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Abstract

A general class of singular abstract Cauchy problems is considered which naturally arises in applications
to certain free boundary problems. Existence of an associated evolution operator characterizing its solu-
tions is established and is subsequently used to derive optimal regularity results. The latter are well known
to be important basic tools needed to deal with corresponding nonlinear Cauchy problems such as those
associated to free boundary problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper a class of abstract Cauchy problems in a Banach space E0

u̇ − A(t)u = f (t), t > 0,

is considered where the family of operators A is allowed to have singular behavior in the origin.
The paper will focus on the “parabolic case,” that is, it will be assumed that the operators A(t)

generate analytic semigroups for fixed t > 0. It will, however, not be assumed that the latter be
strongly continuous. Conditions on the family A (see (2.27)–(2.29)) are proposed which lead
to the construction of an associated evolution operator UA (cf. (3.6)). By means of it, maximal
regularity results are obtained for the singular abstract Cauchy problem in the context of spaces
of singularly Hölder continuous functions. A certain class of free boundary problems [18] with

E-mail address: gpatrick@math.uci.edu.
0022-0396/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2006.09.017

https://core.ac.uk/display/82106014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


P. Guidotti / J. Differential Equations 232 (2007) 468–486 469
initial onset of a phase is the prime motivation for the study presented here. The paper is orga-
nized as follows. In the next section the problem is put into context and the basic tools needed
in its analysis are presented. In Section 3 the evolution operator UA is constructed and, in the
following section, it is used to prove maximal regularity results for the singular abstract Cauchy
problem. In final Section 5 an example is considered of a parabolic problem in a space–time
wedge and the connection to free boundary problems is made more explicit.

2. Preliminaries and setting

Let E0 be a Banach space. An unbounded operator

A : dom(A) ⊂ E0 → E0

is called sectorial if it satisfies

(i) dom(A) = E0, N(A) = {0}, R(A) = E0, (2.1)

(ii) (0,∞) ⊂ ρ(A) and
∥∥t (t − A)−1

∥∥
L(E0)

� M, t > 0, M > 0. (2.2)

If A only satisfies (ii) is usually called pseudo-sectorial. For any given pseudo-sectorial operator
A on E0 there exists θ > 0 such that

ρ(A) ⊃ Σθ := {
λ ∈ C\{0} ∣∣ ∣∣arg(λ)

∣∣ < θ
}

and sup
λ∈Σθ

∥∥λ(λ − A)−1
∥∥
L(E0)

� c (2.3)

thus clarifying the name. If θ > π/2, it is well know that an analytic semigroup TA can be
associated to any given pseudo-sectorial operator A through the formula

TA(t) = etA = 1

2πi

∫
Γ

eλt (λ − A)−1 dλ, t > 0, (2.4)

where the path Γ is given by

Γ = {
λ ∈ C

∣∣ arg(λ) = η, |λ| � r
} ∪ {

λ ∈ C
∣∣ ∣∣arg(λ)

∣∣ � η, |λ| = r
}

and is oriented counterclockwise. The parameters r and η are chosen such that r > 0 and η ∈
(π/2, θ). If the operator A is densely defined, then the semigroup TA is strongly continuous, that
is, it satisfies

lim
t→0+TA(t)x = x, x ∈ E0.

Otherwise it is strongly continuous on dom(A).
The most important properties of analytic semigroups (and an equivalent characterization) are

(i) etA(E0) ⊂ dom(A), t > 0, (2.5)

(ii)
∥∥tAetA

∥∥ � c, t ∈ [0, T ], T > 0. (2.6)
L(E0)
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The semigroup TA is called exponentially decaying if it satisfies

∥∥TA(t)
∥∥
L(E0)

� ce−ωt , t > 0, (2.7)

for some ω > 0. The collection of generators A of analytic semigroups satisfying (2.7) for some
c is denoted by H−(E0,ω). Semigroups are useful in the analysis of abstract Cauchy problems
(ACP)

u̇ − Au = f (t), u(0) = x. (2.8)

