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In this paper we seek necessary and sufficient conditions for the permanence
and the global asymptotic stability of a positive equilibrium for a Lotka-Volterra
system with two delays.  © 1999 Academic Press

1. INTRODUCTION

We consider the following symmetrical Lotka—Volterra-type predator—
prey system with two delays 7, and 7,:

X'(t) =x()[ry + ax(t) + ax(t = 71) = By(t = 7)]

(1.1)
V(1) =y(t)[r, + ay(t) + Bx(t — ) + ay(t — ,)].
The initial condition of (1.1) is given as
x(s) = ¢(s) =0, -1, <5s<0; ¢(0)>0 L
y(s) =¥(s) =0, -—7,<s<0; (0)>0. (2)

Here a, «, B, 1y, 1,, 74, and 7, are constants with ¢ <0, 7, > 0, and
T, > 0, and ¢, ¢ are continuous functions. Obviously, we can take 8 > 0
without loss of generality. We assume that (1.1) has a positive equilibrium
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(x*, y*), that is,

_ —(a+a)2r1—/3r2 >0,
(a + a) + B2

Bri — (a + a)r,

(a + a)’ + B2

We say that the system (1.1) is permanent if there exists some compact
set D in the interior of R? such that any solution of (1.1) with (1.2) will
ultimately stay in D. The positive equilibrium (x*, y*) is said to be
globally asymptotically stable if (x*, y*) is stable and attracts any solution
of (1.1) with (1.2). Our purpose is to seek sharp conditions for the
permanence of (1.1) and the global asymptotic stability of (x*, y*) for all
7, and 7,, making the best use of the symmetry of (1.1). In this paper we
first give the following necessary and sufficient condition for the perma-
nence of (1.1) for all delays 7, > 0 and 7, > 0:

THEOREM 1.1.  The system (1.1) is permanent for all 7, > 0 and 7, > 0 if
and only if

a+a<0
holds.

Then we also establish the following necessary and sufficient condition for
the global asymptotic stability of (x*, y*) for all 7, > 0 and 7, > 0:

THEOREM 1.2. The positive equilibrium (x*,y*) of (1.1) is globally
asymptotically stable for all T, = 0 and 7, > 0 if and only if

Va? + B% < —a
holds.

When the system (1.1) has no delay, that is, 7, = 7, = 0, it is easy to see
that (x*, y*) is globally asymptotically stable if and only if a + « < 0 (cf.
Appendix). So we can see that the condition y/a? + 82 < —a in Theorem
1.2 reflects the delay effects.

The permanence of (1.1) with o < 0 has been well studied (see, for
example, [5]). Wang and Ma [10] showed that (1.1) is permanent for all
7, = 0 and 7, > 0 under conditions ¢ < 0 and « < 0. Thus, Theorem 1.1
generalizes their result for (1.1).

In the case «a > 0, we notice that the positive delayed feedback terms
ax(t — 7;) and ay(t — 7,) on the right-hand side of (1.1) play a role of
destabilizer of the system. Biologically, ax(t — 7;) and ay(t — 7,) with
a > 0 may be viewed as the recycling of population.
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Gopalsamy [2] showed that if |a| + | 8] < —a holds, then the positive
equilibrium (x*, y*) is globally asymptotically stable for all =, > 0 and
T, = 0. It is clear that Theorem 1.2 improves the Gopalsamy condition for
(1.1). Recently, Lu and Wang [8] also considered the global asymptotic
stability of (x*, y*) for (1.1) with « = 0.

The proofs of the global existence of the solutions of (1.1) and Theorems
1.1 and 1.2 are given in Sections 2 and 3, based on the well-known
comparison principle and the methods developed in [5, 6, 8, and 10]. To
prove Theorem 1.1, a similar method in [10] is used. However, we see that
our proof is simpler than that in [10]. In the proof of the sufficiency of
Theorem 1.2, we use an extended LaSalle’s invariance principle (also see
[9] and [11] for ODE), by which our proof is more complete than that
in [8].

2. PERMANENCE

In this section, we first prepare the following elementary result.

LEMMA 2.1. If a + a <0, then every solution (x(¢), y(t)) of (1.1) with
the initial condition (1.2) exists on [0, %) and is positive.

Proof. We first show that x(z) > 0 as long as it is defined. In fact, if
not, there exists some 7 > 0 such that

t = inf{t[x(¢) =0, ¢ > 0}.

