

Available at www.ElsevierMathematics.com

J. Math. Anal. Appl. 288 (2003) 274-284

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

A class of nonhomogeneous singular integrals in \mathbf{R}^n

Faruk Abi-Khuzam and Bassam Shayya*

Department of Mathematics, American University of Beirut, Beirut, Lebanon Received 1 October 2002

Submitted by L. Grafakos

Abstract

Let $\{\delta_t\}_{t>0}$ be a nonisotropic dilation group on \mathbb{R}^n , let ρ be a distance function on \mathbb{R}^n which is homogeneous with respect to $\{\delta_t\}_{t>0}$, and for $f \in C_0^{\infty}(\mathbb{R}^n)$ define $Tf = [p.v. \rho(\cdot)^{-\alpha} e^{i/|\cdot|^{\beta}}] * f$, where α and β are positive parameters. We give necessary and sufficient conditions on p, α and β for which T extends to a bounded linear operator on $L^p(\mathbb{R}^n)$. © 2003 Elsevier Inc. All rights reserved.

1. Introduction

Consider the dilation group $\{\delta_t\}_{t>0}$ on \mathbf{R}^n given by

 $\delta_t : x = (x_1, x_2, \dots, x_n) \mapsto (t^{b_1} x_1, t^{b_2} x_2, \dots, t^{b_n} x_n),$

where $1 = b_1 \le b_2 \le \cdots \le b_n$ are fixed numbers. A $\{\delta_t\}$ -homogeneous distance function is defined to be a continuous nonnegative function on \mathbb{R}^n which is homogeneous with respect to $\{\delta_t\}_{t>0}$ and vanishes only at the origin. A standard example is given by

$$\tau(x) = \left(|x_1|^{2b_2b_3\dots b_n} + |x_2|^{2b_1b_3\dots b_n} + \dots + |x_n|^{2b_1b_2\dots b_{n-1}}\right)^{1/(2b_1b_2\dots b_n)}.$$

Any $\{\delta_t\}$ -homogeneous distance function defines a quasi-norm on \mathbf{R}^n (see (3)).

Let α , $\beta > 0$, let ρ be a { δ_t }-homogeneous distance function which is C^1 in $\mathbb{R}^n - 0$, and for $f \in C_0^{\infty}(\mathbb{R}^n)$ define

$$Tf(x) = \text{p.v.} \int_{|y| \leq 1} \frac{e^{i/|y|^{\rho}}}{\rho(y)^{\alpha}} f(x-y) \, dy.$$

$$\tag{1}$$

* Corresponding author. E-mail addresses: farukakh@aub.edu.lb (F. Abi-Khuzam), bshayya@aub.edu.lb (B. Shayya).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2003.08.012

As we shall see below, the principal value integral in (1) exists whenever $\alpha < b$ or $\beta > \alpha - b \ge 0$, where

$$b=b_1+\cdots+b_n.$$

In fact, as can be seen from Lemma 1 below, if $\alpha < b$, then the kernel of T is an L^1 function.

The purpose of this paper is to study the mapping properties of T on $L^{p}(\mathbb{R}^{n})$ when $\alpha \ge b$. As always, the major problem in dealing with this kind of singular integrals is how to translate the cancellation properties of the kernel into L^{p} boundedness of the operator. The fact that the singularity of the kernel of T and the cancellation conditions it satisfies are given in terms of two distance functions on \mathbb{R}^{n} having different types of homogeneity, puts this problem into a geometric setting where the incompatibility between the Euclidean balls $B(x, r) = \{y \in \mathbb{R}^{n} : |y - x| < r\}$ and the ρ -balls $B_{\rho}(x, r) = \{y \in \mathbb{R}^{n} : \rho(y - x) < r\}$ reflects the incompatibility between the radial cancellations of the kernel and the nonisotropic singularity it has at the origin.