If f ∈ L1(0, T ;E0) and x ∈ E0, a function u ∈ C([0, T ],E0) satisfying

u(t) = TA(t)x +
t∫

0

TA(t − τ)f (τ) dτ, t ∈ [0, T ], (2.9)

is called mild solution of (2.8). If the abstract Cauchy problem is nonautonomous, that is, if A

depends on the time variable, then mild solutions of

u̇ − A(t)u = f (t), u(0) = x, (2.10)

are given by

u(t) = UA(t,0)x +
t∫

0

UA(t, τ )f (τ ) dτ, (2.11)

if it can be shown that an evolution operator UA associated to the family A exists. The latter is a
two-parameter family

{
UA(t, τ )

∣∣ t ∈ [0, T ], τ ∈ [0, t]} ⊂ L(E0) (2.12)

satisfying

(i) UA(t, t) = idE0 , UA(t, τ )UA(τ, s) = UA(t, s), 0 � s � τ � t � T ,

(ii) ∂tUA(t, τ )x = A(t)UA(t, τ )x, τ < t � T , x ∈ E0.

Classical results show that such an evolution operator exists on some regularity assumptions on
the family A, usually of Hölder type. In [2,23,24], in the case of densely defined family A, it is
obtained as the solution to the weakly singular Volterra integral equation

UA(t, s) = e(t−s)A(s) −
t∫
UA(t, τ )

[
A(τ) − A(s)

]
e(τ−s)A(s) dτ. (2.13)
s
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Another construction due to Da Prato and Lunardi [5,6,20,22] is based on maximal regularity
results for the autonomous abstract Cauchy problem combined with perturbation arguments but
does not rely on the family A having dense domains of definition. They obtain

UA(t, s)x = WA(t, s)x + e(t−s)A(s)x

from the solution w = WA(·, s)x of

ẇ(t) = A(s)w(t) + [
A(t) − A(s)

]
x, w(s) = x. (2.14)

Optimal or maximal regularity results for (2.8) or (2.10) can be described as follows: find spaces
S and E0 such that (2.8) or (2.10) possess a unique solution u ∈ S((0, T ],E0) with

u̇,Au ∈ S
(
(0, T ],E0

)
and ‖u̇‖S((0,T ],E0) + ‖Au‖S((0,T ],E0) � c‖f ‖S((0,T ],E0). (2.15)

The name obviously refers to the fact that u enjoys as much regularity as is conceivably possible
by virtue of it satisfying (2.8) or (2.10), respectively. It is known that restrictions apply to the
choice of S and E0 for maximal regularity to hold. Counter examples are given in [20,21].

Fractional powers and interpolation spaces play an important role in the theory of abstract
Cauchy problems of parabolic type. Given a pseudo-sectorial operator A it is always possible to
define its fractional powers (−A)ρ , ρ > 0, as the inverses of the bounded operators

(−A)−ρ := 1

Γ (ρ)

∞∫
0

tρ−1etA dt (2.16)

defined on their range, that is, with

dom
(
(−A)ρ

) = R
(
(−A)−ρ

)
.

For ρ = 1, (2.16) simply gives the resolvent of A as the Laplace transform of the semigroup etA.
The interpolation spaces

Ep
α = DA(α,p), α ∈ (0,1), p ∈ [1,∞] or (α,p) = (1,∞),

are defined by

Ep
α : = {

x ∈ E0
∣∣ [

t 	→ v(t) := ∥∥t1−α−1/pAetAx
∥∥] ∈ Lp(0,1)

}
, (2.17)

‖x‖E
p
α

= ‖x‖ + [x]α,p := ‖x‖ + ‖v‖Lp(0,1), (2.18)

with the standard convention that 1/∞ = 0. The domain dom((−A)α) endowed with the graph
norm ‖x‖Dα = ‖(−A)αx‖ is denoted by Dα or D((−A)α). It can be conveniently sandwiched
between interpolation spaces

E1
α ↪→ Dα ↪→ E∞

α , α ∈ (0,1), (2.19)
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and satisfies the interpolation property∥∥(−A)αx
∥∥ � c‖Ax‖α‖x‖1−α.

