N ecessary and Sufficient Conditions for Permanence and G lobal Stability of a Lotka-V olterra System with Two D elays

metadata, citation and similar papers at core.ac.uk

Department of ivatnernatcat sctences, оsaка гrejecture Untversty, Sakai 599-8531, Japan

Submitted by George Leitmann
Received A pril 6, 1999

In this paper we seek necessary and sufficient conditions for the permanence and the global asymptotic stability of a positive equilibrium for a Lotka-V olterra system with two delays. © 1999 A cademic Press

1. INTRODUCTION

We consider the following symmetrical Lotka-V olterra-type predatorprey system with two delays τ_{1} and τ_{2} :

$$
\begin{align*}
& x^{\prime}(t)=x(t)\left[r_{1}+a x(t)+\alpha x\left(t-\tau_{1}\right)-\beta y\left(t-\tau_{2}\right)\right] \tag{1.1}\\
& y^{\prime}(t)=y(t)\left[r_{2}+a y(t)+\beta x\left(t-\tau_{1}\right)+\alpha y\left(t-\tau_{2}\right)\right]
\end{align*}
$$

The initial condition of (1.1) is given as

$$
\begin{array}{lll}
x(s)=\phi(s) \geq 0, & -\tau_{1} \leq s \leq 0 ; & \phi(0)>0 \\
y(s)=\psi(s) \geq 0, & -\tau_{2} \leq s \leq 0 ; & \psi(0)>0 \tag{1.2}
\end{array}
$$

Here $a, \alpha, \beta, r_{1}, r_{2}, \tau_{1}$, and τ_{2} are constants with $a<0, \tau_{1} \geq 0$, and $\tau_{2} \geq 0$, and ϕ, ψ are continuous functions. Obviously, we can take $\beta \geq 0$ without loss of generality. We assume that (1.1) has a positive equilibrium

[^0]$\left(x^{*}, y^{*}\right)$, that is,
\[

$$
\begin{aligned}
& x^{*}=\frac{-(a+\alpha) r_{1}-\beta r_{2}}{(a+\alpha)^{2}+\beta^{2}}>0 \\
& y^{*}=\frac{\beta r_{1}-(a+\alpha) r_{2}}{(a+\alpha)^{2}+\beta^{2}}>0
\end{aligned}
$$
\]

We say that the system (1.1) is permanent if there exists some compact set D in the interior of R_{+}^{2} such that any solution of (1.1) with (1.2) will ultimately stay in D. The positive equilibrium (x^{*}, y^{*}) is said to be globally asymptotically stable if (x^{*}, y^{*}) is stable and attracts any solution of (1.1) with (1.2). Our purpose is to seek sharp conditions for the permanence of (1.1) and the global asymptotic stability of (x^{*}, y^{*}) for all τ_{1} and τ_{2}, making the best use of the symmetry of (1.1). In this paper we first give the following necessary and sufficient condition for the permanence of (1.1) for all delays $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$:

Theorem 1.1. The system (1.1) is permanent for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ if and only if

$$
a+\alpha<0
$$

holds.
Then we also establish the following necessary and sufficient condition for the global asymptotic stability of (x^{*}, y^{*}) for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$:

Theorem 1.2. The positive equilibrium $\left(x^{*}, y^{*}\right)$ of (1.1) is globally asymptotically stable for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ if and only if

$$
\sqrt{\alpha^{2}+\beta^{2}} \leq-a
$$

holds.
W hen the system (1.1) has no delay, that is, $\tau_{1}=\tau_{2}=0$, it is easy to see that (x^{*}, y^{*}) is globally asymptotically stable if and only if $a+\alpha<0$ (cf. A ppendix). So we can see that the condition $\sqrt{\alpha^{2}+\beta^{2}} \leq-a$ in Theorem 1.2 reflects the delay effects.

The permanence of (1.1) with $\alpha \leq 0$ has been well studied (see, for example, [5]). Wang and Ma [10] showed that (1.1) is permanent for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ under conditions $a<0$ and $\alpha \leq 0$. Thus, Theorem 1.1 generalizes their result for (1.1).

In the case $\alpha>0$, we notice that the positive delayed feedback terms $\alpha x\left(t-\tau_{1}\right)$ and $\alpha y\left(t-\tau_{2}\right)$ on the right-hand side of (1.1) play a role of destabilizer of the system. Biologically, $\alpha x\left(t-\tau_{1}\right)$ and $\alpha y\left(t-\tau_{2}\right)$ with $\alpha>0$ may be viewed as the recycling of population.

Gopalsamy [2] showed that if $|\alpha|+|\beta|<-a$ holds, then the positive equilibrium $\left(x^{*}, y^{*}\right)$ is globally asymptotically stable for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$. It is clear that Theorem 1.2 improves the Gopalsamy condition for (1.1). Recently, Lu and Wang [8] also considered the global asymptotic stability of $\left(x^{*}, y^{*}\right)$ for (1.1) with $\alpha=0$.

The proofs of the global existence of the solutions of (1.1) and Theorems 1.1 and 1.2 are given in Sections 2 and 3, based on the well-known comparison principle and the methods developed in [5, 6, 8, and 10]. To prove Theorem 1.1, a similar method in [10] is used. H owever, we see that our proof is simpler than that in [10]. In the proof of the sufficiency of Theorem 1.2, we use an extended LaSalle's invariance principle (also see [9] and [11] for ODE), by which our proof is more complete than that in [8].

2. PERMANENCE

In this section, we first prepare the following elementary result.
Lemma 2.1. If $a+\alpha<0$, then every solution $(x(t), y(t))$ of (1.1) with the initial condition (1.2) exists on $[0, \infty)$ and is positive.

Proof. We first show that $x(t)>0$ as long as it is defined. In fact, if not, there exists some $\bar{t}>0$ such that

$$
\bar{t}=\inf \{t \mid x(t)=0, t>0\} .
$$

Clearly, $x(\bar{t})=0$. Thus, we have

$$
x(t)=x(0) \exp \left\{\int_{0}^{t}\left[r_{1}+a x(s)+\alpha x\left(s-\tau_{1}\right)-\beta y\left(s-\tau_{2}\right)\right] d s\right\}
$$

on $[0, \bar{t})$. By the continuity of $x(t)$, we have

$$
x(\bar{t})=x(0) \exp \left\{\int_{0}^{\bar{t}}\left[r_{1}+a x(s)+\alpha x\left(s-\tau_{1}\right)-\beta y\left(s-\tau_{2}\right)\right] d s\right\}>0 .
$$

This is a contradiction. For the same reason, we can also show that $y(t)$ is positive as long as it is defined.

Next, let us show that $(x(t), y(t))$ exists on $[0, \infty)$. If it is false, there exists a positive number T such that $\lim _{t \rightarrow T^{-}} x(t)$ or $\lim _{t \rightarrow T^{-}} y(t)$ does not exist. In the case $\tau_{1}=0$, we have

$$
\begin{aligned}
& x^{\prime}(t)=x(t)\left[r_{1}+(a+\alpha) x(t)-\beta y\left(t-\tau_{2}\right)\right] \\
& y^{\prime}(t)=y(t)\left[r_{2}+a y(t)+\beta x(t)+\alpha y\left(t-\tau_{2}\right)\right]
\end{aligned}
$$

for $t \in[0, T)$. Since $x(t)>0$ and $y(t)>0$ on $[0, T)$, we have

$$
x(t)<x(0) \exp \left\{\int_{0}^{t} r_{1} d s\right\} \leq x(0) \exp \left\{\int_{0}^{T}\left|r_{1}\right| d s\right\}
$$

for $t \in[0, T)$. Hence for $t \in[0, T)$, we obtain

$$
y(t)<y(0) \exp \left\{\int_{0}^{t}\left[r_{2}+\beta x(s)\right] d s\right\} \leq y(0) \exp \left\{\int_{0}^{T}\left[\left|r_{2}\right|+\beta K_{1}\right] d s\right\}
$$

