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Abstract

Let {8;};~0 be a nonisotropic dilation group dr", let p be a distance function dR” which is
homogeneous with respect {8 },-.0, and for f € C§°(R") defineTf = lp.v. p() =2/ 1 7,
wherea and g are positive parameters. We give necessary and sufficient conditiopscoand 8
for which T extends to a bounded linear operatorlof(R").

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Consider the dilation grouf$; };-o on R" given by
S ix=(x1,x2,...,x,) — (tblxl, tbzxz, e, tb"x,,),

where 1= b1 < by < - -- < b, are fixed numbers. A5, }-homogeneous distance function is
defined to be a continuous nonnegative functio®émwhich is homogeneous with respect
to {3;};~0 and vanishes only at the origin. A standard example is given by

2bob3...b 2b1b3...b, 2b1bs...by_1\1/(2b1b2...by)
r(x)=(|xl| 2b3ebn 4|y |200b3 by |y 20102 11) 2

Any {8;}-homogeneous distance function defines a quasi-norRi'qisee (3)).
Leta, 8 > 0, letp be a{s,}-homogeneous distance function whicltisin R” — 0, and
for f € Cg°(R") define

L
et/

Tf(x)=p.v. / f&x—=y)dy. 1

yI<1

p(y)e
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As we shall see below, the principal value integral in (1) exists whenevew or g >
o —b>0,where

b=b1+-- +by.

In fact, as can be seen from Lemma 1 belowy ik b, then the kernel of” is an L*
function.

The purpose of this paper is to study the mapping propertiés oh L”(R") when
a > b. As always, the major problem in dealing with this kind of singular integrals is how
to translate the cancellation properties of the kernel intdoundedness of the operator.
The fact that the singularity of the kernelBfand the cancellation conditions it satisfies are
given in terms of two distance functions B4 having different types of homogeneity, puts
this problem into a geometric setting where the incompatibility between the Euclidean balls
B(x,r)={y e R": |y—x| <r}andthepo-ballsB,(x,r) ={y € R": p(y —x) < r} reflects
the incompatibility between the radial cancellations of the kernel and the nonisotropic
singularity it has at the origin.

In the case: = 2, it was shown in [3] thaf” is bounded or.” (R?) whenever

‘1 1 2+ 202+ B —2u

;—5 <Q(05,,3)=T,

and that? fails to be bounded oh” (R?) if

1
In the present paper we generalize these results to dimensipis

Theorem 1. Suppose 8 > o — b > 0. Let

_2b+ B -2
Q(a,ﬁ)—izﬁ
and
Q;j=0(a,j(L+p) —b1—---—bj),

j=1,...,n. Then:

(i) Theprincipal valueintegral in (1) exists for every x € R".
(i) T extendsto a bounded linear operator on L?(R") whenever

1 1
; - E < Q(av 13)
(i) 1f
1 1
— ——|>maX{Q01,..., Onl,
p 2

then T is not bounded on L7 (R").
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Notice that, putting,,+1 = oo,
b <1+B<bjt1 = max0i,...,0,1=0;.

In particular, if 14+ 8 < b2, ma{ 01, ..., Q,]1= 01 = QO(a, B). SO0 we have a sharp result
(up to the end-points) in the caser18 < b2. Whenb =n andp(y) = |y|, itis known that
T extends to a bounded operator bA(R") whenever 1< p < oo and

p 2
and that7 fails to be bounded o&.” (R") in the complementary range. For these results
we refer the reader to [1,2,4,8].
Throughoutthis paper, the lett€rdenotes a constant that may change from line to line.
In Section 2, constants are only allowed to dependgn. ., b,, @, andp. In Section 3,
constants are only allowed to dependman.. ., by, «, p, B, p, u, andy. Also, constants
are always positive numbers.