One of the main reasons to consider maximal regularity results is dealing with fully nonlinear
Cauchy problems like

u̇ = f (t, u), t > 0, u(0) = u0 ∈ E0, (2.20)

in E0 or quasilinear problems like

u̇ − A(t,u)u = f (t, u), t > 0, u(0) = u0 ∈ E0. (2.21)

The basic idea is to linearize (2.20) (or (2.21)) in u0 and localize about t = 0 to obtain

u̇ − A(0)u = G(u), t > 0, (2.22)

where A(0) = DF(0, u0) and DG(0, u0) = 0 and solve it by a fixed-point argument in a small
time interval. Repeating the procedure the solution can be extended to its maximal interval of ex-
istence. This can only be done if maximal regularity results hold which are essentially equivalent
to ∂t − A(0) being invertible. In spite of the simplicity of this idea, its implementation is rather
involved and needs the introduction of spaces of singular Hölder continuous functions in order
to successfully deal with the kernel singularity (2.6) in the origin. A comprehensive exposition
of this theory is given in [20], where the author also presents a variety of examples which clearly
attest to its wide range of applicability. One may also consult [4].

The focus of this paper is on singular abstract Cauchy problems like

u̇ − A(t)u = f (t), t > 0, (2.23)

in a Banach space E0. The family A is allowed to behave singularly in the origin. In this
case (2.23) is the appropriate model problem since there is no autonomous counterpart to speak
of. One of the main goals of the paper is to find abstract but flexible conditions on the singular
family A which allow for the construction of an associated evolution operator and eventually lead
to maximal regularity results for (2.23). Again the prime applications would be fully nonlinear
counterparts of (2.23), which can be written as

u̇ − A(t,u)u = f (t, u), t > 0. (2.24)

In this case the problem needs not only to be linearized as in the regular case but also to be
expanded in the singularity in order to capture its leading order behavior and perturb around
it. A notation closer to (2.21) rather than (2.20) is used to draw reader’s attention to the sin-
gular behavior in the origin of the generator families A(·, u) involved. A class of free boundary
problems, considered in [18] for the first time in higher dimensions and by many authors in a one-
dimensional setting [1,7,8,10–13,16], leads naturally to equations of singular type and motivates
the study presented here.

Singular families of type

A(t) = A

k
, k > 1, (2.25)
t
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and natural generalizations thereof were considered in [17] where an associated evolution opera-
tor was constructed by using (2.13) and results for a corresponding class of quasilinear equations
were obtained. In the purely linear case, they were also considered by [14,25] were operator
sum/product techniques were used in a Lp-setting.

Here the aim is to extend those results to obtain maximal regularity in spaces of (singular)
Hölder continuous functions for a nondensely defined family of generators and for a generaliza-
tion of (2.25) in which the singularity is allowed to affect the operator in an anisotropic way.
A simple example is given by

A(t) = B + C

tk
(2.26)

where B,C are given generators of analytic semigroups in the sense explained of (2.4). In ap-
plications the operators B and C are usually differential operators acting on distinct spacial
variables. However, they typically do not commute as they in general have non-constant coeffi-
cients. All the results mentioned above do not apply to the setting of this paper and only those in
[17] could be adapted to it but merely in the event that B and C were commuting operators. This
latter case is not of much interest since it never occurs in practical applications.

Moreover the conditions previously used in [17] are ad-hoc in that they rely on the singularity
being of a given explicit type (power type) in order to construct the associated evolution operator.
In [14,25] no evolution operator is constructed but the singularity is assumed to be given by a
simple function of time.