if $\tau_{2}=0$ and

$$
y(t)<y(0) \exp \left\{\int_{0}^{T}\left[\left|r_{2}\right|+\beta K_{1}+\left|\alpha y\left(s-\tau_{2}\right)\right|\right] d s\right\}
$$

if $\tau_{2}>0$, where $K_{1}=x(0) \exp \left\{\int_{0}^{T}\left|r_{1}\right| d s\right\}$. Thus, there exist positive numbers K_{2} and K_{3} such that $\left|x^{\prime}(t)\right|<K_{2}$ and $\left|y^{\prime}(t)\right|<K_{3}$ for $t \in[0, T)$. Hence, we have

$$
\begin{aligned}
& \left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq\left|\int_{t_{1}}^{t_{2}}\right| x^{\prime}(s)|d s|<K_{2}\left|t_{1}-t_{2}\right|, \\
& \left|y\left(t_{1}\right)-y\left(t_{2}\right)\right| \leq\left|\int_{t_{1}}^{t_{2}}\right| y^{\prime}(s)|d s|<K_{3}\left|t_{1}-t_{2}\right|
\end{aligned}
$$

for $t_{1}, t_{2} \in[0, T)$. The well-known Cauchy theorem shows that $\lim _{t \rightarrow T^{-}} x(t)$ and $\lim _{t \rightarrow T^{-}} y(t)$ exist, which is a contradiction.

In the case $\tau_{1}>0$, for $t \in[0, T)$, we have

$$
\begin{aligned}
x(t) & =x(0) \exp \left\{\int_{0}^{t}\left[r_{1}+a x(s)+\alpha x\left(s-\tau_{1}\right)-\beta y\left(s-\tau_{2}\right)\right] d s\right\} \\
& <x(0) \exp \left\{\int_{0}^{t}\left[\left|r_{1}\right|+\left|\alpha x\left(s-\tau_{1}\right)\right|\right] d s\right\} \\
& \leq x(0) \exp \left\{\int_{0}^{T}\left[\left|r_{1}\right|+\left|\alpha x\left(s-\tau_{1}\right)\right|\right] d s\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
y(t) & =y(0) \exp \left\{\int_{0}^{t}\left[r_{2}+\operatorname{ay}(s)+\beta x\left(s-\tau_{1}\right)+\alpha y\left(s-\tau_{2}\right)\right] d s\right\} \\
& <y(0) \exp \left\{\int_{0}^{T}\left[\left|r_{2}\right|+\left|\beta x\left(s-\tau_{1}\right)\right|\right] d s\right\}
\end{aligned}
$$

if $\tau_{2}=0$ and

$$
y(t)<y(0) \exp \left\{\int_{0}^{T}\left[\left|r_{2}\right|+\left|\beta x\left(s-\tau_{1}\right)\right|+\left|\alpha y\left(s-\tau_{2}\right)\right|\right] d s\right\}
$$

if $\tau_{2}>0$. This implies that $x(t)$ and $y(t)$ are bounded on $[0, T)$, from which we can also get a contradiction as above. The proof of Lemma 2.1 is complete.

To consider the permanence of (1.1), we next prove the following:
Lemma 2.2. If $a+\alpha<0$, then any solution of (1.1) with the initial condition (1.2) is ultimately bounded, that is,

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} x(t) \leq B_{1}, \\
& \limsup _{t \rightarrow+\infty} y(t) \leq B_{2},
\end{aligned}
$$

where

$$
B_{1}=\max \left\{\frac{\left|r_{1}\right|}{|a|}, \frac{\left|r_{1}\right|}{|a+\alpha|}\right\}, \quad B_{2}=\max \left\{\frac{\left|r_{2}+\beta B_{1}\right|}{|a|}, \frac{\left|r_{2}+\beta B_{1}\right|}{|a+\alpha|}\right\} .
$$

Proof. In the case $\alpha \leq 0$, it is easy to see that

$$
\begin{gathered}
\limsup _{t \rightarrow+\infty} x(t) \leq \frac{\left|r_{1}\right|}{|a|}=B_{1} \\
\limsup _{t \rightarrow+\infty} y(t) \leq \frac{\left|r_{2}+\beta B_{1}\right|}{|a|}=B_{2}
\end{gathered}
$$

by using the comparison theorem of ordinary differential equations.
Let us consider the case of $\alpha>0$. From (1.1), for any sufficiently small $\varepsilon_{1}>0$, we have

$$
\begin{equation*}
x^{\prime}(t)<x(t)\left[\left|r_{1}\right|+\varepsilon_{1}+a x(t)+\alpha x\left(t-\tau_{1}\right)\right] \tag{2.1}
\end{equation*}
$$

for $t \geq 0$. Now consider the following scalar delay differential equation:

$$
\begin{equation*}
u^{\prime}(t)=u(t)\left[\left|r_{1}\right|+\varepsilon_{1}+a u(t)+\alpha u\left(t-\tau_{1}\right)\right] \tag{2.2}
\end{equation*}
$$

for $t \geq 0$. Let $u(t)$ be the solution of (2.2) with the initial condition $u(\theta)=\phi(\theta)+1\left(-\tau_{1} \leq \theta \leq 0\right)$. We will show that for $t \geq 0$,

$$
\begin{equation*}
x(t) \leq u(t) \tag{2.3}
\end{equation*}
$$

Otherwise, there exists some $t_{1}>0$ such that

$$
t_{1}=\inf \{t \mid x(t)>u(t), t \geq 0\} .
$$

This implies that

$$
\begin{gather*}
x(t) \leq u(t), \quad t \in\left[-\tau_{1}, t_{1}\right), \tag{2.4}\\
x\left(t_{1}\right)=u\left(t_{1}\right), \tag{2.5}
\end{gather*}
$$

and there exists a decreasing sequence $\left\{t_{n}^{\prime}\right\}$ such that $t_{n}^{\prime} \rightarrow t_{1}$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
x\left(t_{n}^{\prime}\right)>u\left(t_{n}^{\prime}\right) \tag{2.6}
\end{equation*}
$$

(2.5) and (2.6) yield

$$
\frac{x\left(t_{n}^{\prime}\right)-x\left(t_{1}\right)}{t_{n}^{\prime}-t_{1}}>\frac{u\left(t_{n}^{\prime}\right)-u\left(t_{1}\right)}{t_{n}^{\prime}-t_{1}}
$$

Letting $n \rightarrow \infty$, we have $x^{\prime}\left(t_{1}\right) \geq u^{\prime}\left(t_{1}\right)$, which, together with (2.1), (2.2), (2.5), and $\alpha>0$, implies

$$
x\left(t_{1}-\tau_{1}\right)>u\left(t_{1}-\tau_{1}\right)
$$

This contradicts (2.4). Thus (2.3) is proved.
For (2.2), it is known from [5, pp. 218, 219] that

$$
\lim _{t \rightarrow+\infty} u(t)=\frac{\left|r_{1}\right|+\varepsilon_{1}}{|a+\alpha|}
$$

if $a+\alpha<0$. Hence, it follows from (2.3) and the arbitrariness of ε_{1} that

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} x(t) \leq \frac{\left|r_{1}\right|}{|a+\alpha|}=B_{1} . \tag{2.7}
\end{equation*}
$$

For sufficiently small $\varepsilon_{2}>0$, there is some $t_{2}>0$ such that for $t \geq t_{2}$,

$$
x(t)<B_{1}+\varepsilon_{2} .
$$

Then, it follows from (1.1) that for $t \geq t_{2}+\tau_{1}$,

$$
y^{\prime}(t) \leq y(t)\left[\left|r_{2}+\beta\left(B_{1}+\varepsilon_{2}\right)\right|+a y(t)+\alpha y\left(t-\tau_{2}\right)\right] .
$$

By using the same argument as above, we can show that

$$
\limsup _{t \rightarrow+\infty} y(t) \leq \frac{\left|r_{2}+\beta B_{1}\right|}{|a+\alpha|}=B_{2} .
$$

The proof of Lemma 2.2 is complete.

