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g r a p h i c a l a b s t r a c t
� A number of POPs were determined
in two water bird eggs from Yangtze
River Delta.

� Highly chlorinated biphenyls (CB194-
209) were detected in all individual
eggs.

� 4,40-DDE was the predominant
pesticide in all samples, followed by
b-HCH and Mirex.

� The exposure level of POPs was in the
median or low level in the world.
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a b s t r a c t

Contamination of organochlorine pesticides (OCPs), polychlorinated diphenyls (PCBs), polybrominated
diphenyl ethers (PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and their methyl-
ated counterparts (MeO-PBDEs) were determined in Black-crowned night heron (Nycticorax nycticorax)
and Whiskered tern (Chlidonias hybrida) from two drinking water sources, e.g. Tianmu lake and East Tai
lake in Yangtze River Delta, China. A novel PCBs contamination pattern was detected, including 11% and
6.9% highly chlorinated biphenyls (PCBs with eight to ten chlorines) in relation to total PCB concentra-
tions in the Black-crowned night heron and Whiskered tern eggs, respectively. The predominating OCPs
detected in the present study were 4,40-DDE, with concentration range 280e650 ng g�1 lw in Black-
crowned night heron and 240e480 ng g�1 lw in Whiskered tern, followed by b-HCH and Mirex. 6-
MeO-BDE-90 and 6-MeO-BDE-99 are the two predominant congeners of MeO-PBDEs whereas 6-OH-
BDE-47 contributes mostly to the OH-PBDEs in both species. Contamination level was considered as
median or low level compared global data.
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1. Introduction

The Yangtze River Delta (YRD) is well-known as the “land of fish
and rice”, as it is made up of a large number of lakes and rivers, and
suitable for rice growing and freshwater fish. The Yangtze River
basin provides more than 70% of the country's rice production and
50% of grain production, accounting for 40% of China's gross do-
mestic product (Floehr et al., 2013). Both Tianmu lake (TML) (Li
et al., 2012) and East Tai lake (ETL) (Tao et al., 2010; Yu et al.,
2013) are important drinking water sources in YRD. However, Yu
and coauthors (Yu et al., 2013) found that the chloride concentra-
tion increased 6.76 folds in Tai lake from 1950s to 2010s, and its
current water chemistry has become “anthropogenic dominance”
from its original rock dominance. The current concentrations of
hexachlorocyclohexanes (HCHs), heptachlor, heptachlor epoxide,
aldrin, dieldrin in the shallow groundwater in majority of the areas
of Taihu Lake region may pose serious cancer risk to the local
population, especially to children (Wu et al., 2014).

Large numbers of scientific studies have reported on the
occurrence and effects of persistent and bioaccumulative organic
pollutants in wildlife, humans and abiotic matrices over the last 50
years. Some of these, e.g. twenty-three persistent organic pollut-
ants (POPs) or classes of chemicals are regulated by the Stockholm
Convention (UNEP, 2015). The largest group of POPs is organo-
chlorine pesticides (OCPs), which have a long history of production
(IPEP, 2006) and use around the world, not the least dichlor-
odiphenyltrichloroethane (DDT) in China. Other important groups
of POPs, commercially produced in large quantities, are the in-
dustrial chemical, polychlorinated biphenyls (PCBs) and poly-
brominated diphenyl ethers (PBDEs). Only concentrating on some
selected recent reports on these pollutants are reported in soil
(Zhang et al., 2009), sediment (Mai et al., 2005), mussels (Yin et al.,
2015), fish (Qiu et al., 2012) and birds (Dong et al., 2004; Nakata
et al., 2005) from China. In addition to the POPs, some natural
product and/or metabolites of PBDEs are of emerging concern due
to their occurrence in wildlife, e.g. hydroxylated polybrominated
diphenyl ethers (OH-PBDEs) and methoxylated polybrominated
diphenyl ethers (MeO-PBDEs) (Malmvarn et al., 2005; Lofstrand,
2011; Dahlberg et al., 2014).

Bird and bird eggs have been successfully used as POPs moni-
toring species as they are widely spread, sensitive to environmental
changes from anthropogenic sources and in high trophic level in
the food chain (Jaspers et al., 2006; Voorspoels et al., 2006; Park
et al., 2009; Sun et al., 2012). Previous studies have been con-
ducted on the POPs in avian species in Europe as e.g. continuously
reported by the Swedish EPA (Swedish EPA, 2013) and in individual
species (Jorundsdottir et al., 2010, 2013; Gomez-Ramirez et al.,
2014). In China, several studies on POPs in bird species have been
conducted in recent years. However, most of the studies have been
focused on the Pearl River Delta (Luo et al., 2009; Liu et al., 2010;
Sun et al., 2012). Although YRD is one of the most developed
areas in China, the scientific data regarding POPs on birds is very
limited.