In the case n = 2, it was shown in [3] that T is bounded on $L^{p}(\mathbf{R}^{2})$ whenever

$$\left|\frac{1}{p} - \frac{1}{2}\right| < Q(\alpha, \beta) = \frac{2 + 2b_2 + \beta - 2\alpha}{2\beta},$$

and that T fails to be bounded on $L^p(\mathbf{R}^2)$ if

$$\left|\frac{1}{p}-\frac{1}{2}\right| > \max\left[Q(\alpha,\beta), Q(\alpha,1+2\beta-b_2)\right].$$

In the present paper we generalize these results to dimensions $n \ge 2$:

Theorem 1. Suppose $\beta > \alpha - b \ge 0$. Let

$$Q(\alpha,\beta) = \frac{2b+\beta-2\alpha}{2\beta}$$

and

$$Q_j = Q(\alpha, j(1+\beta) - b_1 - \dots - b_j),$$

j = 1, ..., n. Then:

(i) The principal value integral in (1) exists for every $x \in \mathbf{R}^n$.

(ii) *T* extends to a bounded linear operator on $L^p(\mathbf{R}^n)$ whenever

$$\left|\frac{1}{p}-\frac{1}{2}\right| < Q(\alpha,\beta).$$

(iii) If

$$\left|\frac{1}{p}-\frac{1}{2}\right|>\max[Q_1,\ldots,Q_n],$$

then T is not bounded on $L^p(\mathbf{R}^n)$.

Notice that, putting $b_{n+1} = \infty$,

 $b_j \leq 1 + \beta \leq b_{j+1} \quad \Rightarrow \quad \max[Q_1, \dots, Q_n] = Q_j.$

In particular, if $1 + \beta \le b_2$, max $[Q_1, \dots, Q_n] = Q_1 = Q(\alpha, \beta)$. So we have a sharp result (up to the end-points) in the case $1 + \beta \le b_2$. When b = n and $\rho(y) = |y|$, it is known that *T* extends to a bounded operator on $L^p(\mathbf{R}^n)$ whenever 1 and

$$\left|\frac{1}{p}-\frac{1}{2}\right| \leqslant Q(\alpha,n\beta),$$

and that T fails to be bounded on $L^{p}(\mathbb{R}^{n})$ in the complementary range. For these results we refer the reader to [1,2,4,8].

Throughout this paper, the letter *C* denotes a constant that may change from line to line. In Section 2, constants are only allowed to depend on b_1, \ldots, b_n , α , and ρ . In Section 3, constants are only allowed to depend on b_1, \ldots, b_n , α , ρ , β , p, u, and γ . Also, constants are always positive numbers.

2. Properties of ρ

From the definition of $\{\delta_t\}$ -homogeneous distance functions, it is easy to see that there are constants c_1 and c_2 such that

$$c_1^{-1}\tau(x) \leqslant \rho(x) \leqslant c_1\tau(x) \quad (x \in \mathbf{R}^n)$$
⁽²⁾

and

$$\rho(x+y) \leqslant c_2(\rho(x)+\rho(y)) \quad (x,y \in \mathbf{R}^n).$$
(3)

Also, for later reference, let us note that (2) implies

$$c_3|x| \leqslant \rho(x) \leqslant c_4|x|^{1/b_n} \quad (|x| \leqslant 1) \tag{4}$$

and

$$c_3|x|^{1/b_n} \leqslant \rho(x) \leqslant c_4|x| \quad (|x| \ge 1), \tag{5}$$

where $c_3 = (c_1^{-1})(\inf_{\mathbf{S}^{n-1}} \tau)$ and $c_4 = (c_1)(\sup_{\mathbf{S}^{n-1}} \tau)$.

The generalization of the results of [3] to higher dimensions is made possible mainly because of the following lemma that generalizes Lemma 2.1 in [3].