Here a more abstract condition is obtained which seems quite natural in the construction of
the evolution operator as the proofs will show and which allows for a wider class of singularities
including all those previously considered in the mentioned papers. These conditions read

(i) A(t) ∈ H−(E0,ω), t > 0, (2.27)

(ii)
∥∥[

A(t) − A(s)
]
A−1(τ )

∥∥
L(E0)

� c
t − s

t
and∥∥[

A(t) − A(s)
]
(−A)−ρ(τ )

∥∥
L(E0)

� c(t − s), (2.28)

(iii) lim
t→0

A−1(t) = 0, (2.29)

for some ρ ∈ (1,2) and 0 < τ � s � t � T . As an example one can consider A(t) = B + C

t2

satisfying (2.27) and such that C is an invertible pseudo-sectorial operator, then (2.28)–(2.29)
are easily seen to be satisfied.

For the sake of completeness we observe that maximal regularity results have been obtained,
in the regular case not considered here, in a variety of other function spaces other than singular
Hölder spaces and with the base space E0 substituted in particular by interpolation spaces of
type (2.17). The interested reader may consult [2,9,19,20,22] for instance. Some of these results
cannot be obtained for the singular (anisotropic case), whereas others do not fit the requirements
imposed by the applications to free boundary problems. In spite of the fact that they would be of
theoretical and possibly of practical interest, they are not considered in this paper.
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3. Construction of the evolution operator

In order to construct the evolution operator U associated to a singular family satisfying (2.27)–
(2.29) it is necessary to work in spaces of singular Hölder continuous functions.

Definition 3.1. Let α ∈ (0,1) and T > 0 be given and let E be a Banach space

Cα
α

(
(0, T ],E) := {

v ∈ B
(
(0, T ],E) ∣∣ [

t 	→ tαv(t)
] ∈ Cα

(
(0, T ],E)}

. (3.1)

Endowed with the norm given by

‖v‖α,s := ‖v‖∞ + [v]α,s

this space becomes a Banach space. Hereby we denoted by [·]α,s the weighted Hölder seminorm

[v]α,s := [
(·)αv

]
α

:= sup
0<t 
=s�T

‖tαv(t) − sαv(s)‖E

|t − s|α

where [·]α denotes the regular Hölder seminorm. We shall also make use of the space

Cα
0

(
(0, T ],E) := {

v ∈ Cα
([0, T ],E) ∣∣ v(0) = 0

}
. (3.2)

For β ∈ (0,1) the additional space

Cα
α,β

(
(0, T ],E) := {

v : (0, T ] → E
∣∣ [

t 	→ tβv(t)
] ∈ B

(
(0, T ],E)

,[
t 	→ tα+βv(t)

] ∈ Cα
(
(0, T ],E)}

(3.3)

is also defined and endowed with its natural norm

‖v‖α,β = ∥∥(·)βv
∥∥∞ + [

(·)α+βv
]
α
.

The space

Bβ

(
(0, T ],E) := {

v : (0, T ] → E
∣∣ [

t 	→ tβv(t)
] ∈ B

(
(0, T ],E)}

will also be useful.

Fix x ∈ E0. Then it is natural to look for U(·, s)x as the solution of

u̇ = A(t)u, t ∈ (s, T ], u(s) = x, (3.4)

which is rewritten as

ẇ = A(t)w + [
A(t) − A(s)

]
e(t−s)A(s)x, t ∈ (s, T ], u(s) = 0, (3.5)
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by setting w(t) := u(t)− e(t−s)A(s)x. If (3.5) can be solved and denoting by W(·, s)x its solution
in that case, the evolution operator is then simply given by

U(t, s) = W(t, s) + e(t−s)A(s). (3.6)

The next theorem establishes existence for (3.5) in the space (3.3).