Whiskered tern (Chlidonias hybrida, WT) and Black-crowned
night heron (Nycticorax nycticorax, NH) are common species in
East Tai lake and in Tianmu lake of the YRD, respectively. Both of
them feed mainly on small fish, amphibians, crustaceans, insects
and their larvae. However, study on wetland bird diversity in
Anqing floodplain wetlands, middle-lower reaches of the Yangtze
River showed that Whiskered tern is the dominant species in both
water habitats and reed marsh habitats, while Black-crowned night
heron are abundant in both water habitats and farmland habitats
(Gong et al., 2013), indicating a little difference between two
species.

The objective of the present study was to determine
concentrations and patterns of OCPs, PCBs, PBDEs and OH-/MeO-
PBDEs in bird species from YRD. Hence, eggs of the two bird species
indicated above were collected from two drinking water sources
sites (ETL and TML) in the YRD, China.

2. Materials and methods

2.1. Samples and sampling

Ten Black crowned night heron (N. nycticorax, NH) eggs were
collected from Tianmu lake (TML) and ten Whiskered tern
(C. hybrida, WT) eggs from East Tai lake (ETL) (Fig. 1). The eggs were
collected in April and May, 2014. All eggs were collected randomly
without any conscious selective criterion with the help of local
fishermen. The eggs were immediately sent to the laboratory. The
egg surface was cleaned with deionized water, and the egg white
and yolk was blown out and homogenized prior to storage
at �20 �C, until taken out for chemical analysis.

2.2. Chemicals and standards

All solvents used were of pesticide quality. Authentic reference
standards of OCPs, including 4,40-DDT, 4,40-DDE, 4,40-DDD, 2,40-
DDT, 2,40-DDE and 2,40-DDD, a-HCH, b-HCH, g eHCH were pur-
chased as a mixture from Larodan Fine Chemicals (Malm€o, Swe-
den). The PCB congeners including CB-28, 52, 101, 105, 118, 128, 138,
146, 153, 156, 170, 180, 183, 187 and 189 were purchased from
Larodan Fine Chemicals (Malm€o, Sweden). The highly chlorinated
biphenyls with at least eight chlorines (PCBs(Cl8-10)): CB-194 e CB-
209 were purchased from AccuStandard (New Haven, USA). PBDE
congeners: BDE-28, 47, 66, 99, 100, 153, 154 and 183 were pur-
chased from LGC Promochem (Wesel, Germany). MeO-PBDEs con-
geners, including 20-MeO-BDE-28, 6-MeO-BDE-47, 20-MeO-BDE-68,
6-MeO-BDE-90 and 6-MeO-BDE-99 were synthesized in-house
(Marsh et al., 2003, 2005).

Gel permeation chromatography (GPC) was performed on Bio-
Beads SX-3 gel (200e400 mesh size) from Bio-Rad laboratories
(CA, USA). Diazomethanewas prepared in-house fromN-methyl-N-
nitroso-p-toluenesulfonamide (SigmaeAldrich, Steinheim, Ger-
many). Working with diazomethane has been approved by the
Swedish work authority (IMS 2012/39924).

2.3. Extraction and clean up

Four gram of egg white and yolk was homogenized. Prior to
extraction, surrogate standards (SS): CB-200 (5.2 ng), BDE-139
(3.4 ng), Dec 603 (7.2 ng) and 40eOHeBDE-121 (0.9 g) were
added to the samples. The extraction was performed according to
Jensen et al. (Jensen et al., 2009), except that iso-hexane (iso-hxn)
replaced normal-hexane (n-hxn). After extraction, the lipid content
of each sample was determined gravimetrically. GPC was applied to
remove lipids because of the high lipid content. The GPC was
equipped with an injection loop (1 mL) and a glass column
(500 � 25 mm i.d.) packed with Bio-Beads SX-3 gel. Iso-hxn:
Dichloromethane (1:1, v/v) with 0.5% formic acid was used as the
mobile phase. The flow rate was set to 4 mL/min. The samples were
injected to GPC and divided into two fractions. The first fraction
0e32 min containing lipid together with chlorinated paraffins was
saved for future analysis. The second fraction from 32 to 60 min,
containing the analytes of interest for the present study was
collected. The samples volume was adjusted to 4 mL prior to po-
tassium hydroxide partitioning (0.5 M in 50% ethanol) to separate
phenolic compounds from neutral compounds (Jensen et al., 2009).
The isolated phenolic compounds were derivatized with diazo-
methane in excess amount with great care and further analyzed for



Fig. 1. Sampling sites in the Yangtze River delta for the eggs of Black-crowned night heron (Nycticorax nycticorax, NH) and Whiskered tern (Chlidonias hybrida, WT).
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brominated substances. Pentachlorophenol was quantified but not
included in the results. The methylation reaction lasted for 3 h at
room temperature in darkness. Prior to instrumental analysis, 6-
MeO-BDE-137 (4.0 ng) and f-DDE (6.0 ng) were added into the
samples as volumetric standard (VS). The results were present on
lipid weight concentration (ng g�1 lw).