Theorem 2.1. The system (1.1) is permanent for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ if and only if

$$
a+\alpha<0
$$

holds.
Proof (Sufficiency). Let $z(t)=(x(t), y(t))$ be any solution of (1.1) with the initial condition (1.2). Construct the two continuous functions $V_{1}(t)$ and $V_{2}(t)$ for $t \geq 0$ as follows:

$$
\begin{align*}
V_{1}(t)= & (x(t))^{-(a+\alpha)}(y(t))^{-\beta} \\
& \times \exp \left[-\left\{(a+\alpha) \alpha+\beta^{2}\right\} \int_{t-\tau_{1}}^{t} x(s) d s+\beta a \int_{t-\tau_{2}}^{t} y(s) d s\right], \tag{2.8}
\end{align*}
$$

$$
\begin{align*}
V_{2}(t)= & (x(t))^{\beta}(y(t))^{-(a+\alpha)} \\
& \times \exp \left[-\beta a \int_{t-\tau_{1}}^{t} x(s) d s-\left\{(a+\alpha) \alpha+\beta^{2}\right\} \int_{t-\tau_{2}}^{t} y(s) d s\right] . \tag{2.9}
\end{align*}
$$

For any sufficiently small $\varepsilon>0$, let

$$
\begin{aligned}
l_{1} & =\exp \left[-\left|(a+\alpha) \alpha+\beta^{2}\right| B_{1}^{\prime} \tau_{1}-|\beta a| B_{2}^{\prime} \tau_{2}\right], \\
l_{2} & =\exp \left[-|\beta a| B_{1}^{\prime} \tau_{1}-\left|(a+\alpha) \alpha+\beta^{2}\right| B_{2}^{\prime} \tau_{2}\right], \\
L_{1} & =\exp \left[\left|(a+\alpha) \alpha+\beta^{2}\right| B_{1}^{\prime} \tau_{1}+|\beta a| B_{2}^{\prime} \tau_{2}\right], \\
L_{2} & =\exp \left[|\beta a| B_{1}^{\prime} \tau_{1}+\left|(a+\alpha) \alpha+\beta^{2}\right| B_{2}^{\prime} \tau_{2}\right],
\end{aligned}
$$

where $B_{1}^{\prime}=B_{1}+\varepsilon$ and $B_{2}^{\prime}=B_{2}+\varepsilon . B_{1}$ and B_{2} are defined as in Lemma 2.2. Then, it follows from Lemmas 2.1 and 2.2, (2.8), and (2.9) that there exists some sufficiently large $T>0$ such that for $t \geq T$,

$$
\begin{gather*}
0<x(t)<B_{1}^{\prime}, \quad 0<y(t)<B_{2}^{\prime} \tag{2.10}\\
l_{1}(x(t))^{-(a+\alpha)}(y(t))^{-\beta} \leq V_{1}(t) \leq L_{1}(x(t))^{-(a+\alpha)}(y(t))^{-\beta} \tag{2.11}\\
l_{2}(x(t))^{\beta}(y(t))^{-(a+\alpha)} \leq V_{2}(t) \leq L_{2}(x(t))^{\beta}(y(t))^{-(a+\alpha)} . \tag{2.12}
\end{gather*}
$$

Now calculating the derivative of V_{1} with respect to t, we have that for $t \geq 0$,

$$
V_{1}^{\prime}(t)=\left[-(a+\alpha) r_{1}-\beta r_{2}-\left\{(a+\alpha)^{2}+\beta^{2}\right\} x(t)\right] V_{1}(t)
$$

Put

$$
\eta_{1}=-(a+\alpha) r_{1}-\beta r_{2} .
$$

Then $\eta_{1}>0$ by our assumptions. Choose an $h_{1}: 0<h_{1}<B_{1}$ small enough such that

$$
\begin{equation*}
V_{1}^{\prime}(t)>\left(\eta_{1} / 2\right) V_{1}(t) \tag{2.13}
\end{equation*}
$$

for $0<x(t) \leq h_{1}$. By arguments similar to those above, there exists an h_{2} : $0<h_{2}<B_{2}$ such that

$$
\begin{equation*}
V_{2}^{\prime}(t)>\left(\eta_{2} / 2\right) V_{2}(t) \tag{2.14}
\end{equation*}
$$

for $0<y(t) \leq h_{2}$, where

$$
\eta_{2}=\beta r_{1}-(a+\alpha) r_{2}>0 .
$$

Now let us construct a region D as follows. First, define the curve Γ_{1} by

$$
\Gamma_{1}: x^{-(a+\alpha)} y^{-\beta}=\frac{l_{1} h_{1}^{-(a+\alpha)}\left(B_{2}^{\prime}\right)^{-\beta}}{L_{1}} .
$$

Suppose that the intersection point of Γ_{1} with $y=h_{2}$ is given by $\left(\bar{x}, h_{2}\right)$, and define the curve Γ_{2} by

$$
\Gamma_{2}: x^{\beta} y^{-(a+\alpha)}=\frac{l_{2}(\bar{x})^{\beta} h_{2}^{-(a+\alpha)}}{L_{2}} .
$$

Let D denote the region enclosed by $\Gamma_{1}, \Gamma_{2}, x=B_{1}^{\prime}$, and $y=B_{2}^{\prime}$ (Fig. 1). In the following we prove that $z(t)$ eventually enters and remains in the region D. The proof is divided into four steps.

Step 1. We first show that, if there is a $t_{0}^{*}>T$ such that $z\left(t_{0}^{*}\right)$ lies in the right side of $x=h_{1}$, then the $z(t)$ will remain in the right side of Γ_{1} for all $t \geq t_{0}^{*}$. In fact, if $z(t)$ meets Γ_{1} at $t_{2}: t_{2}>t_{0}^{*}$, then there exists a t_{1} : $t_{0}^{*}<t_{1}<t_{2}$ such that $x\left(t_{1}\right)=h_{1}$ and $z(t)$ lies between $x=h_{1}$ and Γ_{1} for all $t_{1}<t<t_{2}$. By the inequality (2.13) we have

$$
\begin{equation*}
V_{1}\left(t_{1}\right)<V_{1}\left(t_{2}\right) \tag{2.15}
\end{equation*}
$$

On the other hand, from (2.10) and (2.11), we obtain

$$
\begin{aligned}
V_{1}\left(t_{2}\right) & \leq L_{1}\left(x\left(t_{2}\right)\right)^{-(a+\alpha)}\left(y\left(t_{2}\right)\right)^{-\beta}=l_{1} h_{1}^{-(a+\alpha)}\left(B_{2}^{\prime}\right)^{-\beta} \\
& \leq l_{1}\left(x\left(t_{1}\right)\right)^{-(a+\alpha)}\left(y\left(t_{1}\right)\right)^{-\beta} \leq V_{1}\left(t_{1}\right) .
\end{aligned}
$$

This contradicts (2.15).

FIG.1. The region D.