Theorem 3.2. Assume that A satisfies (2.27)–(2.29) with ρ ∈ (1,2) and let f ∈ Cα
α,ρ−1((s, T ],E)

for α ∈ (0,1), s ∈ (0, T ). Then the solution w of

ẇ = A(t)w + [
A(t) − A(s)

]
e(t−s)A(s)x︸ ︷︷ ︸

=:gs(t)

+f (t), t ∈ (s, T ], w(0) = 0,

satisfies

w, ẇ,A(s)w ∈ Cα
α,ρ−1

(
(s, T ],E0

)
, ẇ ∈ Bα+ρ−1

(
(s, T ],E∞

α

)
, (3.7)

‖Aw‖Cα
α,ρ−1 E0 + ‖ẇ‖Cα

α,ρ−1 E0 + ‖ẇ‖Bα+ρ−1 E∞
α

� c
(‖x‖ + ‖f ‖Cα

α,ρ−1 E0

)
. (3.8)

Proof. The solution is constructed as the unique fixed-point of Φ in the space Cα
α,ρ−1((s, T ],

D(A(s))) where Φ(v) is defined as the solution of

ẇ = A(s)w + [
A(t) − A(s)

][
v + e(t−s)A(s)x

] + f (t), t ∈ (s, T ], w(0) = 0.

Step 1. First it is checked that gs ∈ Cα
α,ρ−1((s, T ],E0). In fact

∥∥[
A(t) − A(s)

]
e(t−s)A(s)x

∥∥ = ∥∥[
A(t) − A(s)

](−A(s)
)−ρ(−A(s)

)ρ
e(t−s)A(s)x

∥∥
� c

1

(t − s)ρ−1
,

which gives gs ∈ Bρ−1((s, T ],E0). Next take 0 < s < s + ε � r � t � T and consider

εα+ρ−1
∥∥gs(t) − gs(r)

∥∥
� εα+ρ−1

∥∥[
A(t) − A(r)

](−A(s)
)−ρ(−A(s)

)ρ
e(t−s)A(s)x

∥∥
+ εα+ρ−1

∥∥∥∥∥[
A(r) − A(s)

] t−s∫
r−s

A(s)eσA(s)x dσ

∥∥∥∥∥
� cεα+ρ−1(t − r)

1

(t − s)ρ
‖x‖ + cεα+ρ−1(r − s)

t−s∫
r−s

1

σ 1+ρ
dσ

� c‖x‖
[
(t − r)α(t − r)1−α εα+ρ−1

t − s
+ εα+ρ−1(r − s)

(t − s)ρ − (r − s)ρ

(r − s)ρ(t − s)ρ

]
� c‖x‖(t − r)α,
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since (t − s)ρ − (r − s)ρ � c(t − s)ρ−1(t − r). It is therefore seen that

gs ∈ Cα
α+ρ−1

(
(s, T ],E0

)
and ‖gs‖α,ρ−1 � c‖x‖,

for a constant c which does not depend on s.
Step 2. Next it is shown that Φ is a contractive self-map on Cα

α,ρ−1((s, s + δ],D(A(s)))

provided δ > 0 is small enough. In order to do so, it is enough to show contractivity together
with [

A(·) − A(s)
]
v ∈ Cα

α+ρ−1

(
(s, T ],E0

)
(3.9)

because the existence and regularity of the solution Φ(v) then follows from known maximal
regularity results for the regular case (cf. [20, Theorem 4.3.7]). In order to show (3.9) observe
first that

∥∥(t − s)ρ−1[A(t) − A(s)
](−A(s)

)−1
A(s)v(t)

∥∥
� t − s

t

∥∥(t − s)ρ−1A(s)v(t)
∥∥ � δ

s
‖v‖Bρ−1 D(A(s)).

Next take 0 < s < s + ε � r � t � T and consider

εα+ρ−1
∥∥[

A(t) − A(s)
]
v(t) − [

A(r) − A(s)
]
v(r)

∥∥
� εα+ρ−1

∥∥[
A(t) − A(r)

]
v(t)

∥∥ + εα+ρ−1
∥∥[

A(r) − A(s)
](

v(t) − v(r)
)∥∥

� εα+ρ−1 t − r

t

1

ερ−1
‖v‖Bρ−1 D(A(s)) + r − s

r
(t − r)α‖v‖Cα

α+ρ−1 D(A(s))