2.4. Instrumental analysis

OCPs and
P

7PCBs were analyzed by Varian 450 gas chromato-
gram equippedwith electron capture detector (GC-ECD) and Varian
CP-8400 auto-sampler. The injector (1 mL) was operated in the
programmable temperature vaporizing (PTV) mode at temperature
of 260 �C. The column was a BP5 (30 m � 0.25 mm i.d. � 0.25 mm
film thickness; SGE Analytical Science) with helium as a carrier gas
and nitrogen as make-up gas. The column oven temperature pro-
gramwas 80 �C for 2 min, 15 �C/min to 300 �C and hold for 18 min.

PBDEs and MeO-PBDEs were analyzed by Varian-450 gas chro-
matogram coupled to a Varian 320 mass spectrometry (GCeMS)
using electron capture negative ionization (ECNI) and selective ion
monitoring SIM) mode, scanning bromine ions (m/z 79 and 81).
Automated 1 mL injections with a CTC GC Pal auto sampler was
conducted on a DB-5HT(30 m � 0.25 mm i.d. � 0.10 mm film
thickness; Agilent J&W) GC column, with methane (scientific 5.5,
AGA Stockholm, Sweden) as reagent gas. The injector was operated
in PTV mode at temperature of 260 �C. Helium was used as carrier
gas at a set constant flow of 1.0 mL/min. The oven program was
55 �C for 2 min, 15 �C/min to 320 �C and hold for 4 min. The ion
source and transfer line temperature were set at 230 �C and 300 �C,
respectively.

Cl8-10PCBs were analyzed with the same instrumental condition
as PBDEs and MeO-PBDEs, except that the scanning ions were
427.7/429.7, 461.6/463.6, 497.7/499.7 and 635.7/637.7 for octa-CBs,
nona-CBs and deca-CB and Dec 603 (SS), respectively. All of the
identification and quantification are based on authentic reference
standards.

2.5. Quality assurance and quality control

One procedural solvent blank was analyzed in parallel with each
batch of five samples to assess any potential contamination during
laboratory work. Limit of detection (LOD) was set to three times the
background noise (S/N¼ 3). Limit of quantification (LOQ) was set to
10 times (S/N¼ 10) the background noise or three times the level in
the procedural solvent blank if it was detected. BDE-47, - 99 and 153
were present in blanks and were subtracted from the samples. The
range of recoveries (mean± standard deviation(S.D.) of SS were
92e111% (100% ± 5%), 73e112% (79% ± 7%) and 74e130%
(84% ± 13%) for CB-200, Dec 603 and BDE-139, respectively. Low
recoveries were obtained for 40eOHeBDE-121 in the present study.

2.6. Statistics

Mann-kendalls tau test was applied to examine a potential
correlation between PBDEs and corresponding OH-/MeO-PCDEs.
Principal component analysis (PCA) was conducted on the frac-
tional composition of PCBs by Unscrambler 10.3 to evaluate the
sources of PCBs in bird eggs compared with technical Aroclor
products.

3. Results

The mean and median concentrations on lipid weight of PCBs,
OCPs, PBDEs, OH-PBDEs and MeO-PBDEs, in the NH and WT, are
reported in Table 1. CB-153 was the most abundant PCB congener in
both species, followed by CB-138 and CB-118. CB-209 was detected
in all bird eggs with the mean concentration of 6.4 and 4.2 ng g�1

lw in NH and WT eggs, respectively. In total nine individual PCB
congeners with eight or more chlorines are quantified and as po-
tential mixtures another six congeners. The congener patterns of
PCBs assessed in the NH and WT are shown in Fig. 2. The highly
chlorinated PCBs (Cl8-10) accounted for 11% and 6.9% of the

P
PCB

amount in NH and WT, respectively. The concentrations of highly
chlorinated biphenyls, PCBs (Cl8-10), excluding CB-200, ranged
20e100 and 11e150 ng g�1 lw with the mean concentration of 47
and 38 ng g�1 lw, in NH andWT, respectively. The concentrations of
the PCBs (Cl8-10) are presented in Table 1.

4,40-DDE was the dominating OCPs in the two bird species eggs,
with the mean concentration of 450 and 320 ng g�1 lw in NH and
WT, respectively. b-HCH was the most abundant HCH isomer in all
samples analyzed. Mirex was detected in all samples with themean
concentration of 94 and 41 ng g�1 lw in NH and WT, respectively.

Of all the 8 PBDE congeners analyzed, BDE-28 and -66 were not
detected in any NH while BDE-183 was detected in only five WT



Table 1
Concentration (ng g�1 lw) of some prioritized polychlorinated and polybrominated organic pollutants in Black-crowned night heron (Nycticorax nycticorax, NH) andWhiskered
tern (Chlidonias hybrida, WT) from Tianmu lake (TML) and East Tai lake (ETL), respectively.