Lemma 1. Suppose $\alpha > b - 1$. Then¹

$$\int_{\mathbf{S}^{n-1}} \frac{d\sigma(\theta)}{\rho(r\theta)^{\alpha}} \approx r^{b-n-\alpha}$$

and

¹ The notation $A \approx B$ means $C^{-1}B \leq A \leq CB$ for some constant *C*.

$$\int_{\mathbf{S}^{n-1}} \left| \frac{d}{dr} \rho(r\theta)^{-\alpha} \right| d\sigma(\theta) \leqslant Cr^{b-n-\alpha-1}$$

for $0 < r \leq 1$, where σ is surface measure on the sphere \mathbf{S}^{n-1} .

Proof. The observation

$$\int_{\mathbf{S}^{n-1}} \frac{d\sigma(\theta)}{\rho(r\theta)^{\alpha}} = \int_{\mathbf{S}^{n-1}} \int_{\rho(r\theta)}^{\infty} \alpha \lambda^{-\alpha-1} d\lambda d\sigma(\theta) = \int_{0}^{\infty} \alpha \lambda^{-\alpha-1} \sigma(\Omega_{\lambda}) d\lambda,$$

where $\Omega_{\lambda} = \{\theta \in \mathbf{S}^{n-1}: \rho(r\theta) \leq \lambda\}$, suggests that we start by estimating $\sigma(\Omega_{\lambda})$. Of course, $\sigma(\Omega_{\lambda}) = n|A_{\lambda}|$, where $A_{\lambda} = \{s\theta: 0 \leq s \leq 1, \theta \in \Omega_{\lambda}\}$ and $|A_{\lambda}|$ is the *n*-dimensional Lebesgue measure of A_{λ} .

The inequalities in (4) tell us that $c_3 r \leq \rho(r\theta) \leq c_4 r^{1/b_n}$. So, $\Omega_{\lambda} = \emptyset$ if $\lambda < c_3 r$ and

$$\int_{\mathbf{S}^{n-1}} \frac{d\sigma(\theta)}{\rho(r\theta)^{\alpha}} = \int_{c_3r}^{\infty} \alpha \lambda^{-\alpha-1} \sigma(\Omega_{\lambda}) d\lambda.$$

It is easy to see (e.g., using (5)) that there is a constant *c* such that $\rho(x) \leq 1 \Rightarrow |x| \leq c$. If $\theta \in \Omega_{\lambda}$, then $\rho(\delta_{1/\lambda} r \theta) = \rho(r \theta)/\lambda \leq 1$, so that $|\delta_{1/\lambda} r \theta| \leq c$. Thus Ω_{λ} and A_{λ} are contained in the solid ellipsoid

$$\frac{x_1^2}{\lambda^{2b_1}} + \frac{x_2^2}{\lambda^{2b_2}} + \dots + \frac{x_n^2}{\lambda^{2b_n}} \leqslant \left(\frac{c}{r}\right)^2.$$

Now if we simply estimate $|A_{\lambda}|$ by the measure of the ellipsoid, we obtain

$$\sigma(\Omega_{\lambda})=n|A_{\lambda}|\leqslant C\frac{\lambda^{b}}{r^{n}},$$

and consequently

$$\int_{\mathbf{S}^{n-1}} \frac{d\sigma(\theta)}{\rho(r\theta)^{\alpha}} \leqslant \frac{C}{r^n} \int_{c_3r}^{\infty} \lambda^{b-\alpha-1} d\lambda \leqslant Cr^{b-n-\alpha}$$

provided $\alpha > b$, which falls short of the needed $\alpha > b - 1$. So we go back and observe that in fact $\Omega_{\lambda} \subset \mathbf{S}^{n-1} \cap B_{\lambda}$, where B_{λ} is the box centered at the origin with dimensions $2 \times (2c\lambda^{b_2}/r) \times \cdots \times (2c\lambda^{b_n}/r)$. We then get the better estimate

$$\sigma(\Omega_{\lambda}) = n |A_{\lambda}| \leq n |B_{\lambda}| \leq C \frac{\lambda^{b-1}}{r^{n-1}},$$

which leads to

$$\int_{\mathbf{S}^{n-1}} \frac{d\sigma(\theta)}{\rho(r\theta)^{\alpha}} \leq \frac{C}{r^{n-1}} \int_{c_3r}^{\infty} \lambda^{b-\alpha-2} d\lambda \leq Cr^{b-n-\alpha}$$

provided $\alpha > b - 1$.