� c
δ

s
‖v‖Cα

α+ρ−1 D(A(s)),

for a constant c independent of s. This gives (3.9) and shows that

∥∥[
A(·) − A(s)

]
v
∥∥

α,ρ−1,E0
� c

δ

s
‖v‖α,ρ−1,D(A(s))

on the interval (s, s + δ]. Latter estimate also gives that

∥∥Φ(v1) − Φ(v2)
∥∥

α,ρ−1,D(A(s))
� c

δ

s
‖v1 − v2‖α,ρ−1,D(A(s))

in view of [20, Theorem 4.3.7] and the linearity of the equation. It is then clear that Φ is a
contraction for δ � 1 and it is easy to obtain the inequality

‖w‖α,ρ−1,D(A(s)) � c‖gs‖α,ρ−1,E0 � c‖x‖

for the unique solution w for a constant c independent of s. By using further results from the reg-
ular theory [20, Proposition 6.1.3] the solution can be continued to the full interval maintaining
the inequality. �
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It follows that W (for f ≡ 0) satisfies the slightly better inequality

∥∥A(τ)W(t, τ )
∥∥
L(E0)

� c
1

(t − τ)ρ−1
, t ∈ (τ, T ]. (3.10)

Taking (3.6) into account it is concluded that

∥∥A(τ)U(t, τ )
∥∥
L(E0)

� c
1

(t − τ)
, t ∈ (τ, T ]. (3.11)

It is important to point out that the constant appearing in both estimates is independent of τ as
follows from the proof of Theorem 3.2.

Remark 3.1. In the regular case there is no restriction in the choice of the exponent ρ − 1,
whereas here it is determined by the singularity through (2.28).

Corollary 3.3. Let A satisfy (2.27)–(2.29). Then there is a unique evolution operator U associ-
ated to A defined for T � t � τ > 0. It can be extended to τ = 0 by setting

U(t,0) = 0, 0 < t � T .

Proof. The claim follows from

∥∥U(t, τ )
∥∥
L(E0)

�
∥∥A−1(τ )

∥∥
L(E0)

∥∥A(τ)U(t, τ )
∥∥
L(E0)

� c
1

t − τ

∥∥A−1(τ )
∥∥
L(E0)

→ 0 (τ → 0)

in view of (2.29). �
The evolution operator allows to characterize solutions of (2.23) through the classical

variation-of-constant-formula.

Proposition 3.4. Lt f ∈ L1((0, T ),E0). Then any bounded mild solution u of (2.23) is given by

u(t) =
t∫

0

U(t, τ )f (τ ) dτ.

Proof. The assumption on the function f ensures the existence of the variation of constant in-
tegral. In the event that the solution u to (2.23) exists and is bounded, it coincides with the
solution uδ of (2.23) on t � δ corresponding to the initial condition uδ(δ) = u(δ). It is then
necessarily given by

u(t) = uδ(t) = U(t, δ)u(δ) +
t∫
U(t, τ )f (τ ) dτ, t � δ.
δ
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Since the convolution integral exists for δ = 0 the second term converges to (3.4). By assumption
the first can be estimated as follows∥∥U(t, δ)u(δ)

∥∥
E0

→ 0 (δ → 0, t > 0)

by virtue of the solution’s boundedness and Corollary 3.3. The function u is therefore a mild
solution of (2.23) for t > 0. �
Remark 3.2.

(a) It now becomes clear why (2.23) is formulated without any initial condition. Bounded solu-
tions naturally emanate from 0.

(b) If additional information is available about the rate of vanishing of A−1(t) in t = 0, it is
possible to weaken the assumption on f to[

t → tpf (t)
] ∈ L1

(
(0, T ),E0

)
for an appropriate power p > 1.

4. Maximal regularity

In order to prove maximal regularity results for (2.23) a couple of lemmata are needed.

Lemma 4.1. Let x ∈ E0 and A be the generator of a not necessarily strongly continuous analytic
semigroup. Then

∫ t

0 esAx ds ∈ D(A) and

A

t∫
0

esAx = etAx − x.

