|α|=i,i≤k

f̂ (α)2

⇒ (1 − 2η′)2i+2
≤ (1 − 2η)2i+2

−
α:|α|=i,i≤k

f̂ (α)2.

Thus, we can say that the estimated value η′ is the upper bound of η, as shown below.

(1 − 2η′)2i+2
≤ (1 − 2η)2i+2

−
α:|α|=i,i≤k

f̂ (α)2

⇒


1 − 2η′

1 − 2η

2i+2

≤

−
α:|α|=i,i≤k

f̂ (α)2

⇒ 1 − 2η′
≤ 1 − 2η (∵ 0 ≤

−
α:|α|=i,i≤k

f̂ (α)2 ≤ 1)

⇒ η ≤ η′. �

These two points complete the proof of Theorem 1.
In the following section,wediscuss a procedure for estimating the upper bound of the noise factor using criteria according

to Theorem 1.
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5.2. Procedure for estimating the noise factor’s upper bound

The procedure for estimating the noise factor’s upper bound involves (i) comparing the hypothetical value of the power
spectrum obtained from η′ (the upper bound estimate value of the noise factor) with the empirical value of the power
spectrum actually observed from a sample including noisy examples and (ii) judging whether or not the estimated value η′

is the upper bound of the unknown noise factor η.
Upper bound estimation procedure (δ):
Definemr(η

′) and s(η′) as follows:

mr(η
′) = 32n2k+2


1

1 − 2η′

4k+4

ln

2r+1nk

δ


,

s(η′) =
(1 − 2η′)2k+2

2n
.

Input: δ (0 < δ < 1), k = O

logd n


.

Output: η′ such that η′
≥ η

Procedure
1 r := 1, η′

:= 0
2 (round r) Repeat until the halt condition is satisfied.

2.1 Requestmr(η
′) examples.

2.2 m := mr(η
′)

2.3 For each α such that |α| ≤ k, obtain

cα =
1
m

m−
j=1

f (xj)yjNχα(xj ⊕ xjN).

2.4 p := (1 − 2η′), s := s(η′)
2.5 If the following inequality is satisfied for a specific frequency i (0 ≤ i ≤ k), then halt and output η′.

p2i+2
≤

−
α:|α|=i

c2α − s.

2.6 Otherwise, perform the following steps and go to the next round.

r := r + 1, η′
:=

1
2

−
1

2r+1
.

Here, we explain the situation in which the halt condition is satisfied by referring to Fig. 1. Fig. 1(a) shows the ideal
Fourier spectra and Fig. 1(b) shows the empirical Fourier spectra obtained from noisy samples. Fig. 1(c) shows the situation
when the halt condition is satisfied at |α| = 2.

Theorem 2. If the sample size mr(η
′) is declared as

mr(η
′) = 32n2k+2


1

1 − 2η′

4k+4

ln

2r+1nk

δ


,

then the procedure for estimating the noise factor’s upper bound will stop at or before round r0 = 2 + ⌈log2(1 − 2η)−1
⌉ with a

probability of at least 1 − δ and will output a value η′ that is the upper bound of η (0 ≤ η ≤ η′ < 1/2).

Proof. The estimation procedure fails if one or both of the following situations occur. Therefore, in order to prove Theorem2,
we show that the sum of their occurrence probabilities is less than δ.

1. When the estimation procedure has stopped, the output estimation value η′ does not constitute the upper bound of the
noise factor η (η′ < η).

2. The estimation procedure does not stop at or before round r0 = 2 + ⌈log2(1 − 2η)−1
⌉.

Before discussing the two above-mentioned situations related to the proof of Theorem 2, let us first confirm the
relationship between the sample size mr(η

′) and the error of the empirical values cα of the Fourier coefficients used as
a premise for the correct operation of the estimation procedure.

As the following formula shows, the sample size mr(η
′) is determined so that in any round, the probability of obtaining

the empirical value cα of any Fourier coefficient with a discrepancy greater than or equal to an error γ ′
c from the expectation

value (1 − 2η)|α|+1 f̂ (α) is suppressed to less than or equal to δ/2.

Pr
U

 −
α:|α|≤k

|(1 − 2η)|α|+1 f̂ (α) − cα| ≥ γ ′

c


≤

δ/2
2r × nk

× 2r
× nk

=
δ

2
.

The term 2r in this formula represents the number of all possible rounds with regard to whether or not it was possible
to estimate all the desired values of cα in each round within the desired error range after r rounds of independent attempts.
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(a) Ideal Fourier spectra. (b) Empirical Fourier spectra.

(c) Satisfied halt condition.

Fig. 1. Fourier spectra and halt condition.