Clearly, x(¢) = 0. Thus, we have

x(1) =x(0)exp{'/;[r1 +ax(s) + ax(s — 1) — By(s — 72)]ds}

on [0, ). By the continuity of x(z), we have

x(1) =x(0)exp{/: [r, + ax(s) + ax(s — 7)) — By(s — 72)]ds} > 0.

This is a contradiction. For the same reason, we can also show that y(¢) is
positive as long as it is defined.

Next, let us show that (x(z), y(¢)) exists on [0,). If it is false, there
exists a positive number 7 such that lim,_ - x(¢) or lim,_ - y(¢) does
not exist. In the case =, = 0, we have

X(t) =x(t)[ry + (a + a)x(t) = By(t — 7,)]
y'(t) =y(t)[r, + ay(2) + Bx(t) + ay(t — 71,)]
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for t € [0, T). Since x(¢) > 0 and y(z) > 0 on [0, T), we have

x(1) <x(0)exp{/ r ds} <x(0)exp{j |r1|ds}

for t € [0, T). Hence for ¢t € [0, T'), we obtain

T

(1) <ye{ [ [ + pa(s)las| <y @exp{ [ [Irl + K, ]|

if 7, =0 and
(1) <y(@ep{ [ Il + B, +ax(s = ) as)

if 7, > 0, where K, = x(0)exp{/{ |r,| ds}. Thus, there exist positive num-
bers K, and K; such that |x'(1)] < K, and |y'(+)| < K; for ¢t €[0,T).
Hence, we have

[x(t) = x(8,)| =

< K,lt; — t,l,

[21x(s)lds
I

[y(1y) —y(1,)] < < Kqlty — ]

t
JE 1Y ()l ds
I

for ¢,,t, € [0, T). The well-known Cauchy theorem shows that lim, _, - x(¢)
and lim, _, ;- y(#) exist, which is a contradiction.
In the case 7, > 0, for ¢ € [0, T), we have

x(1) =)c(0)exp{fot[r1 + ax(s) + ax(s — 7,) — By(s — 72)]ds}
<x(0)exp{fot [Iry] +]ax(s — 71)|]ds}

gx(O)exp{/;T[lrll +|ax(s — 71)|]ds}

and
(1) =500{ [ 12 + (5) + Bx(s = ) + ar(s = 7)) s

<y(0)exp{fOT[|r2| +| Bx(s — 71)|]ds}
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if 7, =0 and

(1) <y(©@ep{ [ [l [ Ba(s = )| +]ax(s = 7)1

if 7, > 0. This implies that x(¢) and y(¢) are bounded on [0, T), from
which we can also get a contradiction as above. The proof of Lemma 2.1 is
complete.

To consider the permanence of (1.1), we next prove the following:
LEMMA 2.2. If a + a <0, then any solution of (1.1) with the initial
condition (1.2) is ultimately bounded, that is,

limsupx(t) < By,

t— + >

limsupy(t) < B,,

t— + o

where

il Il Ir, + BBy Ir, + BB
&:mw{l : } &:mw{z BB, Ir, Bl}

lal " la + al lal " la+ «al

Proof. In the case « < 0, it is easy to see that

. |l’1|
limsupx(t) < — =By,
— + oo |a|

. Ir, + BB,
limsupy(t) < ———— =

2
t— + o |a| '

by using the comparison theorem of ordinary differential equations.
Let us consider the case of « > 0. From (1.1), for any sufficiently small
g, > 0, we have

x'(t) <x(t)[Ir] + & + ax(t) + ax(t — ;)] (2.1)
for t = 0. Now consider the following scalar delay differential equation:
W(t) =u(t)[lrl+ & + au(t) + au(t — 1,)] (2.2)

for t > 0. Let u(¢) be the solution of (2.2) with the initial condition
u(9) = ¢(0) + 1 (—7, < 6 < 0). We will show that for ¢ > 0,

x(t) <u(t). (2.3)
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Otherwise, there exists some ¢; > 0 such that
t, = inf{¢lx(¢) > u(t),t > 0}.

This implies that

x(t) <u(t), te[—7,1), (2.4)

x(t)) = u(t,), (2.5)

and there exists a decreasing sequence {#,} such that ¢, — ¢, as n — » and
x(1,) > u(t),). (2.6)

(2.5) and (2.6) yield

X(t) —x(h)  u(h) —u(h)
1 —1 1 —1

Letting n — o, we have x'(¢,) > u/(¢,), which, together with (2.1), (2.2),
(2.5), and a > 0, implies

x(ty — 7)) >u(ty — 7).