Step 2. In this step we show that if there is a $t_{3}>T$ such that $y\left(t_{3}\right)>h_{2}$ and $z(t)$ lies in the right side of Γ_{1} for all $t \geq t_{3}$, then $z(t)$ cannot meet Γ_{2} for all $t \geq t_{3}$. In fact, if $z(t)$ meets Γ_{2} at t_{5}, then there exists a $t_{4}: t_{3}<t_{4}<t_{5}$, such that $y\left(t_{4}\right)=h_{2}$ and $y(t)<h_{2}$ for $t_{4}<t<t_{5}$. By (2.14) we have

$$
\begin{equation*}
V_{2}\left(t_{4}\right)<V_{2}\left(t_{5}\right) \leq L_{2}\left(x\left(t_{5}\right)\right)^{\beta}\left(y\left(t_{5}\right)\right)^{-(a+\alpha)}=l_{2}(\bar{x})^{\beta} h_{2}^{-(a+\alpha)} . \tag{2.16}
\end{equation*}
$$

But since $z(t)$ lies in the right side of Γ_{1} and $y\left(t_{4}\right)=h_{2}$, we have

$$
V_{2}\left(t_{4}\right) \geq l_{2}\left(x\left(t_{4}\right)\right)^{\beta}\left(y\left(t_{4}\right)\right)^{-(a+\alpha)} \geq l_{2}(\bar{x})^{\beta} h_{2}^{-(a+\alpha)} .
$$

This contradicts (2.16).
Step 3. In this step we show that if there is a $t_{6}>T$ such that $y\left(t_{6}\right) \leq h_{2}$, then there exists a $t_{7}>t_{6}$ such that $y\left(t_{7}\right)>h_{2}$. Otherwise, we have $y(t) \leq h_{2}$ for all $t \geq t_{6}$. Then (2.14) implies that $V_{2}(t)$ tends to infinity, but (2.10) and (2.12) imply that $V_{2}(t)$ is bounded, which is a contradiction.

Step 4. In this step we show that if there is a $t_{8}>T$ such that $x\left(t_{8}\right) \leq h_{1}$, then there exists a $t_{9}>t_{8}$ such that $x\left(t_{9}\right)>h_{1}$. O therwise, we have $x(t) \leq h_{1}$ for all $t \geq t_{8}$. Then (2.13) implies that $V_{1}(t)$ tends to infinity. But, in the case $\beta=0$, (2.10) and (2.11) imply that $V_{1}(t)$ is bounded, which is a contradiction. In the case $\beta>0$, (2.10) and (2.11) imply that $y(t)$ tends to zero, which contradicts Step 3.

Now we are in a position to conclude the proof of sufficiency. First, if for some $T_{1}>T, z\left(T_{1}\right)$ lies in the right side of $x=h_{1}$ and above $y=h_{2}$, then (2.10) and Steps 1 and 2 imply that $z(t)$ will remain in D for $t \geq T_{1}$. Next, if $z\left(T_{2}\right)$ lies in the right side of $x=h_{1}$ and below $y=h_{2}$ for some $T_{2}>T$, then Step 1 implies that $z(t)$ will remain in the right side of Γ_{1} for $t \geq T_{2}$. It follows from Step 3 that there exists a $T_{3}>T_{2}$ such that $y\left(T_{3}\right)>h_{2}$. Hence, we can show that from (2.10) and Step $2, z(t)$ will remain in D for $t \geq T_{3}$. Finally, if for some $t>T, z(t)$ lies in the left side of $x=h_{1}$, then Step 4 implies that $z(t)$ will enter in the right side of $x=h_{1}$ as t increases. By using the same arguments as above, we can show that $z(t)$ eventually enters and remains in D.
(Necessity). We can see easily if $a+\alpha \geq 0$ holds, then (1.1) is not permanent in the case $\tau_{1}=\tau_{2}=0$ (cf. Appendix). This completes the proof.

Remark 2.1. In the proof of necessity above, we showed that (1.1) is not permanent in the case $\tau_{1}=\tau_{2}=0$ if $a+\alpha \geq 0$. However, computer simulation seems to suggest that (1.1) is not permanent for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ if $a+\alpha \geq 0$ holds.

3. GLOBAL STABILITY

To consider the global asymptotic stability of the positive equilibrium (x^{*}, y^{*}) of (1.1), we first introduce an extension of LaSalle's invariance principle.

For some constant $\Delta>0$, let $C^{n}=C\left([-\Delta, 0], R^{n}\right)$. Consider the delay differential equations

$$
\begin{equation*}
z^{\prime}(t)=f\left(z_{t}\right) \tag{3.1}
\end{equation*}
$$

where $z_{t} \in C^{n}$ is defined as $z_{t}(\theta)=z(t+\theta)$ for $-\Delta \leq \theta \leq 0, f: C^{n} \rightarrow R^{n}$ is completely continuous, and solutions of (3.1) are continuously dependent on the initial data in C^{n}. The following lemma is actually a corollary of the LaSalle invariance principle and the proof is omitted (see, for example, [4, 5]).

Lemma 3.1. Assume that for a subset G of C^{n} such that \bar{G} is positively invariant for (3.1), and $V: G \rightarrow R$,
(i) V is continuous on G.
(ii) For any $\phi \in \partial G$ (the boundary of G), the limit $l(\phi)$

$$
l(\phi)=\lim _{\substack{\psi \rightarrow \phi \\ \psi \in G}} V(\psi)
$$

exists or is $+\infty$.
(iii) $\dot{V}_{(3.1)} \leq 0$ on G, where $\dot{V}_{(3.1)}$ is the upper right-hand derivative of V along the solution of (3.1).
Let $E=\left\{\phi \in \bar{G} \mid l(\phi)<\infty\right.$ and $\left.\dot{V}_{(3.1)}(\phi)=0\right\}$. Here, for $\phi \in \partial G$ and $l(\phi)<\infty$, we define

$$
\begin{gathered}
V(\phi)=l(\phi), \\
\dot{V}_{(3.1)}(\phi)=\limsup _{h \rightarrow 0^{+}} \frac{1}{h}\left[V\left(z_{h}(\phi)\right)-V(\phi)\right] \\
\quad\left(\text { if } l\left(z_{h}(\phi)\right)<\infty\right) .
\end{gathered}
$$

Let M denote the largest subset in E that is invariant with respect to (3.1). Then every bounded solution of (3.1) that remains in G approaches M as $t \rightarrow+\infty$.

The following is our main result.
Theorem 3.1. The positive equilibrium $\left(x^{*}, y^{*}\right)$ of (1.1) is globally asymptotically stable for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ if and only if

$$
\sqrt{\alpha^{2}+\beta^{2}} \leq-a
$$

holds.
Proof (Sufficiency). By using the transformation

$$
\bar{x}=x-x^{*}, \quad \bar{y}=y-y^{*},
$$

the system (1.1) is reduced to

$$
\begin{align*}
& x^{\prime}(t)=\left(x^{*}+x(t)\right)\left[a x(t)+\alpha x\left(t-\tau_{1}\right)-\beta y\left(t-\tau_{2}\right)\right] \\
& y^{\prime}(t)=\left(y^{*}+y(t)\right)\left[a y(t)+\beta x\left(t-\tau_{1}\right)+\alpha y\left(t-\tau_{2}\right)\right] \tag{3.2}
\end{align*}
$$

where we used $x(t)$ and $y(t)$ again instead of $\bar{x}(t)$ and $\bar{y}(t)$, respectively. U sing Lemma 3.1 we now prove that the trivial solution of (3.2) is globally asymptotically stable for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$. Define

$$
G=\left\{\phi=\left(\phi_{1}, \phi_{2}\right) \in C^{2} \mid \phi_{i}(s)+x_{i}^{*} \geq 0, \phi_{i}(0)+x_{i}^{*}>0, i=1,2\right\},
$$

where $C^{2}=C\left([-\Delta, 0], R^{2}\right), \Delta=\max \left\{\tau_{1}, \tau_{2}\right\}$, and $\left(x_{1}^{*}, x_{2}^{*}\right)=\left(x^{*}, y^{*}\right)$. Clearly, \bar{G} is positively invariant for (3.2). We consider the functional V defined on G :

$$
\begin{align*}
V(\phi)= & -2 a \sum_{i=1}^{2}\left\{\phi_{i}(0)-x_{i}^{*} \log \frac{\phi_{i}(0)+x_{i}^{*}}{x_{i}^{*}}\right\} \\
& +\left(\alpha^{2}+\beta^{2}\right) \sum_{i=1}^{2} \int_{-\tau_{i}}^{0} \phi_{i}^{2}(\theta) d \theta \tag{3.3}
\end{align*}
$$