Compounds Black-crowned night heron (Nycticorax nycticorax, n ¼ 10) Whiskered tern (Chlidonias hybrida, n ¼ 10)

Mean Median Range S.D. Mean Median Range S.D.

4,40-DDE 450 460 280e650 120 320 290 240e480 72
4,40-DDD 41 24 2.4e150 48 4.2 3.3 1.3e11 3.6
4,40-DDT 18 6.1 1.8e110 32 18 2.7 2.0e90 30
∑DDTsa 520 530 290e780 180 360 340 270e610 99
b-HCH 300 190 150e850 250 79 56 30e270 69
∑HCHsb 300 190 150e850 250 80 56 30e270 70
Mirex 94 49 17e340 110 41 28 9.3e160 44
CB-28 8.4 5.1 2.2e29 8.6 22 11 3.9e120 34
CB-101 9.3 5.7 3.6e29 7.8 35 9.3 4.0e140 55
CB-118 57 43 20e180 45 71 25 9.9e230 85
CB-138 61 43 17e150 44 71 28 14e220 78
CB-153 110 74 39e280 79 120 59 32e330 120
CB-180 60 29 7.7e110 35 41 9.2 4.2e190 65
CB-194 7.4 7.2 2.4e14 4.2 6.0 2.4 1.2e23 7.3
CB-197 2.8 1.8 1.4e11 2.9 1.7 0.82 0.52e5.1 1.6
CB-198 0.59 0.49 0.37e1.5 0.31 0.5 0.28 0.16e1.8 0.52
CB-199 6.3 5.5 2.4e15 4.2 7.9 2.7 1.4e42 12
CB-201 þ 204 1.6 1.2 0.73e5.7 1.5 1.8 0.77 0.52e5.9 1.9
CB-202 1.1 1.0 0.38e2.2 0.57 0.91 0.36 <LOQ-4.7h 1.4
CB-203 þ 196 8.2 7.7 2.8e16 4.6 7.2 2.5 1.2e36 11
CB-205 1.3 0.91 0.42e3.9 0.99 0.48 0.49 0.16e0.88 0.29
CB-206 4.3 3.7 1.9e11 2.6 2.1 1.1 0.68e5.6 1.7
CB-207 2.3 1.8 1.3e5.9 1.4 1.3 0.87 0.48e3.6 1.0
CB-208 þ 195 4.6 4.1 1.8e9.7 2.7 3.8 1.3 0.62e19 5.7
CB-209 6.4 5.6 3.5e16 3.6 4.3 3.8 1.3e15 4.0
∑PCBs (Cl8-10)c 47 44 21e103 25 38 16 11e148 44
∑30PCBsd 410 330 150e980 260 550 190 120e2100 680
BDE-47 4.7 3.9 1.2e15 4.0 45 11 6.8e260 79
BDE-99 3.7 1.7 0.65e19 5.5 24 5.0 2.1e200 61
BDE-100 6.4 3.9 2.0e29 8.0 11 4.2 2.3e56 16
BDE-153 11 6.7 4.6e41 12 6.0 2.3 0.88e29 8.9
BDE-154 15 10 6.7e47 12 7.5 3.9 2.3e21 6.9
BDE-183 2.1 1.9 0.76e5.2 1.3 0.83 0.40 <LOQ-4.1i 1.3
∑8PBDEse 43 29 19e150 41 99 28 15e580 170
6-MeO-BDE-47 1.3 0.21 <LOQ-10 3.1 0.57 0.56 <LOQ-1.4j 0.35
6-MeO-BDE-99 3.3 1.5 0.40e20 5.8 2.1 1.8 0.98e4.9 1.1
∑5 MeO-PBDEsf 8.4 3.7 0.86e50 15 5.4 4.4 3.2e12 2.5
6-HO-BDE-47 3.4 0.97 0.16e12 4.1 2.0 1.4 0.16e5.8 1.6
∑5 HO-PBDEsg 3.5 1.1 0.16e12 4.2 2.0 1.4 0.16e5.9 1.7

a Sum of 2,40-DDE, 2,40-DDD, 2,40-DDT, 4,40-DDE, 4,40-DDD and 4,40-DDT.
b Sum of a-HCH, b-HCH and g-HCH.
c Sum of CB-194e209 (except for 200).
d Sum of CB-28, 52, 101, 105, 118, 128, 138, 146, 153, 156, 170, 180, 183, 187, 189 and 194e209 (except for 200).
e Sum of BDE-28, 47, 66, 99, 100, 153, 154 and 183.
f Sum of 20eOHeBDE-28, 6-OH-BDE-47, 2-OH-BDE-68, 6-OH-BDE-90 and 6-OH-BDE-99.
g Sum of 20-MeO-BDE-28, 6-MeO-BDE-47, 2-MeO-BDE-68, 6-MeO-BDE-90 and 6-MeO-BDE-99.
h LOQ for CB-202 was 0.05 ng.
i LOQ for BDE-183 was 0.04 ng.
j LOQ for 6-MeO-BDE-47 was 0.08 ng.
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samples. Mean concentrations of
P

8PBDEs were 43 and 99 ng g�1

lw in NH and WT, respectively. 6-MeO-BDE-90 and 6-MeO-BDE-99
are the two predominant congeners of MeO-PBDEs in both species
while 6-OH-BDE-47 contributesmostly to the OH-PBDEs (cf. Table 1
and Fig. 2).