This contradicts (2.4). Thus (2.3) is proved.
For (2.2), it is known from [5, pp. 218, 219] that
Irl + &
lim u(t) = —
t> +ocu( ) la + af

if a + a < 0. Hence, it follows from (2.3) and the arbitrariness of &, that

7]

limsupx(t) < =
t4)+oop () |a+a|

B;. (2.7)
For sufficiently small ¢, > 0, there is some ¢, > 0 such that for ¢ > ¢,,
x(t) <B; + &,.
Then, it follows from (1.1) that for ¢ > ¢, + 7,
Y (1) <y(O)[|r; + B(By + &)| +ay(1) + ay(t — 1,)].

By using the same argument as above, we can show that

. Ir, + BB
limsupy(t) < ———F =

).
(b la + «af

The proof of Lemma 2.2 is complete.
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THEOREM 2.1.  The system (1.1) is permanent for all 7, > 0 and 7, > 0 if
and only if
a+a<0
holds.
Proof (Sufficiency). Let z(t) = (x(¢), y(¢)) be any solution of (1.1) with

the initial condition (1.2). Construct the two continuous functions V(¢)
and V,(¢) for ¢ > 0 as follows:

Vi(t) = (x(1) " (p(1) 7 F

X exp| —{(a + a)a + Bz}fiHX(S)ds + Bafttrzy(S)dS},
(2.8)
Va(t) = (x(0) P (y(2)) "
< 00| ~paf ()~ {(a+ )+ Bz}ft_sz(S)dS]-
(2.9)

For any sufficiently small & > 0, let
I, = exp[—|(a +a)a+ B?|Bjr, — I,BalB’sz],
I, = exp| | BalBiry, —|(a + @) a + B2|Bym,],
L, =exp[l(a + a)a + B2|Bjr, +|BalByr,],
L, = exp|| BalBir, +|(a + a)a + B?|Byr,),

where B; = B, + ¢ and B, = B, + ¢. B, and B, are defined as in Lemma
2.2. Then, it follows from Lemmas 2.1 and 2.2, (2.8), and (2.9) that there
exists some sufficiently large T > 0 such that for ¢ > T,

0<x(t) <Bj, 0<y(t)<B, (2.10)
L(x(0) T (p(1) P < Vi(r) < Ly(x(1) " “T(p(1) P (211)
L(x(0)) P (y(1) ™" < Vy(1) < Lo(x()) P (9(1)) 7“7 (212)

Now calculating the derivative of 1/, with respect to ¢, we have that for
t =0,

Vi(t) = [=(a+ a)r, = Br, = {(a + a)® + B2)x(1)|Vi(1).
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Put
m=—(a+a)r— Br,.

Then m; > 0 by our assumptions. Choose an 4,: 0 < h; < B, small enough
such that

Vi(t) > (m/2)Vi(2) (2.13)

for 0 < x(¢) < h,. By arguments similar to those above, there exists an #,:
0 < h, < B, such that

V(1) > (m/2)Vo(1) (2.14)
for 0 < y(¢) < h,, where
n,=Pr,—(a+ a)r,>0.
Now let us construct a region D as follows. First, define the curve I’} by
Lk “*(By) "
Ll

Fl: x—(a+a)y—B

Suppose that the intersection point of T'; with y = A, is given by (x, &,),
and define the curve I', by
(%) hy

I, xBy (@te) =
2 y L,

Let D denote the region enclosed by T}, T',, x = B}, and y = B, (Fig. 1).
In the following we prove that z(¢) eventually enters and remains in the
region D. The proof is divided into four steps.

Step 1. We first show that, if there is a ¢¥ > T such that z(¢f) lies in
the right side of x = &, then the z(¢) will remain in the right side of T
for all # > ¢¥. In fact, if z(¢+) meets T, at ¢,: ¢, > ¢, then there exists a ¢,:
1y <t; <t, such that x(z;) = h; and z(¢) lies between x = h, and T’} for
all t; <t <t,. By the inequality (2.13) we have

Vi(t) < Vi(t,). (2.15)
On the other hand, from (2.10) and (2.11), we obtain
—(a+a) - —(a+a r\
Vi(ty) < Ly(x(,)) " (9(8,)) " = Ly @ )(By) ™"

< L(x(1)) T (1) P < i(n).
This contradicts (2.15).
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FIG. 1. Theregion D.