In order to get the inequality in the other direction, we proceed as follows. Let

$$E = \left\{ \theta = (\theta_1, \dots, \theta_n) \in \mathbf{S}^{n-1} \colon |\theta_i| \leqslant \frac{r^{b_i-1}}{\sqrt{n2^{b_i}}}, \ i = 2, 3, \dots, n \right\}.$$

Then $\sigma(E) \approx r^{b-n}$. We shall prove that $\int_E \rho(r\theta)^{-\alpha} d\sigma(\theta) \ge Cr^{b-n-\alpha}$. In fact, we shall show that $\rho(r\theta) \approx r$ on *E*. Since, by (4), $\rho(r\theta) \ge Cr$, it will suffice to show that $\rho(r\theta) \le Cr$ on *E*. Let $\theta \in E$. Then for i = 2, 3, ..., n,

$$\theta_1^2 = 1 - \sum_{k=2}^n \theta_k^2 \ge 1 - \sum_{k=2}^n \frac{1}{n} = \frac{1}{n} \ge \theta_i^2,$$

and using $0 \leq r^2 \theta_i^2 \leq 1, 0 < 1/b_i \leq 1$, we get

$$(r^2\theta_i^2)^{1/b_i} - r^2(1-\theta_i^2) \leq 2(r^2\theta_i^2)^{1/b_i} - r^2 \leq 0,$$

so that

$$\left(r^2\theta_i^2\right)^{1/b_i} \leqslant r^2\left(1-\theta_i^2\right) = r^2 \sum_{k\neq i} \theta_k^2 \leqslant (n-1)r^2\theta_1^2.$$

It follows that $\tau(r\theta) \leq Cr$, which together with (2) gives $\rho(r\theta) \leq Cr$.

To estimate

$$\int_{\mathbf{S}^{n-1}} \left| \frac{d}{dr} \rho(r\theta)^{-\alpha} \right| d\sigma(\theta),$$

we now proceed as in [3]. First, the homogeneity of ρ ,

$$\rho(\delta_t x) = t\rho(x) \quad (t > 0, \ x \in \mathbf{R}^n)$$

tells us that

$$t^{b_j}\frac{\partial\rho}{\partial x_j}(\delta_t x) = t\frac{\partial\rho}{\partial x_j}(x) \quad (t > 0, \ x \in \mathbf{R}^n - 0)$$

for j = 1, ..., n. So, putting $t = 1/\rho(x)$, we get

$$\left|\frac{\partial\rho}{\partial x_j}(x)\right| \leq \frac{C}{\rho(x)^{b_j-1}} \quad (x \in \mathbf{R}^n - 0)$$

(here $C = \sup_{\rho(y)=1} |\partial \rho / \partial x_j(y)|$). Second, by (2),

$$|x_j| \leqslant \tau(x)^{b_j} \leqslant C\rho(x)^{b_j} \quad (x \in \mathbf{R}^n).$$

so that

$$|x \cdot \nabla \rho(x)| \leq C \rho(x) \quad (x \in \mathbf{R}^n - 0).$$

Hence

$$\left|\frac{d}{dr}\rho(r\theta)\right| \leqslant C\frac{\rho(r\theta)}{r} \quad (r > 0, \ \theta \in \mathbf{S}^{n-1}),\tag{6}$$

and it follows that

$$\int_{\mathbf{S}^{n-1}} \left| \frac{d}{dr} \rho(r\theta)^{-\alpha} \right| d\sigma(\theta) \leqslant Cr^{b-n-\alpha-1} \quad (0 < r \leqslant 1)$$