It is clear that V is continuous on G and that

$$
\lim _{\substack{\psi \rightarrow \phi \in \partial G \\ \psi \in G}} V(\psi)=+\infty \text { or exists. }
$$

Furthermore,

$$
\begin{align*}
\dot{V}_{(3.2)}(\phi)= & -2 a\left[a \phi_{1}(0)+\alpha \phi_{1}\left(-\tau_{1}\right)-\beta \phi_{2}\left(-\tau_{2}\right)\right] \phi_{1}(0) \\
& -2 a\left[a \phi_{2}(0)+\beta \phi_{1}\left(-\tau_{1}\right)+\alpha \phi_{2}\left(-\tau_{2}\right)\right] \phi_{2}(0) \\
& +\left(\alpha^{2}+\beta^{2}\right)\left\{\left[\phi_{1}^{2}(0)-\phi_{1}^{2}\left(-\tau_{1}\right)\right]+\left[\phi_{2}^{2}(0)-\phi_{2}^{2}\left(-\tau_{2}\right)\right]\right\} \\
= & -\left[a \phi_{1}(0)+\alpha \phi_{1}\left(-\tau_{1}\right)-\beta \phi_{2}\left(-\tau_{2}\right)\right]^{2} \\
& -\left[a \phi_{2}(0)+\beta \phi_{1}\left(-\tau_{1}\right)+\alpha \phi_{2}\left(-\tau_{2}\right)\right]^{2} \\
& -\left[a^{2}-\left(\alpha^{2}+\beta^{2}\right)\right]\left[\phi_{1}^{2}(0)+\phi_{2}^{2}(0)\right] \\
\leq & 0 \tag{3.4}
\end{align*}
$$

on G. From (3.3) and (3.4), we see that the trivial solution of (3.2) is stable and that every solution is bounded.

Let

$$
E=\left\{\phi \in \bar{G} \mid l(\phi)<\infty \text { and } \dot{V}_{(3.2)}(\phi)=0\right\},
$$

M : the largest subset in E that is invariant with respect to (3.2).
For $\phi \in M$, the solution $z_{t}(\phi)=(x(t+\theta), y(t+\theta))(-\Delta \leq \theta \leq 0)$ of (3.2) through ($0, \phi$) remains in M for $t \geq 0$ and satisfies, for $t \geq 0$,

$$
\dot{V}_{(3.2)}\left(z_{t}(\phi)\right)=0 .
$$

Hence, for $t \geq 0$,

$$
\begin{align*}
& a x(t)+\alpha x\left(t-\tau_{1}\right)-\beta y\left(t-\tau_{2}\right)=0 \tag{3.5}\\
& a y(t)+\beta x\left(t-\tau_{1}\right)+\alpha y\left(t-\tau_{2}\right)=0,
\end{align*}
$$

which implies that for $t \geq 0$,

$$
x^{\prime}(t)=y^{\prime}(t)=0 .
$$

Thus, for $t \geq 0$,

$$
\begin{equation*}
x(t)=c_{1}, \quad y(t)=c_{2} \tag{3.6}
\end{equation*}
$$

for some constants c_{1} and c_{2}. From (3.5) and (3.6), we have

$$
\left[\begin{array}{cc}
a+\alpha & -\beta \\
\beta & a+\alpha
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

which implies that $c_{1}=c_{2}=0$ by our assumptions, and thus we have

$$
x(t)=y(t)=0 \quad \text { for } t \geq 0 .
$$

Therefore, for any $\phi \in M$, we have

$$
\phi(0)=(x(0), y(0))=0 .
$$

By Lemma 3.1, any solution $z_{t}=(x(t+\theta), y(t+\theta))$ tends to M. Thus

$$
\lim _{t \rightarrow+\infty} x(t)=\lim _{t \rightarrow+\infty} y(t)=0 .
$$

Hence, $\left(x^{*}, y^{*}\right)$ is globally asymptotically stable for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$.
(Necessity). The proof is by contradiction. A ssume the assertion is false. That is, let $\left(x^{*}, y^{*}\right)$ be globally asymptotically stable for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ and $\sqrt{\alpha^{2}+\beta^{2}}>-a$.
Linearizing (3.2), we have

$$
\begin{align*}
x^{\prime}(t) & =x^{*}\left[a x(t)+\alpha x\left(t-\tau_{1}\right)-\beta y\left(t-\tau_{2}\right)\right] \\
y^{\prime}(t) & =y^{*}\left[a y(t)+\beta x\left(t-\tau_{1}\right)+\alpha y\left(t-\tau_{2}\right)\right] . \tag{3.7}
\end{align*}
$$

Now, we will show that there exists a characteristic root λ_{0} of (3.7) such that

$$
\begin{equation*}
\operatorname{Re}\left(\lambda_{0}\right)>0 \tag{3.8}
\end{equation*}
$$

for some τ_{1} and τ_{2}, which implies that the trivial solution of (3.2) is not stable (see [1, pp. 160, 161]).

When $\alpha \geq-a$, it is clear that (x^{*}, y^{*}) is not globally asymptotically stable for all $\tau_{1} \geq 0$ and $\tau_{2} \geq 0$ by Theorem 2.1. Therefore, we have only to consider the case $\alpha<-a$.
(I) The case $0<|\alpha|<-a$. Let $\tau_{1}=\tau_{2}=\tau$; then the characteristic equation of (3.7) takes the form

$$
\begin{equation*}
\lambda^{2}+p \lambda+q+(r+s \lambda) e^{-\lambda \tau}+v e^{-2 \lambda \tau}=0, \tag{3.9}
\end{equation*}
$$

where $p=-a\left(x^{*}+y^{*}\right), q=a^{2} x^{*} y^{*}, r=2 a \alpha x^{*} y^{*}, s=-\alpha\left(x^{*}+y^{*}\right)$, and $v=\left(\alpha^{2}+\beta^{2}\right) x^{*} y^{*}$.
W hen $x^{*}=y^{*}$, (3.9) can be factorized as

$$
\begin{equation*}
\left[\lambda-x^{*}\left\{a+(\alpha+i \beta) e^{-\lambda \tau}\right\}\right]\left[\lambda-x^{*}\left\{a+(\alpha-i \beta) e^{-\lambda \tau}\right\}\right]=0 . \tag{3.10}
\end{equation*}
$$

Let us consider the equation

$$
\begin{equation*}
\lambda-x^{*}\left\{a+(\alpha+i \beta) e^{-\lambda \tau}\right\}=0 . \tag{3.11}
\end{equation*}
$$

Set $\alpha=b \cos \theta$ and $\beta=b \sin \theta$, where b and θ are constants with $b \geq 0$. Then, we note that $b>0$ because of $a<0$ and $\sqrt{\alpha^{2}+\beta^{2}}>-a$. Substituting $\lambda=i y$ into (3.11), we have

$$
\begin{equation*}
i y-x^{*}[a+b\{\cos (y \tau-\theta)-i \sin (y \tau-\theta)\}]=0 . \tag{3.12}
\end{equation*}
$$

By separating the real and imaginary parts of (3.12), we obtain

$$
\begin{align*}
b x^{*} \cos (y \tau-\theta) & =-a x^{*} \\
b x^{*} \sin (y \tau-\theta) & =-y . \tag{3.13}
\end{align*}
$$

From (3.13), we have

$$
\left(b x^{*}\right)^{2}=\left(a x^{*}\right)^{2}+y^{2} .
$$

To solve y in (3.13), define the following function:

$$
\begin{equation*}
f_{1}(Y)=Y+\left(a x^{*}\right)^{2}-\left(b x^{*}\right)^{2} \tag{3.14}
\end{equation*}
$$

where $Y=y^{2}$. Then f_{1} is an increasing linear function and

$$
f_{1}(0)=x^{* 2}\left\{a^{2}-\left(\alpha^{2}+\beta^{2}\right)\right\}<0
$$

Thus, it follows that there exists a positive simple root Y_{0} of $f_{1}(Y)=0$. Substituting y_{0}, which satisfies $Y_{0}=y_{0}^{2}$, into (3.13), we can get τ_{0} such that (3.11) has a characteristic root $i y_{0}$ when $\tau=\tau_{0}$.