Step 2. In this step we show that if there is a t; > T such that
y(t3) > h, and z(¢) lies in the right side of T', for all ¢ > ¢, then z(¢)
cannot meet I', for all ¢ > #,. In fact, if z(+) meets T, at 7, then there
exists a t,: t; < t, < tg, such that y(¢,) = h, and y(¢) < h, for t, <t <t
By (2.14) we have

Valts) < Valts) < Ly(x(15))* (1)) " = 1(%)Phy @+, (2.16)

But since z(¢) lies in the right side of T'; and y(z,) = h,, we have

B —(a+a) - C(ata
Vo(ts) = 1(x(1,))" (¥(t4)) R lz(x)ﬁhz( T,
This contradicts (2.16).

Step 3. In this step we show that if there is a #; > T such that
y(ts) < h,, then there exists a ¢, > t; such that y(¢,) > h,. Otherwise, we
have y(z) < h, for all > t;. Then (2.14) implies that V,(¢) tends to
infinity, but (2.10) and (2.12) imply that V,(¢) is bounded, which is a
contradiction.

Step 4. In this step we show that if there is a t; > T such that
x(tg) < hy, then there exists a t4 > t4 such that x(zg) > h,. Otherwise, we
have x(¢) < h, for all ¢ >1t,. Then (2.13) implies that V,(¢) tends to
infinity. But, in the case B =0, (2.10) and (2.11) imply that V,(¢) is
bounded, which is a contradiction. In the case 8 > 0, (2.10) and (2.11)
imply that y(¢) tends to zero, which contradicts Step 3.
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Now we are in a position to conclude the proof of sufficiency. First, if
for some T, > T, z(T)) lies in the right side of x = 4, and above y = h,,
then (2.10) and Steps 1 and 2 imply that z(¢) will remain in D for ¢t > T,.
Next, if z(T,) lies in the right side of x = &, and below y = &, for some
T, > T, then Step 1 implies that z(¢) will remain in the right side of T, for
t > T,. It follows from Step 3 that there exists a 7, > 7T, such that
y(T,) > h,. Hence, we can show that from (2.10) and Step 2, z(¢) will
remain in D for ¢ > T;. Finally, if for some ¢ > T, z(¢) lies in the left side
of x = h,, then Step 4 implies that z(¢) will enter in the right side of
x = h, as t increases. By using the same arguments as above, we can show
that z(¢) eventually enters and remains in D.

(Necessity). We can see easily if a + @ > 0 holds, then (1.1) is not
permanent in the case 7, = 7, = 0 (cf. Appendix). This completes the
proof.

Remark 2.1. In the proof of necessity above, we showed that (1.1) is not
permanent in the case 7, = 7, =0 if a + o > 0. However, computer
simulation seems to suggest that (1.1) is not permanent for all 7, > 0 and
7, > 0if a + a > 0 holds.

3. GLOBAL STABILITY

To consider the global asymptotic stability of the positive equilibrium
(x*,y*) of (1.1), we first introduce an extension of LaSalle’s invariance
principle.

For some constant A > 0, let C" = C([—A, 0], R"). Consider the delay
differential equations

Z(1) =f(z), (3.1)
where z, € C" is defined as z,(0) = z(r + §)for —A < 6 <0, f: C" > R"
is completely continuous, and solutions of (3.1) are continuously depen-
dent on the initial data in C”. The following lemma is actually a corollary

of the LaSalle invariance principle and the proof is omitted (see, for
example, [4, 5]).

LEMMA 3.1.  Assume that for a subset G of C" such that G is positively
invariant for (3.1), and V: G — R,
(i) Vis continuous on G.
(ii) For any ¢ € 9G (the boundary of G), the limit I(¢)
/ = limV
() = lim V(%)
yeG
exists or is + .
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(i) I-/(3_1) <0 on G, where I-/(s.1> is the upper right-hand derivative of V
along the solution of (3.1).

Let E={¢p€G|l(¢p) <> and 17(3.1)(¢) = 0}. Here, for ¢ € G and
I(¢) < o, we define

V($) =1(d),

. 1

V(3,1)(¢) = lim SUpZ[V(Zh(d))) - V(¢)]
h—0"

(ifl(z, (D)) < o).
Let M denote the largest subset in E that is invariant with respect to (3.1).
Then every bounded solution of (3.1) that remains in G approaches M as

t = +oo,
The following is our main result.