by our previous estimate on

$$\int_{\mathbf{S}^{n-1}} \rho(r\theta)^{-\alpha} \, d\sigma(\theta).$$

3. Proof of Theorem 1

For
$$z = u + iv \in \mathbf{C}$$
, define

$$K_z(y) = \begin{cases} \rho(y)^{-z} e^{i/|y|^{\beta}} & \text{if } 0 < |y| \leq 1, \\ 0 & \text{otherwise} \end{cases}$$

and

$$L_z = p.v. K_z.$$

We need three facts about L_z . The first is that L_z exists and defines a tempered distribution when $u < \beta + b$, i.e.,

$$L_z \in \mathcal{S}' \quad \text{if } u < \beta + b, \tag{7}$$

the second is that

$$L_z = K_z \in L^1(\mathbf{R}^n) \quad \text{if } u < b, \tag{8}$$

and the third is that

$$\|\hat{L}_z\|_{L^{\infty}} \leqslant C\left(1+|v|\right) \quad \text{if } u < \frac{\beta}{2}+b.$$
⁽⁹⁾

Clearly, Lemma 1 implies (8). Before we prove (7) and (9), however, let us notice that since $Tf = L_{\alpha} * f$ for $f \in S$, part (i) of Theorem 1 follows immediately from (7). Also, part (ii) of Theorem 1 follows from (7)–(9) by using complex interpolation as in [3]. The argument goes as follows. Let $\gamma > 0$ and consider the family $\{R_z\}_{0 \le u \le 1}$ of analytic linear operators defined on S by

$$R_z f = M_z * f$$
 with $M_z = L_{(\beta/2)z+b-\gamma}$.

Then (7) becomes

$$M_z \in \mathcal{S}' \quad \text{if } u < 2 + \frac{2\gamma}{\beta}.$$

Also, (8) and (9) become

$$M_z \in L^1(\mathbf{R}^n)$$
 if $u < \frac{2\gamma}{\beta}$

and

$$\|\hat{M}_z\|_{L^{\infty}} \leq C\left(1+|v|\right) \quad \text{if } u < 1+\frac{2\gamma}{\beta}$$

Thus R_{iv} is bounded on $L^1(\mathbf{R}^n)$, and R_{1+iv} is bounded on $L^2(\mathbf{R}^n)$ with operator norm that grows polynomially in v. Complex interpolation now tells us that R_u is bounded on $L^p(\mathbf{R}^n)$ whenever

$$0 \leq u \leq 1$$
 and $\frac{1}{p} = 1 - \frac{u}{2}$.

Since $T = R_{(2/\beta)(\alpha-b+\gamma)}$, it follows that *T* is bounded on $L^p(\mathbf{R}^n)$ whenever

$$b-\alpha \leqslant \gamma \leqslant \frac{\beta}{2} + b - \alpha$$
 and $\frac{1}{p} - \frac{1}{2} = \frac{2b + \beta - 2\alpha - 2\gamma}{2\beta}$.

But $b - \alpha \leq 0$, so T is bounded on $L^p(\mathbf{R}^n)$ whenever

$$0 < \gamma \leq \frac{\beta}{2} + b - \alpha$$
 and $\frac{1}{p} - \frac{1}{2} = \frac{2b + \beta - 2\alpha - 2\gamma}{2\beta}$.

Hence T is bounded on $L^p(\mathbf{R}^n)$ whenever

$$0\leqslant \frac{1}{p}-\frac{1}{2}<\frac{2b+\beta-2\alpha}{2\beta}$$

Finally, duality implies that *T* is bounded on $L^p(\mathbf{R}^n)$ whenever

$$\left|\frac{1}{p} - \frac{1}{2}\right| < \frac{2b + \beta - 2\alpha}{2\beta}.$$