On the basis of this reasoning, which constitutes the premise of the estimation procedure, we now show that the above-
mentioned two probabilities related to Theorem 2 are each less than or equal to δ/2 for a sample of this sizemr(η).

We start by considering the first of these situations.
If the estimation procedure has stopped at Step 2 because it satisfies the halt condition, this means that the output

estimated value η′ represents the upper bound of η with a probability of at least 1 − δ/2.
Assume that the estimation procedure has stopped at round r0. Here, the sample of sizemr(η

′) is large enough to satisfy
inequality E1 for an estimated value of the power spectrum

∑
α:|α|≤k c

2
α with a probability of at least 1−δ/2 in the estimation

procedure.

E1:
−

α:|α|≤k

c2α ≤ (1 − 2η)2|α|+2
−

α:|α|≤k

f̂ (α)2 + s(η′).

Moreover, since the estimation procedure comes to a halt, the halt condition E2 holds for a specific frequencywith regard
to η′, the estimated value of the noise factor’s upper bound.

E2: (1 − 2η′)2|α|+2
≤

−
α:|α|≤k

c2α − s(η′)

→ (1 − 2η′)2|α|+2
+ s(η′) ≤

−
α:|α|≤k

c2α.
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The following inequalities can thus be derived from inequalities E1 and E2, from which it follows that η′
≥ η.

(1 − 2η′)2|α|+2
+ s(η′) ≤ (1 − 2η)2|α|+2

−
α:|α|≤k

f̂ (α)2 + s(η′)

→ (1 − 2η′)2|α|+2
≤ (1 − 2η)2|α|+2

−
α:|α|≤k

f̂ (α)2

→ η ≤ η′. �

Next, we consider the second situation.
We show that the estimation procedure will stop at or before round r0 = 2 + ⌈log2(1 − 2η)−1

⌉ with a probability of at
least 1 − δ/2.

In round r , the estimated value η′
r of the noise factor’s upper bound becomes η′

r =
1
2 −

1
2r+1 , where we assume that the

relationship η′
r ≥ η holds so that Eq. (3) can be used for η′

r and η.

(1 − 2η′

r)
2|α|+2

≤ (1 − 2η)2|α|+2. (3)

At round r + 1, the estimated value of the upper bound of the noise factor η′

r+1 becomes η′

r+1 =
1
2 −

1
2r+2 , and the

hypothetical value of the estimated power spectrum can be derived as (1 − 2η′

r+1)
2|α|+2

=
 1
2

2|α|+2
(1 − 2η′

r)
2|α|+2. This is

equal to
 1
2

2|α|+2
times the left hand side of Eq. (3).

Then, in round r+1, it is shown that the hypothetical value (1−2η′

r+1)
2|α|+2 satisfies the halt condition in the estimation

procedure. Consequently, for at least at one frequency i (0 ≤ i ≤ k) where frequency |α| is less than or equal to k, it is shown
that inequality (4) related to the stop condition is satisfied. This is because when inequality (4) is satisfied for the upper
bound estimate η′

r+1, the hypothetical value (1 − 2η′

r+1)
2|α|+2 is less than or equal to the empirical value of the power

spectrum,
∑

α:|α|≤k c
2
α − s(η′

r+1), taking errors into consideration.

(1 − 2η′

r+1)
2|α|+2

≤ (1 − 2η)2|α|+2
−

α:|α|≤k

f̂ (α)2 − 2s(η′

r+1). (4)

Since there is at least one frequency forwhich inequality (4) is satisfied, this shows that the value of formula (5) (obtained
by modifying formula (4)) increases to greater than or equal to 2s(η′

r+1).

(1 − 2η)2|α|+2
−

α:|α|≤k

f̂ (α)2 − (1 − 2η′

r+1)
2|α|+2

= (1 − 2η)2|α|+2
−

α:|α|≤k

f̂ (α)2 − (1 − 2η′

r)
2|α|+2


1
2

2|α|+2

= (1 − 2ηr)
2|α|+2

 −
α:|α|≤k

f̂ (α)2 −


1
2

2|α|+2


. (5)

Since it is sufficient to show that the relationship holds for at least one frequency, we obtain the sum over all frequencies
in the range from 0 to k for formula (5) and 2s(η′

r+1) as shown below.
For Eq. (5), the sum is obtained as follows.

(1 − 2ηr)
2|α|+2

 −
α:|α|≤k

f̂ (α)2 −

k−
|α|=0


1
2

2|α|+2


≥ (1 − 2ηr)
2|α|+2


3
4

−
1
3


= (1 − 2ηr)

2|α|+2


5
12


.

∵

∑
α:|α|≤k f̂ (α)2 ≥ 1 −

ϵ
4 ≥

3
4∑k

|α|=0

 1
2

2|α|+2
=

1
3


1 −

 1
4

k+1


< 1
3


.