4. Discussion

4.1. PCBs

The high abundance and pattern of the highly chlorinated bi-
phenyls reported herein (Table 1 and Fig. 2) are novel and
remarkable. Except CB-202, with 95% of detected frequency, the
other Cl8-10PCBs congeners were detected in all bird eggs. The high
contribution of PCBs (Cl8-10) to total PCBs indicated a specific but
yet unknown source of PCBs in YRD, China. A previous study re-
ported CB-209 in surface sediment in upstream of Yangtze River
(Yang et al., 2009) and also in some aquatic species from e-waste
recycling site in South China (Wu et al., 2008). CB-209 was detected
as the most abundant congener in fish from Liaohe river in
Northeast China, contributing 44% to

P
PCBs (Ren et al., 2013). To

our knowledge, this is the first report on high abundance and
relatively high concentrations of PCB congeners with all of eight to
ten chlorine substituents (CB-194 to CB-209) in wildlife in general,
and indeed in bird eggs from the YRD. Kannan et al. (Kannan et al.,
1997) found octa-CBs and nona-CBs in soil and sediment from a site
in Georgia. They suggested a contaminationwith Aroclor 1268 (85%
Cl8-10), which is a higher chlorinated technical mixture than Aro-
chlor 1260 (8.5% Cl8-10) could be the source. In the present study,
CB-199 and CB-203/196 was the predominant CB congeners (Cl8-10)
in WT with concentration of 7.9 ng g�1 lw and 8.2 ng g�1 lw,
respectively. A descending concentration trend of congeners with
CB-199, 208/205,194 and 209 was observed in WT, whereas a
slightly difference order of CB-203/196, 194,209 and 194 was found
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(Chlidonias hybrida, WT) and Aroclor commercial mixtures from Yangtze River Delta.

Y. Zhou et al. / Chemosphere 150 (2016) 491e498 495
in NH (Table 1). The ratio between CB-209 and CB-207 was 2.1e4.3
and 1.7e6.6 in NH and WT, respectively, which is one magnitude
higher than in commercial Aroclor 1262 (0.22) but close to that of
Aroclor 1268 (3.3) (Anderson, 1991). However, Howell et al. (2008)
suggested that other sources than Aroclor might influence the PCBs
pattern (Howell et al., 2008). For instance, Hu and coauthors (Hu
et al., 2011) analyzed sediment cores from Lake Ontario and Indi-
ana Harbor Ship Center and found that CB-209, CB-208, CB-207 and
CB-206 reached a peak in the 1950s. They (Hu and Hornbuckle,
2010) have pointed out that deca-CB and nona-CBs were present
in phthalocyanine green pigment. Further, CB-209 is also suspected
to be formed during the process pf titanium dioxide purification
(Rowe et al., 2007). The occurrence of PCBs (Cl8-10) in both species
collected from two sites in YRD together with the considerable
concentrations reported need to be further studied, not the least
potential sources requires identification. The present report also
calls for more congeners specific studies on occurrence and toxicity
of these congeners.

The concentrations of
P

7 PCBs were in the range of 88e730 and
86e1200 ng g�1 lw in NH and WT eggs, respectively. The concen-
tration of

P
7 PCBs was in accordance with those in passerine birds

in Pearl River Delta (Yu et al., 2014) and in common tern from
Shandong province (Gao et al., 2009) but much lower than those in
Caspian tern and Forster's tern from San Francisco Bay, USA (She
et al., 2008), which indicated PCBs contamination from tradi-
tional technical production was less severe in China. The CB-153
concentrations in the NH and WT eggs seem to be slightly lower
than in Latvian Grey heron (Ardea cinerea) chicken blood (Valters,
2001). However,

P
7 PCBs in the NH and WT eggs were much

higher than mandarin fish (27 ng g�1 lw) (Qiu et al., 2012) and blue
mussels (15 ng g�1 lw) (Yin et al., 2015) in the same region con-
firming bioaccumulation and biomagnification of PCB congeners in
the aquatic ecosystem.