It is now time to prove (7). If u < b, there is nothing to prove by (8). Suppose $u \ge b$ and $f \in S$. Let $0 < \epsilon < 1$. Changing

$$I_{\epsilon} = \int_{\epsilon \leqslant |y| \leqslant 1} K_z(y) f(y) \, dy$$

into polar coordinates, we can write

$$I_{\epsilon} = \int_{\mathbf{S}^{n-1}} \int_{\epsilon}^{1} \psi_{\theta}(r) F'(r) \, dr \, d\sigma(\theta),$$

where

$$\psi_{\theta}(r) = r^{n-1} f(r\theta) \rho(r\theta)^{-z}$$
 and $F(r) = \int_{\epsilon}^{r} e^{i/s^{\beta}} ds.$

A simple computation (together with (6)) shows that

$$|\psi_{\theta}'(r)| \leq C \left(|v|r^{n-2}\rho(r\theta)^{-u} + r^{n-1} \left| \frac{d}{dr}\rho(r\theta)^{-u} \right| \right) ||f||_{C^1},$$

where $||f||_{C^1}$ is the C^1 norm of f. Lemma 1 then tells us that

$$\int_{\mathbf{S}^{n-1}} |\psi_{\theta}'(r)| dr \leq C (1+|v|) r^{b-u-2} ||f||_{C^{1}}$$

and

S

$$\int_{n-1} \left| \psi_{\theta}(r) \right| dr \leqslant C r^{b-u-1} \| f \|_{C^1}.$$

Also, by Van der Corput's lemma (see [6]),

$$F(r)\big|\leqslant Cr^{1+\beta},$$

and so integrating by parts we get

$$\left|\int_{\epsilon}^{1}\psi_{\theta}(r)F'(r)\,dr\right| \leq C\left(\left|\psi_{\theta}(1)\right| + \left|\psi_{\theta}(\epsilon)\right|\epsilon^{1+\beta} + \int_{\epsilon}^{1}\left|\psi_{\theta}'(r)\right|r^{1+\beta}\,dr\right),$$

which in turn leads to

$$|I_{\epsilon}| \leq C \left(1 + \epsilon^{\beta+b-u} + \left(1+|v|\right) \int_{\epsilon}^{1} r^{\beta+b-u-1} dr \right) ||f||_{C^{1}}.$$

Thus $L_z(f) = \lim_{\epsilon \to 0} I_{\epsilon}$ exists and satisfies

 $\left|L_{z}(f)\right| \leq C\left(1+|v|\right) \|f\|_{C^{1}}$

if $\beta + b - u > 0$.

The proof of (9) is exactly the same, except that now

$$\psi_{\theta}(r) = r^{n-1} \rho(r\theta)^{-z}$$
 and $F(r) = \int_{\epsilon}^{r} e^{i(s^{-\beta} - 2\pi s \,\xi \cdot \theta)} \, ds$,

and one has to apply Van der Corput's lemma using the second derivative of the phase rather than the first to get $|F(r)| \leq Cr^{1+\beta/2}$.

Our task for the remaining part of this paper is to prove part (iii) of Theorem 1. Our plan is to localize *T*, as in [5], to subsets of \mathbb{R}^n where the phase function $1/|y|^{\beta}$ is almost stationary. To do this we need the dilation methods of [3].

Let $1 \le j \le n$ and suppose $b_j \le 1 + \beta < b_{j+1}$ $(b_{n+1} = \infty)$. We define a dilation group $\{d_t^{(j)}\}_{t>0}$ by

$$d_t^{(j)}: x = (x_1, \dots, x_j, x_{j+1}, \dots, x_n)$$

$$\mapsto (t^{1+\beta}x_1, \dots, t^{1+\beta}x_j, t^{b_{j+1}}x_{j+1}, \dots, t^{b_n}x_n).$$

To simplify the notation we are going to write d_t for $d_t^{(j)}$. Following Stein and Wainger [7], we define a $\{d_t\}$ -homogeneous distance function ρ_j as follows. If $x \neq 0$, $|d_{1/t}x|$ as a function of t is strictly decreasing and is therefore equal to 1 for a unique $t \in (0, \infty)$. Define

 $\rho_j(x)$ to be this unique *t*. If x = 0, set $\rho_j(x) = 0$. Notice that if $0 < |x| \le 1$, $t_0 = \rho_j(x)^{-1}$, $t_1 = |x|^{-1/(\beta+1)}$, and $t_2 = |x|^{-1/b_n}$, then

$$|d_{t_1}x| \ge 1$$
, $|d_{t_2}x| \le 1$, and $|\delta_{t_0}x| \le |d_{t_0}x| = 1$.