Furthermore, taking the derivative of λ with τ on (3.11), we have

$$
\frac{d \lambda}{d \tau}=\frac{-x^{*} b e^{i \theta} \lambda e^{-\lambda \tau}}{1+x^{*} b \tau e^{i \theta} e^{-\lambda \tau}} .
$$

U sing (3.11), we obtain

$$
\left(\frac{d \lambda}{d \tau}\right)^{-1}=\frac{1}{-\lambda\left(\lambda-x^{*} a\right)}-\frac{\tau}{\lambda}
$$

Hence,

$$
\begin{aligned}
\operatorname{sign}\left[\operatorname{Re}\left(\left.\frac{d \lambda}{d \tau}\right|_{\lambda=i y_{0}, \tau=\tau_{0}}\right)\right] & =\operatorname{sign}\left[\operatorname{Re}\left(\left.\left(\frac{d \lambda}{d \tau}\right)^{-1}\right|_{\lambda=i y_{0}, \tau=\tau_{0}}\right)\right] \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\frac{1}{-i y_{0}\left(i y_{0}-x^{*} a\right)}-\frac{\tau_{0}}{i y_{0}}\right)\right] \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\frac{1}{y_{0}^{2}+i y_{0} x^{*} a}\right)\right]>0,
\end{aligned}
$$

which implies that (3.8) holds. Therefore, the trivial solution of (3.2) is not stable, that is, $\left(x^{*}, y^{*}\right)$ is not stable near τ_{0}, which is a contradiction.

When $x^{*} \neq y^{*}$, (3.9) cannot be factorized as (3.10). Substituting $\lambda=i y$ into (3.9), we have

$$
\begin{equation*}
\left(-y^{2}+p i y+q\right) e^{i y \tau}+r+s i y+v e^{-i y \tau}=0 . \tag{3.15}
\end{equation*}
$$

By separating the real and imaginary parts of (3.15), we have

$$
\begin{align*}
& {\left[\left(-y^{2}+q\right)^{2}-v^{2}+p^{2} y^{2}\right] \cos (y \tau)=(r-s p) y^{2}-r(q-v)} \\
& {\left[\left(-y^{2}+q\right)^{2}-v^{2}+p^{2} y^{2}\right] \sin (y \tau)=s y^{3}+[r p-s(q+v)] y,} \tag{3.16}
\end{align*}
$$

and thus

$$
\begin{aligned}
& {\left[\left(-y^{2}+q\right)^{2}-v^{2}+p^{2} y^{2}\right]^{2}} \\
& \quad=\left[(r-s p) y^{2}-r(q-v)\right]^{2}+\left[s y^{3}+[r p-s(q+v)] y\right]^{2}
\end{aligned}
$$

D efine the following function:

$$
\begin{align*}
f_{2}(Y)= & {\left[(-Y+q)^{2}-v^{2}+p^{2} Y\right]^{2}-[(r-s p) Y-r(q-v)]^{2} } \\
& -Y[s Y+r p-s(q+v)]^{2}, \tag{3.17}
\end{align*}
$$

where $Y=y^{2}$; then f_{2} is a quartic function such that $f_{2} \rightarrow+\infty$ as $|Y| \rightarrow+\infty$. Since

$$
\begin{aligned}
f_{2}(0) & =\left[a^{2}-\left(\alpha^{2}+\beta^{2}\right)\right]^{2}\left[(a+\alpha)^{2}+\beta^{2}\right]\left[(a-\alpha)^{2}+\beta^{2}\right]\left(x^{*} y^{*}\right)^{4} \\
& >0,
\end{aligned}
$$

we cannot immediately find positive zeros of (3.17), and so we have to investigate f_{2} in more detail. D efine

$$
\begin{aligned}
& F(Y)=\left[(-Y+q)^{2}-v^{2}+p^{2} Y\right]^{2} \\
& G(Y)=-[(r-s p) Y-r(q-v)]^{2} \\
& H(Y)=-Y[s Y+r p-s(q+v)]^{2}
\end{aligned}
$$

then $f_{2}=F+G+H$. It is easy to see that positive zeroes of F, G, and H are mutually different as long as $x^{*} \neq y^{*}$. Hence, the value of f_{2} at the positive zero of F is negative, which, together with $f_{2}(0)>0$, implies that there exists a positive root of $f_{2}(Y)=0$. It is also clear that there exists another positive root of $f_{2}(Y)=0$ because $f_{2} \rightarrow+\infty$ as $Y \rightarrow+\infty$. Thus, one of the two positive roots is a simple root at least.

Let Y_{0} be such a simple root. Substituting y_{0}, which satisfies $Y_{0}=y_{0}^{2}$, into (3.16), we can get some τ such that (3.9) has a characteristic root $i y_{0}$ at τ. We note that $i y_{0}$ is a simple root of (3.11) because Y_{0} is a simple root of $f_{2}(Y)=0$.
Furthermore, taking the derivative of λ with τ on (3.9), we have

$$
\begin{gathered}
\frac{d \lambda}{d \tau}=\frac{-2 \lambda\left(\lambda^{2}+p \lambda+q\right)-\lambda(r+s \lambda) e^{-\lambda \tau}}{2 \lambda+p+2 \tau\left(\lambda^{2}+p \lambda+q\right)+e^{-\lambda \tau}[s+\tau(r+s \lambda)]}, \\
\left(\frac{d \lambda}{d \tau}\right)^{-1}=\frac{2 \lambda+p+s e^{-\lambda \tau}}{-2 \lambda\left(\lambda^{2}+p \lambda+q\right)-\lambda(r+s \lambda) e^{-\lambda \tau}}-\frac{\tau}{\lambda} .
\end{gathered}
$$

Hence, we have

$$
\begin{align*}
\operatorname{sign} & {\left[\operatorname{Re}\left(\left.\frac{d \lambda}{d \tau}\right|_{\lambda=i y_{0}}\right)\right] } \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\left.\left(\frac{d \lambda}{d \tau}\right)^{-1}\right|_{\lambda=i y_{0}}\right)\right] \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\frac{2 i y_{0}+p+s e^{-i y_{0} \tau}}{-2 i y_{0}\left(-y_{0}^{2}+p i y_{0}+q\right)-i y_{0}\left(r+s i y_{0}\right) e^{-i y_{0} \tau}}-\frac{\tau}{i y_{0}}\right)\right] \\
& =\operatorname{sign}\left[\operatorname{Re}\left\{\left(\frac{2 i y_{0}+p+s e^{-i y_{0} \tau}}{-2 i y_{0}\left(-y_{0}^{2}+p i y_{0}+q\right)-i y_{0}\left(r+s i y_{0}\right) e^{-i y_{0} \tau}}\right)^{-1}\right\}\right] \\
& =\operatorname{sign}\left[1+\frac{\left(a^{2}+a \alpha \cos \left(y_{0} \tau\right)\right)\left(x^{*}-y^{*}\right)^{2}}{\left(p+s \cos \left(y_{0} \tau\right)\right)^{2}+\left(2 y_{0}-s \sin \left(y_{0} \tau\right)\right)^{2}}\right] \tag{3.18}
\end{align*}
$$

Since

$$
\left(a^{2}+a \alpha \cos \left(y_{0} \tau\right)\right)\left(x^{*}-y^{*}\right)^{2} \geq a(a+|\alpha|)\left(x^{*}-y^{*}\right)^{2}>0
$$

the last expression in (3.18) is positive. This implies that (3.8) holds, which is a contradiction.
(II) The case $\alpha=0$. Let $\tau_{1}=\tau_{2}=\tau$; then the characteristic equation of (3.7) takes the form

$$
\begin{equation*}
\lambda^{2}+p \lambda+q+v e^{-2 \lambda \tau}=0 . \tag{3.19}
\end{equation*}
$$