The sum for 2s(η′

r+1) is also obtained as follows.

2s(η′

r+1) × k ≤ 2 ×
(1 − 2η′

r+1)
2k+2

14n
× n = (1 − 2η′

r)
2k+2


1
2

2k+2 1
7


.

As a result of obtaining the sum over the range up to k, we can say that the following formula holds for Eq. (5) and
2s(η′

r+1); hence, inequality (4) holds for at least one frequency.

(1 − 2ηr)
2|α|+2

 −
α:|α|≤k

f̂ (α)2 −

k−
|α|=0


1
2

2|α|+2


≥ 2s(η′

r+1) × k.
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Thus, a sample of size mr(η
′

r+1) is large enough for the following formula to hold with a probability of at least 1 − δ/2.
By subtracting 2s(η′

r+1) from both sides, we obtain

(1 − 2η)2|α|+2
−

α:|α|≤k

f̂ (α)2 ≤

−
α:|α|≤k

c2α + s(η′

r+1)

(1 − 2η)2|α|+2
−

α:|α|≤k

f̂ (α)2 − 2s(η′

r+1) ≤

−
α:|α|≤k

c2α − s(η′

r+1). (6)

By combining inequalities (4) and (6), we can show that the halt condition (1 − 2η′

r+1)
2|α|+2

≤
∑

α:|α|≤k c
2
α − s(η′

r+1) is
met, thereby ending the estimation procedure.

By fulfilling the halt condition, the estimation procedure stops at or before round r + 1. Up to round r , the estimated
value of the upper bound η′ of the noise factor was updated 1 + ⌈log2(1 − 2η)−1

⌉ times, so the estimation procedure stops
at or before round r0 = r + 1 = 2 + ⌈log2(1 − 2η)−1

⌉. �

Finally, since the two above-mentioned situations related to Theorem 2 both fail with a probability of at most δ/2, the
estimation procedure will fail in its estimation with a combined maximum probability of δ.

5.3. Combination of algorithm for learning from noisy examples and estimation procedure

In this section, we first present Theorem 3, which is related to the robust k-lowdegree algorithm [7] (referred to as the
rkl algorithm below), and then describe the rkl algorithm itself. The rkl algorithm searches for values related to an unknown
noise factor η by incrementing a natural number t in steps of 1t .

A proof of Theorem 3 can be found in the Appendix.

Theorem 3 (Ohtsuki and Tomita [7]). Consider a Boolean function f , values ϵ and δ such that 0 < ϵ, δ < 1, and a noise factor
whose upper bound is η0 (0 ≤ η ≤ η0 < 1/2) applied to a learner. The rkl algorithm requests the m examples shown below, and
outputs a hypothesis h in time of order O(mnk) with a probability of at least 1 − δ and an error rate of less than or equal to ϵ.
Here, k = O(logd(n)/((1 − 2η0)ϵ)).

m = 1568nk+2


1
1 − 2η0

2k+4 1
ϵ


ln

2nk

δ


. �

Robust k-lowdegree algorithm [7] (ϵ, δ, η0):

Definem = 1568nk+2 (1/(1 − 2η0))
2k+4 (1/ϵ) ln


(2nk)/δ


,

γu = ln

1 +

√
ϵ/2


/(k + 1),

1t = ln

(1 − (1 − 2η0)γu)

2
+ ((1 − 2η0)

√
ϵ)/(4n)

−1
/(4k + 4).

Step 1. Request noisy examples {⟨xj⊕xjN , f (xj)yjN⟩}
m
j=1. For each α such that |α| ≤ k, calculate cα =

1
m

∑m
j=1 f (x

j)yjNχα(xj⊕
xjN).

Step 2. Initialize t = 1 and then increase t by 1t until it satisfies the following inequality or until t ≥
1

1−2η0
. Regard such

a t as an estimated value of 1
1−2η .

k−
i=0

−
|α|=i

c2α


t2i+2

≥ (1 − (1 − 2η0)γu)
2
+

3(1 − 2η0)
√

ϵ

28n
.

Step 3. Output the hypothesis h(x) = sign(
∑

|α|≤k cαt
|α|+1χα(x)) and halt.