THEOREM 3.1. The positive equilibrium (x*, y*) of (1.1) is globally
asymptotically stable for all 7, = 0 and 7, = 0 if and only if

Va2 + B2 < —a
holds.
Proof (Sufficiency). By using the transformation
X=x—x* y=y-y,
the system (1.1) is reduced to
X (t) = (x* +x())[ax(t) + ax(t — 1) = By(t — 7,)]
Y1) = (v +y(0)[ay(r) + Bx(t = m1) + ay(t = 7,)],

where we used x(¢) and y(¢) again instead of x(¢) and y(¢), respectively.
Using Lemma 3.1 we now prove that the trivial solution of (3.2) is globally
asymptotically stable for all 7, > 0 and 7, > 0. Define

G={d=(d1,¢,) €C*I1 P(s) +xF=>0,¢(0) +x>0,i=1,2}

where C® = C(—A,0], R?), A=max{ry, .}, and (xf,x}) = (x*, y*).
Clearly, G is positively invariant for (3.2). We consider the functional 1/
defined on G:

(3.2)

2

V(¢) = —2a ) {dn(o) — x;' log

¢,(0) + x7
i=1 x;

L

+(a?+ B2 L [° #¥(6)do. (33)

i=1 —7
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It is clear that 17 is continuous on G and that

lim V(y)= +o or exists.
Y- PpeiG
YyeG

Furthermore,

Voo $) = —2a[ady(0) + ady(—71) — Bby(—75)] b4(0)

— 2a[aq’>2(0) + B (—1,) + a¢2(—72)]q’>2(0)

+(a? + B2){[62(0) — d2(—m)] + [$2(0) — ¢2(—7,)]}
—[a¢y(0) + adpy(—1y) = By (—7,)]°

—[ady(0) + Bpy(— 1) + ady(—7,)]°

—[a® = («® + B)][42(0) + $3(0)]

<0 (3.4)

on G. From (3.3) and (3.4), we see that the trivial solution of (3.2) is stable
and that every solution is bounded.
Let

E= <¢ €Gll(¢) <=and I-/(3.2)((1’) = O},
M the largest subset in E that is invariant with respect to (3.2).

For ¢ € M, the solution z,(¢) = (x(r + 6), y(t + 0)) (—A < 6 < 0) of
(3.2) through (0, ¢) remains in M for ¢ > 0 and satisfies, for ¢ > 0,

I-/(3.2)(Zt(¢)) =0.
Hence, for ¢ > 0,
ax(r) + ax(t = ) = By(t = 7,) = 0 (3.5)
ay(r) + Bx(t — 7)) + ay(t = 7,) =0,

which implies that for ¢ > 0,
x' (1) =y'(1) = 0.
Thus, for ¢ > 0,

x(1) = ¢y, y(t) = ¢, (36)
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for some constants ¢, and ¢,. From (3.5) and (3.6), we have

o] - 18]

which implies that ¢; = ¢, = 0 by our assumptions, and thus we have

a+ a -B
B a+a«a

x(t) =y(t) =0 fort=0.
Therefore, for any ¢ € M, we have
$(0) = (x(0),y(0)) = 0.
By Lemma 3.1, any solution z, = (x(¢ + 6), y(¢ + 6)) tends to M. Thus

lim x(t) = IiTwy(t) = 0.

t— + oo

Hence, (x*, y*) is globally asymptotically stable for all 7, > 0 and 7, > 0.
(Necessity). The proof is by contradiction. Assume the assertion is
false. That is, let (x*, y*) be globally asymptotically stable for all =, > 0

and 7, > 0 and ya? + B2 > —a.
Linearizing (3.2), we have

x'(1) =x*[ax(t) + ax(t — ) — By(t — 7,)]
y' (1) =y*[ay(t) + Bx(t — 7;) + ay(t — 7,)].

Now, we will show that there exists a characteristic root A, of (3.7) such
that

(3.7)

Re(),) >0 (38)

for some 7, and 7,, which implies that the trivial solution of (3.2) is not
stable (see [1, pp. 160, 161)).

When a > —a, it is clear that (x*, y*) is not globally asymptotically
stable for all 7, > 0 and 7, > 0 by Theorem 2.1. Therefore, we have only
to consider the case a < —a.