1
‘———‘ < Q(a,np),

2. Propertiesof p

From the definition ofs,}-homogeneous distance functions, it is easy to see that there
are constants; andcz such that

crlt(x) <p(x) <at(x) (xeRY ()
and

p(x+y) <c2(px)+p(y) (x,yeR". (3)
Also, for later reference, let us note that (2) implies

cslx| < p(x) <ealxMP (1x] < 1) (4)
and

calx Mt < p(x) <ealx| (1x] > 1), (5)

wherecs = (¢ H)(infgi-1 7) andca = (c1)(SURy-1 7).
The generalization of the results of [3] to higher dimensions is made possible mainly
because of the following lemma that generalizes Lemma 2.1 in [3].

Lemma 1. Suppose« > b — 1. Then!

/ do®) _ hna
p(ro)”

31—1
and

1 The notationd ~ B meansC 1B < A < C B for some constant.
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d o
/‘500)

S

do () < Crb—e 1

for 0 < r < 1, where o is surface measure on the sphere '~ 1.

Proof. The observation

/ do (0) / 7 et 7 a1
_ a1 do©) = [ er—"to(2,)dx.
p(ro)e ’

g1 §-1p(r0)

where2;, = {6 € 'L p(rH) < A}, suggests that we start by estimating?2;,). Of course,
0(£2;) =nl|A,|, whereAd, = {s0: 0<s <1, 6 e2,}and]|A,] is the n-dimensional
Lebesgue measure df;.

The inequalities in (4) tell us thagr < p(r0) < car/’. S0,82, =¥ if A < car and

do(0) T w1
/ ) _/ax o ($2;) d.
-1 c3r

It is easy to see (e.g., using (5)) that there is a constauich thatp(x) < 1= |x| <c.
If 6 € £2), thenp(81/,r0) = p(r0)/1 < 1, so thatdy/nr0| < c. Thus$2, and A, are con-
tained in the solid ellipsoid

2 2 2 2
SENE SR 0

AZbl )\’sz )\’an r

Now if we simply estimateA; | by the measure of the ellipsoid, we obtain

)\b
0(§2,) =n|Ax| < C—,
i

and consequently

o
/ dU(@) g £ / )\‘b,a,l d)\, g CrbfnfOl
pro)* ot

-1 c3r
provideda > b, which falls short of the needed > b — 1. So we go back and observe
that in facts2, ¢ S*~1 N B;, whereB;_is the box centered at the origin with dimensions

2 x (2cAP2/r) x --- x (2cAP /r). We then get the better estimate
b—1

o0 (§)) =nlAx| <n|By| < C——,
-1

which leads to

o

/ d(G;@)i < ,il/)\b—a—degcrb—n—a
r r

-1 P c3r

provideda > b — 1.
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In order to get the inequality in the other direction, we proceed as follows. Let

bi—1
={9=(91,--~,9n)63nl: 16/ < ——

,i=2,3,...,n¢.
n2bi

Theno (E) ~ r?=. We shall prove thaf,, p(r6) ™ do (8) > Cr®~="*. In fact, we shall
show thato(r6) ~ r on E. Since, by (4)p(r0) > Cr, it will suffice to show thatp (r6) <
CronE.Letde E.Thenfori=2,3,...,n

_1
and using 6< r29i2 <1,0<1/b; <1, we get
(r20)"" — r2(1-02) < 2(r262)"" —r2 <0,
so that
(r26)"" <r2(1-62) =12 62 < (n — D262,
ki

It follows thatz (r0) < Cr, which together with (2) givep (r6) < Cr
To estimate

d 0)"%|do (6
/‘51)0) o (®),

g1

we now proceed as in [3]. First, the homogeneityof
p&ix)=tp(x) (>0, xeR"),

tells us that

9 9
i 2 ) =1L (x) (1>0.xeR"—0)
3xj 3xj

forj:l ...,n. S0, putting:l/,o(x),we get

(xeR"—-0)

()‘

(x)b,fl

(hereC = sup,,,—119p/9x;(y)]). Second, by (2),

0x;

Ixjl <T()b < Cp(x)?  (x eRY),
so that
|x - Vp(x)|<Cpx) (xeR"-0).