The PCA shown in Fig. 3 was conducted on the fractional
composition of PCBs in birds eggs compared with technical Aroclor
products to ascertain whether multiple sources were contributing
to the PCBs or not. The first two principal components accounted
for 37% and 32% of the total variance, respectively. It showed that
the pattern of PCBs found in bird eggs in the present study was
similar to Aroclor 1254 and 1260, which was consistent with the
common thought that the source of PCBs in China is corresponding
to the industrial product like Aroclor 1254 (Yu et al., 2005). How-
ever, most of the samples got the positive score for the first prin-
cipal component, which resulted from both the predominant PCB
congeners (CB-153 and 138) and the PCBs (Cl8-10). Considering the
level of PCBs (Cl8-10) could not be overlooked, the PCBs pattern
found in the present study were not only from historic usage but
also from present sources. It could be either from a higher chlori-
nated PCB mixture similar to Aroclor 1268 and 1270 or other
sources such as phthalocyanine green pigments and/or titanium
dioxide purification.



Ta
b
le

2
C
om

p
ar
is
on

of
PC

B
s,
O
C
Ps

an
d
PB

D
Es

le
ve

l(
n
g
g�

1
l.w

.)
in

B
la
ck
-c
ro
w
n
ed

N
ig
h
t
H
er
on

(N
yc
ti
co
ra
x
ny

ct
ic
or
ax

,N
H
)
an

d
W

h
is
ke

re
d
Te

rn
(C
hl
id
on

ia
s
hy

br
id
a,

W
T)

in
th
e
p
re
se
n
t
st
u
d
y
w
it
h
so
m
e
ot
h
er

C
h
in
es
e
an

d
in
te
rn

at
io
n
al

st
u
d
ie
s.

Sp
ec
ie
s
n
am

e
Po

si
ti
on

ye
ar

n
C
B
-1
53

C
B
-1
38

P
PC

B
s

4,
40
-D

D
E

P
D
D
Ts

P
H
C
H
s

M
ir
ex

B
D
E-
47

B
D
E-
99

B
D
E-
15

3
P

PB
D
Es

R
ef
er
en

ce

N
ig
h
t
h
er
on

Li
ya

n
g,

C
h
in
a

20
14

10
11

0
61

28
0

45
0

50
0

30
0

94
4.
7

3.
7

11
(2
5e

15
0)

Pr
es
en

t
st
u
d
y

N
ig
h
t
h
er
on

X
ia
m
en

,C
h
in
a

20
04

5
31

00
0

40
00

0
32

0
29

7.
5

19
12

0
(L
am

et
al
.,
20

07
;
La
m

et
al
.,
20

08
)

N
ig
h
t
h
er
on

Q
u
an

zh
ou

,C
h
in
a

20
04

5
32

00
0

41
00

0
14

5
(L
am

et
al
.,
20

08
)

N
ig
h
t
h
er
on

W
u
xi
,C

h
in
a

20
08

65
55

00
a

56
00

a
46

0a
(D

on
g
et

al
.,
20

04
)

N
ig
h
t
h
er
on

H
on

gk
on

g,
C
h
in
a

20
06

16
23

00
25

00
84

(W
an

g
et

al
.,
20

11
)

N
ig
h
t
h
er
on

H
on

gk
on

g,
C
h
in
a

20
04

5
11

0
38

56
40

0
(W

an
g
et

al
.,
20

12
)

N
ig
h
t
h
er
on

Sa
lt
on

Se
a

20
04

11
45

62
N
C
b

4.
3

(H
en

n
y
et

al
.,
20

08
)

N
ig
h
t
h
er
on

W
is
co

n
si
n
,U

SA
20

10
4

41
0c

41
0c

1.
5c

(C
u
st
er

an
d
C
u
st
er
,1

99
5;

C
u
st
er

et
al
.,
20

14
)

19
91

7
21

00
c

C
h
in
es
e
p
on

d
h
er
on

W
u
xi
,C

h
in
a

20
00

43
27

00
a

28
00

a
28

0a
(D

on
g
et

al
.,
20

04
)

C
h
in
es
e
p
on

d
h
er
on

H
on

gk
on

g,
C
h
in
a

20
06

12
43

20
47

60
13

0
(W

an
g
et

al
.,
20

11
)

G
re
at

bl
u
e
h
er
on

Fr
as
er

R
iv
er
,U

SA
20

12
5

27
16

8.
9

72
(M

ill
er

et
al
.,
20

15
)

W
h
is
ke

re
d
te
rn

Su
zh

ou
,C

h
in
a

20
14

10
12

0
71

36
0

32
0

34
0

80
41

45
24

6.
0

(1
5e

58
0)

Pr
es
en

t
st
u
d
y

C
as
p
ia
n
te
rn

Sa
n
Fr
an

ci
sc
o
B
ay

,U
SA

20
00

5
30

00
13

00
52

0
11

0
26

00
(S
h
e
et

al
.,
20

08
)

Fo
rs
te
r'
s
te
rn

Sa
n
Fr
an

ci
sc
o
B
ay

,U
SA

20
00

5
20

00
10

00
67

0
17

0
22

00
(S
h
e
et

al
.,
20

08
)