Hence

$$|x|^{1/(\beta+1)} \leqslant \rho_j(x) \leqslant |x|^{1/b_n} \quad (|x| \leqslant 1)$$

$$\tag{10}$$

and

$$\rho(x) = t_0^{-1} \rho(\delta_{t_0} x) \leqslant t_0^{-1} c_4 = c_4 \rho_j(x) \quad (|x| \leqslant 1),$$
(11)

where we have also used (4).

Fix a nonnegative C_0^{∞} function ϕ such that $\phi(y) = 1$ if $\rho_j(y) \leq 1/2$, and $\phi(y) = 0$ if $\rho_j(y) \geq 1$. Set

$$\phi_{\epsilon}(y) = \phi(d_{1/\epsilon}y).$$

Now suppose $0 < \epsilon < 1$ and the positive integer k are such that the interval

$$I_{k} = \left[\frac{1}{(2\pi k + \pi/3)^{1/\beta}} + \epsilon^{1+\beta}, \frac{1}{(2\pi k - \pi/3)^{1/\beta}} - \epsilon^{1+\beta}\right]$$

has positive length and is contained in the interval $(\epsilon, 1)$. We are going to estimate $T\phi_{\epsilon}$ from below on the ring $|x| \in I_k$.

Suppose $|x| \in I_k$. Then

$$\begin{aligned} \left| T\phi_{\epsilon}(x) \right| &= \left| \int_{\rho_{j}(x-y) \leqslant \epsilon} \frac{e^{i/|y|^{\beta}}}{\rho(y)^{\alpha}} \phi_{\epsilon}(x-y) \, dy \right| \\ &\geqslant \frac{1}{2} \int_{\rho_{j}(x-y) \leqslant \epsilon} \frac{1}{\rho(y)^{\alpha}} \phi_{\epsilon}(x-y) \, dy \geqslant \frac{C}{\rho(x)^{\alpha}} \int \phi_{\epsilon}(y) \, dy. \end{aligned}$$

The first inequality holds because, by (10),

$$\rho_j(x-y) \leqslant \epsilon \quad \Rightarrow \quad |x-y| \leqslant \epsilon^{1+\beta} \quad \Rightarrow \quad |y| \in I_k$$
$$\Rightarrow \quad \cos\frac{1}{|y|^\beta} \ge \frac{1}{2}.$$

The second inequality holds because

$$\rho(y) \leqslant C\rho(y-x) + C\rho(x) \quad (by (3))
\leqslant C\rho_j(y-x) + C\rho(x) \quad (by (11))
\leqslant C\epsilon + C\rho(x)
\leqslant C|x| + C\rho(x) \quad (because |x| \in I_k \subset (\epsilon, 1))
\leqslant C\rho(x) \quad (by (4)).$$

Hence

$$|T\phi_{\epsilon}(x)| \ge C \frac{\epsilon^{j(1+\beta)+b_{j+1}+\cdots+b_n}}{\rho(x)^{\alpha}}$$

for $|x| \in I_k$.