Substituting $\lambda=$ iy into (3.19), we have

$$
\begin{equation*}
-y^{2}+p i y+q+v e^{-2 i y \tau}=0 \tag{3.20}
\end{equation*}
$$

By separating the real and imaginary parts of (3.20), we have

$$
\begin{align*}
v \cos (2 y \tau) & =y^{2}-q \tag{3.21}\\
v \sin (2 y \tau) & =p y
\end{align*}
$$

and

$$
v^{2}=\left(y^{2}-q\right)^{2}+(p y)^{2} .
$$

D efine the following function:

$$
\begin{equation*}
f_{3}(Y)=(Y-q)^{2}+p^{2} Y-v^{2} \tag{3.22}
\end{equation*}
$$

where $Y=y^{2}$; then f_{3} is a downward convex quadratic function, and

$$
f_{3}(0)=\left(a^{4}-\beta^{4}\right) x^{* 2} y^{* 2}<0 .
$$

Thus, it follows that there exists a positive simple root Y_{0} of $f_{3}(Y)=0$. Substituting y_{0}, which satisfies $Y_{0}=y_{0}^{2}$, into (3.21), we can get some τ such that (3.19) has a characteristic root $i y_{0}$ at τ. Here $i y_{0}$ is a simple root of (3.19), by the same reasoning as above.
Taking the derivative of λ with τ on (3.19), we have

$$
\begin{aligned}
\frac{d \lambda}{d \tau} & =\frac{2 v \lambda e^{-2 \lambda \tau}}{2 \lambda+p-2 v \tau e^{-2 \lambda \tau}}, \\
\left(\frac{d \lambda}{d \tau}\right)^{-1} & =\frac{2 \lambda+p}{2 \lambda\left(-\lambda^{2}-p \lambda-q\right)}-\frac{\tau}{\lambda} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\operatorname{sign}\left[\operatorname{Re}\left(\left.\frac{d \lambda}{d \tau}\right|_{\lambda=i y_{0}}\right)\right] & =\operatorname{sign}\left[\operatorname{Re}\left(\left.\left(\frac{d \lambda}{d \tau}\right)^{-1}\right|_{\lambda=i y_{0}}\right)\right] \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\frac{2 i y_{0}+p}{2 i y_{0}\left(y_{0}^{2}-p i y_{0}-q\right)}-\frac{\tau}{i y_{0}}\right)\right] \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\frac{2 i y_{0}+p}{2 y_{0}\left[p y_{0}+i\left(y_{0}^{2}-q\right)\right]}\right)\right] \\
& =\operatorname{sign}\left[2 y_{0}^{2}+a^{2}\left(x^{* 2}+y^{* 2}\right)\right]>0 .
\end{aligned}
$$

This implies that (3.8) holds, which is a contradiction.
(III) The case $\alpha \leq a$. Let $\tau_{1}=\tau$ and $\tau_{2}=0$; then the characteristic equation of (3.7) takes the form

$$
\begin{equation*}
\lambda^{2}+\tilde{p} \lambda+\tilde{q}+(\tilde{r}+\tilde{s} \lambda) e^{-\lambda \tau}=0, \tag{3.23}
\end{equation*}
$$

where $\tilde{p}=-a x^{*}-(a+\alpha) y^{*}, \quad \tilde{q}=a(a+\alpha) x^{*} y^{*}, \quad \bar{r}=[\alpha(a+\alpha)+$ $\left.\beta^{2}\right] x^{*} y^{*}$, and $\tilde{s}=-\alpha x^{*}$. Let us use p, q, r, and s again instead of \tilde{p}, \tilde{q}, \tilde{r}, and \tilde{s}, respectively. Substituting $\lambda=i y$ into (3.23), we have

$$
\begin{equation*}
-y^{2}+p i y+q+(r+s i y) e^{-i y \tau}=0 . \tag{3.24}
\end{equation*}
$$

By separating the real and imaginary parts of (3.24), we have

$$
\begin{align*}
\left(r^{2}+s^{2} y^{2}\right) \cos (y \tau) & =r\left(y^{2}-q\right)-s p y^{2} \\
\left(r^{2}+s^{2} y^{2}\right) \sin (y \tau) & =s y\left(y^{2}-q\right)+p r y \tag{3.25}
\end{align*}
$$

and

$$
\left[r^{2}+s^{2} y^{2}\right]^{2}=\left[r\left(y^{2}-q\right)-s p y^{2}\right]^{2}+\left[s y\left(y^{2}-q\right)+p r y\right]^{2} .
$$

D efine the following function:

$$
\begin{equation*}
f_{4}(Y)=Y[s(Y-q)+p r]^{2}+[r(Y-q)-s p Y]^{2}-\left[r^{2}+s^{2} Y\right]^{2}, \tag{3.26}
\end{equation*}
$$

where $Y=y^{2}$; then f_{4} is an upward cubic function to the right, and

$$
\begin{aligned}
f_{4}(0) & =\left[\alpha(a+\alpha)+\beta^{2}\right]^{2}\left[(a+\alpha)^{2}+\beta^{2}\right]\left[a^{2}-\left(\alpha^{2}+\beta^{2}\right)\right]\left(x^{*} y^{*}\right)^{4} \\
& <0
\end{aligned}
$$

Thus, there can exist some positive roots of $f_{4}(Y)=0$. Now, let us show that there exists a simple root in such positive roots. We see that

$$
\begin{aligned}
f_{4}^{\prime}(Y)= & 3 s^{2} Y^{2}+2\left[s^{2}\left(p^{2}-2 q-s^{2}\right)+r^{2}\right] Y \\
& +s^{2}\left(q^{2}-2 r^{2}\right)+r^{2}\left(p^{2}-2 q\right)
\end{aligned}
$$

and

$$
f_{4}^{\prime \prime}(Y)=6 s^{2} Y+2\left[s^{2}\left(p^{2}-2 q-s^{2}\right)+r^{2}\right]
$$

Let $f_{4}^{\prime \prime}(Y)=0$; then

$$
3 s^{2} Y+\left[s^{2}\left(p^{2}-2 q-s^{2}\right)+r^{2}\right]=0,
$$

and thus we have

$$
\begin{align*}
-3 s^{2} f_{4}^{\prime}(Y)= & {\left[s^{2}\left(p^{2}-2 q-s^{2}\right)+r^{2}\right]^{2} } \\
& -3 s^{2}\left[s^{2}\left(q^{2}-2 r^{2}\right)+r^{2}\left(p^{2}-2 q\right)\right] \\
= & x^{* 4} y^{* 2}\left[\alpha^{2}\left(4 \alpha^{2}-a^{2}\right) x^{* 2}+\left\{\alpha(a+\alpha)+\beta^{2}\right\}^{2} y^{* 2}\right] \\
& \times\left[\left\{\alpha(a+\alpha)+\beta^{2}\right\}^{2}-\alpha^{2}(a+\alpha)^{2}\right] \\
& +\alpha^{4} x^{* 4}\left[\left(a^{2}-\alpha^{2}\right) x^{* 2}-(a+\alpha)^{2} y^{* 2}\right]^{2} \tag{3.27}
\end{align*}
$$

Since $\alpha \leq a<0$, (3.27) is positive. This proves that there exists no triple root of $f_{4}(Y)=0$, which implies that there exists at least a positive simple root Y_{0} of $f_{4}(Y)=0$.

Substituting y_{0}, which satisfies $Y_{0}=y_{0}^{2}$, into (3.25), we can get some τ such that (3.23) has a characteristic root $i y_{0}$ at τ. Here again $i y_{0}$ is a simple root of (3.23).