Hence

dip(rQ)‘ <cP" o0 pes, (6)
r r
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and it follows that

d
/ —p(r0) ™| do () < crtn==l (0<r<)
r
31—1

by our previous estimate on

/ pF0)"%do ().

-1

3. Proof of Theorem 1

Forz=u +iv € C, define

K.(y)= {p(y)—Ze"/y" 10 <yl <1
0 otherwise

and
L,=pV.K,.

We need three facts abolt. The firstis thatl, exists and defines a tempered distribution
whenu < 8+ b, i.e.,

L.eS ifu<pB+b, (7
the second is that

L.=K,eL*R") ifu<b, (8)
and the third is that

||I:z||L°°§C(1+|UI) ifu<§+b. 9)

Clearly, Lemma 1 implies (8). Before we prove (7) and (9), however, let us notice that since
Tf=Lyx*ffor feS,part(i) of Theorem 1 follows immediately from (7). Also, part (i)

of Theorem 1 follows from (7)—(9) by using complex interpolation as in [3]. The argument
goes as follows. Ley > 0 and consider the familyR, }o<. <1 Of analytic linear operators
defined onS by

R.f=M,xf with M;=Lg/2);4p—y-
Then (7) becomes

. 2
M. eS ifu<2+2L.

B
Also, (8) and (9) become

2
M, e LYR") ifu < ?7/
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and

N _ 2
M. e < C(L+vl) ifu<1+ F”
Thus R;, is bounded orL.1(R"), and R1,, is bounded or.?(R") with operator norm
that grows polynomially irv. Complex interpolation now tells us th&}, is bounded on
LP(R™) whenever

1
0<u<l and —=1-=.
p 2
SinceT = R(2/g)(—b+y), it follows thatT is bounded or.” (R") whenever
B 1 1 2b+B—20—2y

b—a<y<-+b— and — — =
sy 2+ o b2 28

Butb — o <0, soT is bounded ori.” (R") whenever
B 1 1 2b+B8—-200—2y
0 <=+b— and —— - = .
<y > + o b2 28
HenceT is bounded orl.? (R") whenever
Ogl—}< 2b+,3—2a.
p 2 2B
Finally, duality implies thaf" is bounded orl.” (R") whenever
1 1| 2b+B8—-2¢
—— <
p 2 2B

Itis now time to prove (7). lft < b, there is nothing to prove by (8). Suppasg b and
feS. LetO< e < 1. Changing

I = / K. f () dy

e<lyl<1

into polar coordinates, we can write

1
I = / /%(V)F’(r)drdo(e),
szfl €
where

r

Yo(r)=r""tfrO)p(r)* and F(r)= f ¢’ ds.

>||f||c1,

A simple computation (together with (6)) shows that

d
EZAGIES C(|v|r"2p(re>” +r )"
r
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where|| f |1 is theC* norm of f. Lemma 1 then tells us that

/ |V (r)|dr <C(1+ Ivl)rb*“*ZIIfllcl
31—1

and
f [Wo ()| dr <CrP 7 fllca.
S

Also, by Van der Corput’'s lemma (see [6]),
|[F(r)| < crt?,

and so integrating by parts we get

1
<C<|'ﬂe<1>| + [voce)|eF + / Iwé<r>|r”ﬁ‘”),

1
/we(r)F’(r)dr

which in turn leads to
1

VAR c<1+eﬁ+”—“ +(1+ |u|)/rﬁ+”—“—1dr) I £l

€

ThusL,(f) =lim._ o I exists and satisfies

LD <@+ )Ifller
if 8+b—u>0.
The proof of (9) is exactly the same, except that now

.
Vo(r)=r""lp(r6)~* and F(r) =/ef<S‘ﬁ—2”Sf'9> ds,
€
and one has to apply Van der Corput’s lemma using the second derivative of the phase
rather than the first to géF (r)| < CritF/2,

Our task for the remaining part of this paper is to prove part (iii) of Theorem 1. Our
plan is to localizer’, as in [5], to subsets d®" where the phase functior/[ly|? is almost
stationary. To do this we need the dilation methods of [3].