(D) The case 0 < |a| < —a. Let 7, = 7, = 7; then the characteristic
equation of (3.7) takes the form

N+pr+q+ (r+sh)e ™ +ve 2 =0, (3.9)
where p = —a(x* +y*), ¢ = a®x*y*, r = 2aax*y*, s = —a(x* + y*),
and v = (a? + B2)x*y*.
When x* = y*, (3.9) can be factorized as

[A=x*{a+ (a+iB)e "} [r—x*{a+ (a—iB)e *}] = 0. (3.10)
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Let us consider the equation
A—x*{a+ (a+iB)e "} =0. (3.11)
Set o« = bcos 6 and B = bsin 6, where b and 6 are constants with b > 0.
Then, we note that b > 0 because of a < 0 and y/a® + B2 > —a. Substi-
tuting A = iy into (3.11), we have

iy —x*[a + b{cos(yr — 0) —isin(yr— 6)}] =0.  (3.12)

By separating the real and imaginary parts of (3.12), we obtain

bx* cos(yr — 0) = —ax*
bx* SiniiT— 0; = —y. (313)
From (3.13), we have
(b*)* = ()" + .
To solve y in (3.13), define the following function:
f(Y) =Y + (ax*)® = (bx*)?, (3.14)

where Y = y2. Then f, is an increasing linear function and
f1(0) ZX*Z{az —(a®+ BZ)} <0.

Thus, it follows that there exists a positive simple root Y, of f(Y) = 0.
Substituting y,, which satisfies Y, = y2, into (3.13), we can get 7, such
that (3.11) has a characteristic root iy, when 7 = 7,.

Furthermore, taking the derivative of A with 7 on (3.11), we have

dA —x*be'\e "

dr 1+ x*breife N

Using (3.11), we obtain

dry ! 1 T
dr]  —MA-x*a) A
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Hence,
sign[Re(d—A )} = sign| Re (d—A)l H
dr A=iyg, T=1T¢ | dr A=iyg, T=1g
= sign-Re . - E”
I —yo(iyo = x*a) iy
1
= sign Re m > O,

which implies that (3.8) holds. Therefore, the trivial solution of (3.2) is not
stable, that is, (x*, y*) is not stable near 7,, which is a contradiction.

When x* # y*, (3.9) cannot be factorized as (3.10). Substituting A = iy
into (3.9), we have

(=y® +piy + q)e”" +r + siy + ve”'7 = 0. (3.15)
By separating the real and imaginary parts of (3.15), we have

[(=y? +q)" = 02 + p?y?|cos(yr) = (r = sp)y? = r(q — v)
i (3.16)
(=2 + )" =07 + py?Jsin(yr) =9 + [1p = s(q + 0)],
and thus
(=2 +4q) =7 +p2y2]2
= [(r=sp)y2 = r(g = )] + [9°+ [p = s(q + v)]y]".
Define the following function:
L) = [(-v+ )" =0 +p?Y] = [(r = p)Y = r(g = o))"
—Y[sY+rp—s(q+u)]2, (3.17)

where Y =y?; then f, is a quartic function such that f, - + as
Y| —» +. Since

£2(0) = [a® = (a® + B2)]*[(a + a)® + B?][(a — a)® + B2](x*y*)*
>0,



LOTKA—VOLTERRA SYSTEM WITH TWO DELAYS 549

we cannot immediately find positive zeros of (3.17), and so we have to
investigate f, in more detail. Define

F(Y)=[(-Y+q)" —0? +p2Y]2

G(Y)=—[(r—sp)Y—r(qg—0v)]
H(Y) = ~Y[sY +mp —s(q+0)]%

then f, = F + G + H. It is easy to see that positive zeroes of F, G, and H
are mutually different as long as x* # y*. Hence, the value of f, at the
positive zero of F is negative, which, together with f,(0) > 0, implies that
there exists a positive root of f,(Y) = 0. It is also clear that there exists
another positive root of f,(Y) = 0 because f, = +® as Y — 4. Thus,
one of the two positive roots is a simple root at least.

Let Y, be such a simple root. Substituting y,, which satisfies Y, = y¢,
into (3.16), we can get some 7 such that (3.9) has a characteristic root iy,
at 7. We note that iy, is a simple root of (3.11) because Y, is a simple root
of f,(Y) =0.