Taking the derivative of λ with τ on (3.23), we have

$$
\begin{aligned}
\frac{d \lambda}{d \tau} & =\frac{\lambda(r+s \lambda) e^{-\lambda \tau}}{2 \lambda+p+e^{-\lambda \tau}[s-\tau(r+s \lambda)]} \\
\left(\frac{d \lambda}{d \tau}\right)^{-1} & =\frac{2 \lambda+p+s e^{-\lambda \tau}}{\lambda(r+s \lambda) e^{-\lambda \tau}}-\frac{\tau}{\lambda} \\
& =\frac{2 \lambda+p}{-\lambda\left(\lambda^{2}+p \lambda+q\right)}+\frac{s}{\lambda(r+s \lambda)}-\frac{\tau}{\lambda} .
\end{aligned}
$$

Hence, we have

$$
\begin{align*}
\operatorname{sign} & {\left[\operatorname{Re}\left(\left.\frac{d \lambda}{d \tau}\right|_{\lambda=i y_{0}}\right)\right] } \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\left.\left(\frac{d \lambda}{d \tau}\right)^{-1}\right|_{\lambda=i y_{0}}\right)\right] \\
& =\operatorname{sign}\left[\operatorname{Re}\left(\frac{2 i y_{0}+p}{-i y_{0}\left(-y_{0}^{2}+p i y_{0}+q\right)}+\frac{s}{i y_{0}\left(r+s i y_{0}\right)}-\frac{\tau}{i y_{0}}\right)\right] \\
& =\operatorname{sign}\left[\frac{s^{2} y_{0}^{4}+2 r^{2} y_{0}^{2}-s^{2} q^{2}-2 r^{2} q+p^{2} r^{2}}{\left[\left(p y_{0}\right)^{2}+\left(y_{0}^{2}-q\right)^{2}\right]\left[r^{2}+\left(s y_{0}\right)^{2}\right]}\right] \tag{3.28}
\end{align*}
$$

Since

$$
\begin{aligned}
-s^{2} q^{2}- & 2 r^{2} q+p^{2} r^{2} \\
= & {\left[a^{2} x^{* 2}+(a+\alpha)^{2} y^{* 2}\right]\left[\alpha(a+\alpha)+\beta^{2}\right]^{2} x^{* 2} y^{* 2} } \\
& -a^{2} \alpha^{2}(a+\alpha)^{2} x^{* 4} y^{* 2} \\
\geq & {\left[a^{2} x^{* 2}+(a+\alpha)^{2} y^{* 2}\right] \alpha^{2}(a+\alpha)^{2} x^{* 2} y^{* 2} } \\
& -a^{2} \alpha^{2}(a+\alpha)^{2} x^{* 4} y^{* 2} \\
= & \alpha^{2}(a+\alpha)^{4} x^{* 2} y^{* 4}>0,
\end{aligned}
$$

the last expression in (3.28) is positive. This implies that (3.8) holds, which is a contradiction. This completes the proof.

H ere, we give three portraits of the trajectory of (1.1) with (1.2), drawn by a computer using the Runge-Kutta method, to illustrate Theorem 3.1 ($r_{1}=10, r_{2}=-10$) (Figs. 2-4).

4. APPENDIX

W hen $\tau_{1}=\tau_{2}=0$, the system (1.1) becomes

$$
\begin{align*}
& x^{\prime}(t)=x(t)\left[r_{1}+(a+\alpha) x(t)-\beta y(t)\right] \\
& y^{\prime}(t)=y(t)\left[r_{2}+\beta x(t)+(a+\alpha) y(t)\right] . \tag{4.1}
\end{align*}
$$

FIG. 2. $a=-5, \alpha=3, \beta=3.99\left(\sqrt{\alpha^{2}+\beta^{2}}<-a\right), \tau_{1}=1, \tau_{2}=2,(\phi, \psi)=(3+0.8 t$, $3.5+\sin (8 t))$.

By using the transformation

$$
\bar{x}=x-x^{*}, \quad \bar{y}=y-y^{*},
$$

we have from (4.1) that

$$
\begin{align*}
x^{\prime}(t) & =\left(x^{*}+x(t)\right)[(a+\alpha) x(t)-\beta y(t)] \\
y^{\prime}(t) & =\left(y^{*}+y(t)\right)[\beta x(t)+(a+\alpha) y(t)], \tag{4.2}
\end{align*}
$$

where we used $x(t)$ and $y(t)$ again instead of $\bar{x}(t)$ and $\bar{y}(t)$, respectively. Consider the following Liapunov function:

$$
\begin{equation*}
V(x, y)=\left(x-x^{*} \log \frac{x+x^{*}}{x^{*}}\right)+\left(y-y^{*} \log \frac{y+y^{*}}{y^{*}}\right) \tag{4.3}
\end{equation*}
$$

FIG. 3. $a=-5, \alpha=3, \beta=4\left(\sqrt{\alpha^{2}+\beta^{2}}=-a\right), \tau_{1}=1, \tau_{2}=2,(\phi, \psi)=(4+t, 3.8+$ $\sin (30 t)$).
for $x>-x^{*}$ and $y>-y^{*}$, then V is positive definite. Calculating the derivative of V along the solution of (4.2), we have that

$$
\dot{V}_{(4.2)}(x, y)=(a+\alpha)\left(x^{2}+y^{2}\right) .
$$

Clearly, $\dot{V}_{(4.2)}$ is negative definite if and only if $a+\alpha<0$ holds. The well-known Liapunov theorem shows that the origin (0,0) is globally asymptotically stable if and only if $a+\alpha<0$ holds.

If $a+\alpha=0$ holds, $\dot{V}_{(4.2)}$ vanishes identically. So all solutions are periodic solutions. Thus, (4.1) is not permanent. If $a+\alpha>0$ holds, (4.1) is also not permanent. In fact, otherwise, it follows that there exists some compact set D_{0} in the interior of the region $\left\{(x, y) \in R^{2} \mid x+x^{*}>0\right.$, $\left.y+y^{*}>0\right\}$ such that any solution of (4.2) will ultimately stay in D_{0}. From (4.3), there exists some positive number k such that the closed curve $V(x, y)=k$ covers D_{0}. A solution through a point on the closed curve does not enter that curve because $\dot{V}_{(4.2)}>0$ there, which is a contradiction.

FIG. 4. $a=-5, \alpha=3, \beta=4.01\left(\sqrt{\alpha^{2}+\beta^{2}}>-a\right), \tau_{1}=2, \tau_{2}=3,(\phi, \psi)=(2+0.5 t$, $3+\sin (7 t)$).

REFERENCES

1. L. E. El'sgol'ts and S. B. Norkin, "Introduction to the Theory and Application of Differential Equations with Deviating A rguments," A cademic Press, New Y ork, 1973.
2. K. G opalsamy, G lobal asymptotic stability in V olterra's population systems, J. Math. Biol. 19 (1984), 157-168.
3. J. K. Hale, "O rdinary Differential Equations," 2nd ed. Krieger, H untington, NY, 1980.
4. J. K. H ale and S. M. V erduyn Lunel, "Introduction to Functional Differential Equations," Springer-V erlag, N ew Y ork, 1993.
5. Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," A cademic Press, N ew Y ork, 1993.
6. V. Lakshmikantham and S. Leela, "Differential and Integral Inequalities," Vol. 2, A cademic Press, New Y ork, 1969.
7. S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay, Proc. Amer. Math. Soc. 96 (1986), 75-78.
8. Z. Lu and W. Wang, Global stability for two-species Lotka-V olterra systems with delay, J. Math. Anal. Appl. 208 (1997), 277-280.
9. H. L. Smith and P. Waltman, "The Theory of the Chemostat," Cambridge Univ. Press, Cambridge, UK, 1995.
10. W. W ang and Z. M a, H armless delays for uniform persistence, J. Math. Anal. Appl. 158 (1991), 256-268.
11. G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM J. Appl. Math. 52 (1992), 222-233.

[^0]: * Supported in part by Grant-in-Aid for Scientific R esearch 09640211. E-mail: hara@ms. osakafu-u.ac.jp.