Let 1< j <nandsuppose; <1+ B < bji1 (bug1 = 00). We define a dilation group

{d}1-0 by

d,(]) ix=(X1, .., Xj, X4, .00, Xp)
— (t1+/3x1, e, tl'Hij, tb./+1xj+1, A tb"xn).
To simplify the notation we are going to wriik for d,(-j). Following Stein and Wainger [7],

we define dd;}-homogeneous distance functippas follows. Ifx # 0, |d1/;x| as a func-
tion of ¢ is strictly decreasing and is therefore equal to 1 for a uniga€0, co). Define
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pj(x) to be this unique. If x =0, setp;(x) = 0. Notice that if O< |x| < 1,70 = p; (x)7 1,
1= |x|"Y®+D andr = x|~V then

|dnx| =1, |dipx| <1, and [§x| < |dpx| = 1.
Hence

VP L o) < x| (Ix1< 1) (10)
and

p(x) =151 0B1x) <ty tca=capj(x) (x| < 1), (11)

where we have also used (4).
Fix a nonnegativ&’s® function¢ such tha(y) = 1 if p;(y) < 1/2, andg(y) =0 if
pj(y) = 1. Set

Pe(y) = @ (d1/ey).
Now suppose & € < 1 and the positive integérare such that the interval
1 1
L=|— l+ﬂ, - 14
k [(an 7 T onk— a3 F €

has positive length and is contained in the interieall). We are going to estimatB¢,
from below on the ringx| € Iy.
Supposeéx| € Ix. Then

o/l
|T pe (x)| = W"* (x—y)dy
pj(x—y)<e
.- / L = wdy> C/qb()d
Z 5 — i, PeXx —y)dy = ely)ay.
2 o o
o< o) o(x)

The first inequality holds because, by (10),

pix—y)<e = |x—yl<e = |ylek
s— > 1

yif =2
The second inequality holds because

p(y) < Co(y —x)+Cp(x) (by(3))

= Co

/

< Cpj(y—x)+Cpx) (by(11)
< Ce+Cp(x)
< Clx|+ Cp(x) (becausex| € Ix C (¢, 1))
< Cp(x) (by (4)).
Hence
] AP +bjyat-+bn
|Tpe(x)|>C

p(x)*
for |x| € I.
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Now as was observed in [3] (Lemma 3.1), there are constauatsd B, with B < A1/#
< 1, such that if

1 L 1
J == - +ﬂa l+ﬁ ’
¢ [(2n(k+ V-3V~ Rkt /3P e
and if 0< ¢ < B, then
k-1
[A~YBe 247 YPe)c [A™VPe, 77V C I U [ v Jk):| (12)
k=1
and
Il < Cllky1] forl<k <k —1, (13)

wherek’ is the largest integer such that 1< k < Ae~#. From this it follows that if O<
€ < Bandp > 1, then

ITgell?, = CePUAth thjiat +bn>z /

=Lixjel

:Cep(.i(1+ﬁ)+b,'+1+»~+bn)Z / / gy drdo®

gl lrely

:Cep(j(l+/3)+bj+1+...+bn)Z / n-1 / do(©)
(r9)°"’

rEIk

p(x)“l’

2Cep(f(1+ﬂ)+bf+1+“'+bn>Z / b-ap-1,,
rel/‘
7-1/8

> CePUHBItbjat+by) / ph—ap—1 g,

A-VPBe
> Cep(j(1+/3)+bj+1+"'+bn)eb—ap’

where in the line before the last we used (12) and (13), and in the line before that we used
Lemma 1.
Finally, suppose the estimate

IT¢ellLr < CligellLr
holds for some Xk p < 2. Then
PUAB D jattbn) b=ap < € (U+B)+Djat b

for 0 < e < B. This implies

1 1,
p 2 7
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ThusT is not bounded o”(R") if 1 < p <2 and

1 1
__—>ma){Q1,..., Qn]
p 2

The corresponding inequality fgr > 2 is then obtained by using duality
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