Furthermore, taking the derivative of A with 7 on (3.9), we have

dA —2MA* +pA+q) — Mr +sA)e
dr— 2A+p+21(A +pA+q)+e Vs + r(r+sA)]’

(d)\ -t 2A+p +se™ M
dr] — —2MX+pr+q)— Mr+sA)e M A

Hence, we have

e (A
sign —
g ¢ dr |a=iy,
_ 'R (d/\ )1
= sign| Re| | —
g d’T A=iyq
. 2iyy + p + se 07 T
= sign| Re - 3 - - - “hor
—2iyo(=y6 + pive + q) — ivo(r + sivg)e™ T iy,
) 2iy, + p + se” Yo" o
= sign| Re - 3 - : : “Tyar
—2iyo(—y§ + pive + q) — iyo(r + siyg)e "o
[ a® + aa cos(y,r))(x* — y*)?
= sign|1 + ( 2(y° ) Y ) S| (3.18)
(p +scos(yr)) + (2y, — ssin(y,r))
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Since
(a® + aacos(y,T))(x* — vy > a(a + lal)(x* —y*)? >0,

the last expression in (3.18) is positive. This implies that (3.8) holds, which
is a contradiction.

(1D The case a = 0. Let 7, = 7, = 7; then the characteristic equation
of (3.7) takes the form

N +ph+q+uve?=0, (3.19)
Substituting A = iy into (3.19), we have
—y? +piy + q +ve ?V7=0. (3.20)
By separating the real and imaginary parts of (3.20), we have

veos(2yt) =y —q

(3.21)
vsin(2yr) = py
and
2
v?=(y*—q) + ()"
Define the following function:
f(Y) = (Y =q)" +p?Y =%, (3-22)

where Y = y?; then f, is a downward convex quadratic function, and

£3(0) = (a* — B*)x*?y*? < 0.

Thus, it follows that there exists a positive simple root Y, of f,(Y) = 0.
Substituting y,, which satisfies Y, = y2, into (3.21), we can get some 7
such that (3.19) has a characteristic root iy, at 7. Here iy, is a simple root
of (3.19), by the same reasoning as above.

Taking the derivative of A with 7 on (3.19), we have

d 20\e 2A
dr  2A+p — 2vre 2M’

(dA)l 2\ +p T
dr]  2M=N-pr—¢q) A
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Hence,
e 42 _ 'R drx\
sign — = sign —
g ¢ dTt |r=iy, g ¢ (dT) A=iy,
. 2iyy +p T
= sign| Re| — > ; -
2ipo(¥6 —pivo —q) o
| 2iy, + p
= sign| Re AN
i ZYO[PYO+1(YO _‘1)]

= sign[2y§ + az(x”‘2 +y*2)] > 0.

This implies that (3.8) holds, which is a contradiction.

(11D The case @ <a. Let 7, = 7 and 7, = 0; then the characteristic
equation of (3.7) takes the form

N +pr+g+ (F+50)e =0, (3.23)
where p = —ax* —(a + o)y*, §=ala + a)x*y*, F=[ala + a) +
B2lx*y*, and ¥ = —ax*. Let us use p, g, r, and s again instead of p, 7,

7, and 5, respectively. Substituting A = iy into (3.23), we have
—y? + piy + q + (r + siy)e " =0. (3.24)
By separating the real and imaginary parts of (3.24), we have
(r? + s?y?)cos(yr) = r(y* — q) — spy?

(3.25)
(r* + s%y®)sin(yr) = sy(y* —q) + pry

and
[r2 +522]" = [r(b2 = q) —sp?]" + [v(»> — q) + 1]
Define the following function:
f(Y) =Y[s(Y = q) +pr]* + [r(Y —q) —spY]* = [r? +5°Y ],
(3.26)

where Y = y?; then f, is an upward cubic function to the right, and

£00) = [a(a + a) + B?]*[(a + ) + B?|[a® = (a® + B?)] (x*y*)*
< 0.
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Thus, there can exist some positive roots of f,(Y) = 0. Now, let us show
that there exists a simple root in such positive roots. We see that

fa(Y) =3s%Y? + 2[s2(p2 —2q — %) + rZ]Y
+5%(q® — 2r*) + r¥(p® - 2q)
and
(YY) =6s%Y + 2[s2(p2 —2q — %) + rz].
Let f;/(Y) = 0; then
3s%Y + [sz(p2 —2q — %) + rz] =0,
and thus we have
—3s2f3(Y) = [sz(p2 —2q —s*) + rz]2
- 3s[s%(¢" — 2r%) + r*(p* = 29)]
=x*4y*2[a2(4oz2 —a?)x*? + {a(a + a) + Bz}zy*z]
X[{a(a +a) + B2 - a?(a + a)z]
+atr(a? - a?)x*? - (a + a)y?| (327)
Since a < a < 0, (3.27) is positive. This proves that there exists no triple

root of f,(Y) = 0, which implies that there exists at least a positive simple
root Y, of f,(Y) =0.