Now as was observed in [3] (Lemma 3.1), there are constants A and B, with $B < A^{1/\beta} < 1$, such that if

$$J_k = \left[\frac{1}{(2\pi(k+1) - \pi/3)^{1/\beta}} - \epsilon^{1+\beta}, \frac{1}{(2\pi k + \pi/3)^{1/\beta}} + \epsilon^{1+\beta}\right],$$

and if $0 < \epsilon < B$, then

$$[A^{-1/\beta}\epsilon, 2A^{-1/\beta}\epsilon] \subset [A^{-1/\beta}\epsilon, 7^{-1/\beta}] \subset I_{k'} \cup \left[\bigcup_{k=1}^{k'-1} (I_k \cup J_k)\right]$$
(12)

and

$$|J_k| \leqslant C|I_{k+1}| \quad \text{for } 1 \leqslant k \leqslant k' - 1, \tag{13}$$

where k' is the largest integer k such that $1 \le k \le A\epsilon^{-\beta}$. From this it follows that if $0 < \epsilon < B$ and p > 1, then

$$\begin{split} \|T\phi_{\epsilon}\|_{L^{p}}^{p} &\geq C\epsilon^{p(j(1+\beta)+b_{j+1}+\dots+b_{n})} \sum_{k=1}^{k'} \int_{|x|\in I_{k}} \frac{dx}{\rho(x)^{\alpha p}} \\ &= C\epsilon^{p(j(1+\beta)+b_{j+1}+\dots+b_{n})} \sum_{k=1}^{k'} \int_{\mathbf{S}^{n-1}} \int_{r\in I_{k}} \frac{r^{n-1}}{\rho(r\theta)^{\alpha p}} dr \, d\sigma(\theta) \\ &= C\epsilon^{p(j(1+\beta)+b_{j+1}+\dots+b_{n})} \sum_{k=1}^{k'} \int_{r\in I_{k}} r^{n-1} \int_{\mathbf{S}^{n-1}} \frac{d\sigma(\theta)}{\rho(r\theta)^{\alpha p}} dr \\ &\geq C\epsilon^{p(j(1+\beta)+b_{j+1}+\dots+b_{n})} \sum_{k=1}^{k'} \int_{r\in I_{k}} r^{b-\alpha p-1} dr \\ &\geq C\epsilon^{p(j(1+\beta)+b_{j+1}+\dots+b_{n})} \int_{A^{-1/\beta}\epsilon}^{7^{-1/\beta}} r^{b-\alpha p-1} dr \\ &\geq C\epsilon^{p(j(1+\beta)+b_{j+1}+\dots+b_{n})} \epsilon^{b-\alpha p}, \end{split}$$

where in the line before the last we used (12) and (13), and in the line before that we used Lemma 1.

Finally, suppose the estimate

 $\|T\phi_{\epsilon}\|_{L^p} \leqslant C \|\phi_{\epsilon}\|_{L^p}$

holds for some 1 . Then

 $\epsilon^{p(j(1+\beta)+b_{j+1}+\cdots+b_n)}\epsilon^{b-\alpha p} \leqslant C\epsilon^{j(1+\beta)+b_{j+1}+\cdots+b_n}$

for $0 < \epsilon < B$. This implies

$$\frac{1}{p} - \frac{1}{2} \leqslant Q_j.$$

Thus *T* is not bounded on $L^p(\mathbf{R}^n)$ if 1 and

$$\frac{1}{p}-\frac{1}{2}>\max[Q_1,\ldots,Q_n].$$

The corresponding inequality for p > 2 is then obtained by using duality. \Box

References

- [1] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970) 9-36.
- [2] C. Fefferman, E.M. Stein, H^p spaces of several variables, Acta Math. 129 (1972) 137–193.
- [3] B. Shayya, Singular integrals with nonhomogeneous oscillatory kernels, Indiana Univ. Math. J. 50 (2001) 1015–1025.
- [4] P. Sjölin, L^p estimates for strongly singular convolution operators in \mathbb{R}^n , Ark. Mat. 14 (1976) 59–64.
- [5] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981) 47-56.
- [6] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [7] E.M. Stein, S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978) 1239–1295.
- [8] S. Wainger, Special Trigonometric Series in *k* Dimensions, in: Mem. Amer. Math. Soc., Vol. 59, American Mathematical Society, 1965.