C
om

m
on

te
rn

Sh
an

d
on

g,
C
h
in
a

20
00

9
13

0e
66

0
14

00
e
20

00
34

e
23

0
(G

ao
et

al
.,
20

09
)

C
om

m
on

te
rn

N
et
h
er
la
n
d
s

20
08

5
90

35
17

20
0

(B
ra
n
d
sm

a
et

al
.,
20

15
)

So
ot
y
Te

rn
R
ep

u
bl
ic

of
M
au

ri
ti
u
s

20
08

10
4.
3

2.
0

12
21

23
1.
6

5.
0

(B
ou

w
m
an

et
al
.,
20

12
)

A
rc
ti
c
te
rn

Ic
el
an

d
20

03
6

16
0

13
0

28
0

73
11

3.
8

11
0

(J
or
u
n
d
sd

ot
ti
r
et

al
.,
20

10
,2

01
3)

a
R
ep

or
te
d
on

n
g
g�

1
d
ry

w
ei
gh

t.
b
N
C
¼

n
o
m
ea

n
ca
lc
u
la
te
d
,f
ou

n
d
in

<
50

%
of

sa
m
p
le
s.

c
R
ep

or
te
d
on

n
g
g�

1
w
et

w
ei
gh

t.

Y. Zhou et al. / Chemosphere 150 (2016) 491e498496
4.2. OCPs

4.2.1. DDTs
Concentrations of DDTsweremuch higher than concentration of

any other OCPs in present study. 4,40-DDE derived from DDT
accounted for 49% and 28% of total OCPs in NH and WT, respec-
tively. It attained the highest concentration of total OCPs and
detected in all samples. As we know, the use of technical DDT has
been banned for agricultural purposes since over 30 years and the
newly input into the environment can possibly be attributed to
production of dicofol (Qiu et al., 2005). However, the low ratio (0.51
for NH and 0.07 for WT) between 2,40-DDT and 4,40-DDT indicated
dicofol usemight be not themain source for the DDTcontamination
in this area. The ratio between 4,40-DDT and

P
DDTs (

P
4,40-

DDTþ4,40-DDEþ4,40-DDD) was 0.029 and 0.034 in NH and WT,
respectively. This ratio indicated that DDTs detected in the present
study were mainly from historic usage. The ratio between 4,40-DDT
and 4,40-DDTs in NH was consistent with other studies on DDTs in
birds (Wang et al., 2011; Custer et al., 2014). The ratios are much
lower than those for mussels (0.42e0.47) (Yin et al., 2015) and fish
(0.38) (Qiu et al., 2012) in YRD. This difference in the ratio may be
explained by the different metabolism rate in the species at
different trophic level.

The concentration of DDTs found in our study was lower than
reported from other parts of China (Lam et al., 2008; Wang et al.,
2011), but comparable to heron from heron chicken blood from
Latvia (Valters, 2001) and Arctic tern from Iceland (Jorundsdottir
et al., 2010). However, the 4,40-DDE level in heron was one
magnitude lower than reported in another study (Dong et al., 2004)
conducted in Taihu basin even though the HCHs levels were com-
parable. The contamination degree in the herons/heron eggs may
be significantly influenced by hatching and feeding areas of the
herons.

4.2.2. HCHs
b-HCH was the predominant HCH isomer in all samples. The

concentration of
P

HCHs in NH was about four times higher than
those in WT. It is difficult to explain what is causing this difference,
e.g. differences due to species (food, uptake, metabolism) or dif-
ferences between the contaminant burden between the two sites.
Interestingly, b-HCH corresponded to almost 100% of

P
HCHs in the

present study, which was slightly different from other biological
matrices in previous studies from the YRD (Qiu et al., 2012; Yin
et al., 2015) in which b-HCH was the predominant isomers but a-
HCH and g-HCH also detected. However, this pattern distribution
was consistent with bird egg studies from other researches (Dong
et al., 2004; Lundstedt-Enkel et al., 2005; Braune et al., 2007),
indicating the species-specific difference of HCH isomer distribu-
tion in birds from other matrices. The

P
HCHs and HCHs isomer

pattern distribution in NH in the present study was in the medium
of global level and it was consistent with previous study on Tai lake
(Dong et al., 2004) (cf. Table 2). Comparing b-HCH concentrations in
NH andWT with blood concentrations in grey heron chickens from
Latvia (Valters, 2001), the levels are clearly higher in the YRD
species reported on herein.

4.2.3. Mirex
Mirex is another important OCP contaminant, together with

4,40-DDE and HCH found in the present study (Table 1). As HCHs,
the Mirex level in NH was higher than that in WT. Our results
showed comparable level with bird eggs from North American
(Champoux et al., 2006) and South China (Lam et al., 2008; Wang
et al., 2011). Even though the Mirex level was comparable, they
may be explained by different sources. Mirex was used as flame
retardants and also pesticides in North American before 1980s,
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however, it still can be detectedwith such level. In China, Mirexwas
produced until 2009 for control of termites and the estimated
annually usage amount was about 300 kg (Yu et al., 2005).