Substituting y,, which satisfies Y, = yZ, into (3.25), we can get some 7
such that (3.23) has a characteristic root iy, at 7. Here again iy, is a simple
root of (3.23).

Taking the derivative of A with 7 on (3.23), we have

dA A(r 4+ sA)e M
dr 22X +p+eM[s—1(r+sA)]’

d\\"t 20+ ptse™ 7
dr]  Mr+sDe M A
2A+p s

+ - —.
—MA +pr+gq)  Mr+sd) A
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ol

_ 'R (d/\)l
= sign| Re| | —- .

= sign Re( 20 P + ° - l)
i _i)’O(_}’g + piyo + CI) iyo(r + siyg) o

Hence, we have

L
sign| Re| —

T

-szyg + 2r2y§ — s2q2 — 2r2q —|—p2r2
(o)’ + (53— a) ][ + (90)7]

= sign (3.28)

Since
—s52q2 — 272 + pPr?
= [azx”‘2 + (a + a)zy*z][a(a +a) + ,[32]2)c>"2y"‘2

— a%a?(a + a)zx*4y*2

v

[azx"‘2 + (a+ a)zy*z]az(a + a)’xx2y*?
— d%a?(a + o)’ x*ty*?
=a?(a + a)'x*2y** > 0,

the last expression in (3.28) is positive. This implies that (3.8) holds, which
is a contradiction. This completes the proof.

Here, we give three portraits of the trajectory of (1.1) with (1.2), drawn
by a computer using the Runge—Kutta method, to illustrate Theorem 3.1
(r, = 10, r, = —10) (Figs. 2-4).

4. APPENDIX

When 7, = 7, = 0, the system (1.1) becomes

xX'(t) =x(t)[r, + (a + a)x(t) — By(1)]

(4.1)
Y (1) =y(t)[r, + Bx(t) + (a + a)y(1)].
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FIG.2. a= -5 a=38=39\a’?+p2< —a),1,=11,=2,(b ) =3+ 08t
3.5 + sin(8t)).

By using the transformation

we have from (4.1) that

X(t) = (x* +x(1))[(a + a)x(t) = By(1)]

(4.2)
Y (1) = (y* +y())[ Bx(1) + (a + a)y(1)],

where we used x(¢) and y(z) again instead of x(¢) and y(¢), respectively.
Consider the following Liapunov function:

. x + x* y +y*
V(x,y) =|x—x"log m ) + (y —y* log " . (43)
X y
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FIG.3. a=-5a=38=4\/a’?+82=-a),7,=1,71,=2,($, ) =4 +138+
sin(301)).

for x > —x* and y > —y*, then V is positive definite. Calculating the
derivative of 177 along the solution of (4.2), we have that

I-/(“)(x,y) = (a+ a)(x* +y?).

Clearly, V,,,, is negative definite if and only if a + « <0 holds. The
well-known Liapunov theorem shows that the origin (0,0) is globally
asymptotically stable if and only if a + « < 0 holds.

If a+ a=0 holds, V,, vanishes identically. So all solutions are
periodic solutions. Thus, (4.1) is not permanent. If a + « > 0 holds, (4.1)
is also not permanent. In fact, otherwise, it follows that there exists some
compact set D, in the interior of the region {(x,y) € R? | x + x* > 0,
y + y* > 0} such that any solution of (4.2) will ultimately stay in D,. From
(4.3), there exists some positive number k such that the closed curve
V(x,y) = k covers D,. A solution through a point on the closed curve
does not enter that curve because V7, ,) > 0 there, which is a contradiction.
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T

0

FIG. 4. a= -5 a=38=401(a?+ 82> —a), 7, =2,7,=3,(¢, ) =2 + 05,
3 + sin(71)).
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