In this rkl algorithm [7], we use the value of the noise factor’s upper bound η0 to predetermine a suitable sample size.
By combining the estimation procedure used in this paper with the above rkl algorithm [7], it is possible to obtain a

learning algorithm that requires absolutely no prior information about the noise factor. This learning algorithm outputs a
hypothesis hwith an error rate of nomore than ϵ with a probability of at least 1−δ. Since the estimation procedure requires
a sample whose size is O(rm), its time complexity is

O(rmnk) = O


n2k+2


1

1 − 2η

4k+4 1
ϵ


ln


2nk

δ(1 − 2η)


.
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6. Conclusion

In this paper, we proposed a procedure for estimating the upper bound of an unknown noise factor in the frequency
domain. By simply evaluating the state of fluctuation of the frequency components obtained from the noise sample, this
procedure can estimate the noise factor’s upper bound in a noise model where attribute noise and classification noise are
mixed inwith a certain fixed probability, without having to evaluate the error rate of the hypothesis obtained from the noise
sample. By combining this estimation procedure with the rkl algorithm [7], it is possible to obtain a more powerful learning
algorithm that does not require any prior information about the noise factor.
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Appendix. ([7])

A proof of Theorem 3 is given below.
Let f be a Boolean function that can be computed by a constant-depth, polynomial-size circuit (AC0 circuit). Moreover,

let η (0 ≤ η < 1/2) be an unknown noise factor and let cα be the empirical value for expectation values (1 − 2η)|α|+1 f̂ (α).
Assume that the upper bound η0 (0 ≤ η ≤ η0 < 1/2) of a known noise factor is applied to the learner. Then, we set

γc = ((1 − 2η0)
k+2√ϵ)/(28n

√
nk) and γu = ln(1 +

√
ϵ/2)/(k + 1), where k = O(logd(n)/((1 − 2η0)ϵ))(d: depth of the

AC0 circuit).
For expectation values (1 − 2η)|α|+1 f̂ (α) of Fourier coefficients with bias terms, cα is the empirical value obtained from

the noise sample, and the natural number t is the estimated value of 1/(1 − 2η) (t > 1). For an α whose Hamming weight
is larger than k, we assume that

∑
α:|α|≤k f̂ (α)2 ≃ 0, and t is estimated so that

∑k
i=0

∑
|α|=i cα

2

t2i+2

≃ 1. By estimating

t according to the rkl algorithm, we can estimate η because, according to Parseval’s equation,
∑

α:|α|≤k f̂ (α)2 ≃ 1, so this t
should be a good approximation of 1/(1 − 2η).

Lemma 3. Assume that the estimated value t satisfies |t −1/(1−2η)| ≤ γu and that cα satisfies |cα − (1−2η)|α|+1 f̂ (α)| ≤ γc .
Then it is possible to obtain a hypothesis h = sign (Σ|α|≤kcαt |α|+1χα(x)) whose error rate is less than or equal to ϵ.

Proof of Lemma 3. Since the value η0 (η0 ≥ η) is given, we determine the values of k and γc . Thus, we get
∑

α:k<|α|
f̂ (α)2 ≤

((1−2η0)ϵ)/(28n). Consequently, by evaluating errors between cα and f̂ (α), and considering the fact that
∑

α:k<|α|
f̂ (α)2 ≤

((1 − 2η0)ϵ)/(28n), we get Lemma 3. �

Lemma 4. Assume that cα satisfies the relationship |cα − (1 − 2η)|α|+1 f̂ (α)| ≤ γc . When a natural number t satisfies

k−
i=0

−
|α|=i

c2α


t2i+2

≥ (1 − (1 − 2η0)γu)
2
+

3(1 − 2η0)
√

ϵ

28n
,

the relation |t − 1/(1 − 2η)| ≤ γu is established.

Proof of Lemma 4. Consider the contraposition of Lemma 4. After plugging such a t (t < 1/(1 − 2η) − γu) into∑k
i=0(

∑
|α|=i c

2
α)t2i+2, we have

k−
i=0

−
|α|=i

c2α


t2i+2 < (1 − (1 − 2η0)γu)

2
+

3(1 − 2η0)
√

ϵ

28n
.

Hence, we have Lemma 4. Note that we do not consider the case where 1/(1− 2η) + γu < t because we start searching for
t from t = 1 (1/(1 − 2η) ≥ 1). �
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The problem of estimating 1/(1 − 2η) thus reduces to the problem of finding t that satisfies the conditions in Lemma 3.
To avoid estimating a value of t that radically departs from the true value 1/(1− 2η) related to the noise factor, we assume
that t is estimated by increasing its value in increments of 1t , where 1t is expressed as

1t =
1

4k + 4
ln
[
(1 − (1 − 2η0)γu)

2
+

(1 − 2η0)
√

ϵ

4n

]−1

.

Moreover, according to the Hoeffding bounds [3], when m examples are provided, as stated below, the estimated value
of the Fourier coefficients with bias terms is given by |cα − (1 − 2η)|α|+1 f̂ (α)| ≤ γc with a probability of at least 1 − δ.

m = 1568nk+2


1
1 − 2η0

2k+4 1
ϵ


ln

2nk

δ


.

As a whole, Lemma 3 holds for the above sample sizem. This concludes the proof of Theorem 3.
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