4.3. PBDEs and related compounds

4.3.1. PBDEs
The mean concentration of

P
PBDEs in WT from ET lake was

twice the levels in NH from TM lake, industrialization too small
difference to enable us to speculate on the reason for this differ-
ence. The PBDEs concentrations found in the present study was in
the median or low range, worldwide (cf. Table 2). BDE-47 and BDE-
154 were the most abundant congeners in both WT and NH. PBDEs
pattern profiles (Fig. 2) showed difference between the two species.
The contribution of tri-, tetra-, and penta-BDEs (BDE-28, 47, 66, 99,
100) was greater in WT whereas hexa- and hepta-BDEs (BDE-153,
154 and 183) showed the opposite way. There may be several
reasons for this difference including kinetics. BDE-209 was
analyzed for but not detected as one of the main PBDE congeners in
the present study which was not in accordance with other studies
in Pearl river delta (Yu et al., 2014). This can be due to the levels of
contamination in the area compare to other locations in China and
outside.

4.3.2. OH-PBDEs
The OH-PBDEs congener profile in NH and WT was dominated

by 6-OH-BDE-47, which composed 96% and 100% of the
P

OH-
PBDEs. 6-OH-PBDEs level in our study was one order lower than
those reported in black-head gulls (4.6 ng g�1 wet weight) from
Bohai Sea, northern China (Zhang et al., 2012). 6-OH-BDE-47 is
primarily produced naturally, but also a metabolite of BDE-47 in
pike (Kierkegaard et al., 2004). However, the metabolism of BDE-47
in these bird species is unknown. No significant correlation were
found between BDE-47 and 6-OH-BDE-47 (p ¼ 0.066). The ratios of
6-OH-BDE-47/BDE-47 were 0.72 and 0.05 in NH and WT, respec-
tively. The relatively high ratio in NH indicated that naturally pro-
duction in algae as the main source of 6-OH-BDE-47 for NH.
However, the ratio in WT is much smaller than in NH, and thus it is
more difficult to assess the importance of the anthropogenic versus
the natural product pathways.

4.3.3. MeO-PBDEs
In contrast to PBDEs, MeO-PBDEs showed higher level in NH

than that in WT. MeO-PBDEs have been considered to be mainly
naturally produced in the marine environment (Lofstrand, 2011),
except that Feng et al. reported MeO-PBDEs in rainbow trout after
exposure to decabromodiphenyl ether (Feng et al., 2010). In the
present study, 6-MeO-BDE-90 and 6-MeO-BDE-99 were identified
in all samples while 6-MeO-BDE-47 and 20-MeO-BDE-68 were only
detected in 70% and 65% of the samples. MeO-PBDEs congener
profile differed from other studies in YRD (Qiu et al., 2012), which
showed 6-MeO-BDE-47 and 20-MeO-BDE-68 were the main con-
geners in fish. The relatively high percentage of 6-MeO-BDE-90 and
6-MeO-BDE-99 indicate a potential difference in themetabolism, as
well as take-up ability between marine species and birds. Lofstand
and coauthor (Lofstrand et al., 2011) suggested 6-MeO-BDE-90 and
6-MeO-BDE-99 could be formed by debromination of 6-MeO-BDE-
137 in fish. No significant correlation was found between BDE-99
and 6-MeO-BDE-99 (p ¼ 0.38), which could further support that
MeO-PBDEs originate naturally rather than from anthropogenic
source as metabolites of PBDEs. Even though low concentration of
OH-PBDEs and MeO-PBDEs was detected in the present study, it
might still be of some concern because these substances have as-
sociation with endocrine disrupting effects and disruption of
oxidative phosphorylation (Legradi et al., 2014).
5. Conclusion

The present study stresses a novel PCB contamination pattern,
including 11% and 6.9% of PCBs (Cl8-10) relative of total PCB content
in the NH andWT, respectively. This finding implies further studies
to identify sources of these highly chlorinated biphenyls. 4,40-DDE,
b-HCH and Mirex were the prevalent OCPs detected in the present
study. Industrial POPs (e.g. PCBs and PBDEs) are in the low con-
centration range compared with other regions in the world. 6-OH-
BDE-47 was the predominant congener of OH-PBDEs in both spe-
cies, the toxicity effect make this compound call for concern.

In general, OCPs contamination is more severe in heron eggs
whereas tern eggs were detected with higher levels of industrial
chemicals. Hence, advanced environmental monitoring program
should select proper water bird species in YRD in order to compare
with other well-studied regions (e.g. PRD) and/or investigate bio-
accumulation through food chain in aquatic ecosystem.
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