Proof. The proof would be completely obvious if the semigroup were strongly continuous. On
the given assumptions it needs a little more care but a proof can be found in [20]. �
Lemma 4.2. Assume that A satisfies assumptions (2.27)–(2.29). Then

∥∥A(t)
[
e(t−τ)A(τ) − e(t−τ)A(t)

]∥∥
L(E0)

� c
1

t
, 0 < τ < t � T .

Proof. Since

e(t−τ)A(τ) = 1

2πi

∫
Γ

eλ(t−τ)
(
λ − A(τ)

)−1
dλ

the estimand can be rewritten as

− 1

2πi

∫
eλ(t−τ)A(t)

(
λ − A(t)

)−1[
A(τ) − A(t)

]
A−1(τ )A(τ)

(
λ − A(τ)

)−1
dλ.
Γ
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Assumptions (2.27) and (2.28) give

∥∥A(t)
(
λ − A(t)

)−1[
A(τ) − A(t)

]
A−1(τ )A(τ)

(
λ − A(τ)

)−1∥∥
L(E0)

� c
t − τ

t

and the claim follows by direct estimation of the integral. �
Theorem 4.3. Assume that A satisfies assumptions (2.27)–(2.29) and let f ∈ Cα

0 ((0, T ],E0) for
some α ∈ (0,1). Then the solution u of (2.23) given by (3.4) on (0, T ] satisfies

u̇,Au ∈ Cα
0 and ‖u̇‖α + ‖Au‖α � c‖f ‖α.

Proof. Step 1. First Hölder continuity in the origin is shown. To that end it is enough to show
that

∥∥∥∥∥A(t)

t∫
0

U(t, τ )f (τ ) dτ

∥∥∥∥∥ � ctα

since then the equation gives the corresponding estimate for u̇(t). Using the decomposition (3.6)
of the evolution operator it is seen that

t∫
0

U(t, τ )f (τ ) dτ =
t∫

0

W(t, τ )f (τ ) dτ +
t∫

0

e(t−τ)A(τ)
[
f (τ) − f (t)

]
dτ

+
t∫

0

[
e(t−τ)A(τ) − e(t−τ)A(t)

]
f (t) dτ +

t∫
0

e(t−τ)A(t)f (t) dτ

= I + II + II + IV.

The various terms can then be estimated as follows

∥∥A(t)I
∥∥ � c

t∫
0

τα

t − τ
dτ � ctα by (3.10),

∥∥A(t)II
∥∥ � c

t∫
0

1

(t − τ)1−α
dτ = ctα by assumption,

∥∥A(t)III
∥∥ � c

t∫
0

1

t1−α
dτ = ctα by Lemma 4.2.

As for the last one has A(t)IV = etA(t)f (t) − f (t) by Lemma 4.1 which gives the desired esti-
mate by the assumptions on f .
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Step 2. Away from the origin, solution properties should not deviate from the regular case.
This is in fact confirmed by the following argument. It follows from the previous step that

u(t) =
t∫

0

U(t, τ ) dτ ∈ D
(
A(t)

)
, t ∈ (0, T ].

Thus u(δ) ∈ D(A(δ)) and, using Theorem 3.2 one gets that

u̇(δ) = A(δ)u(δ) + f (δ) ∈ Eα∞

and that

∥∥u(δ)
∥∥

D(A(δ))
� c‖f ‖α,ρ−1 � c‖f ‖α and∥∥A(δ)u(δ) + f (δ)

∥∥
Eα∞ � c‖f ‖α,ρ−1 � c‖f ‖α.

The embedding inequalities are a consequence of

∥∥tρ−1f (t)
∥∥ � ctρ−1+α[f ]α and of∥∥∥∥ tα+ρ−1f (t) − sα+ρ−1f (s)

(t − s)α

∥∥∥∥ �
∥∥∥∥ tα+ρ−1 − sα+ρ−1

(t − s)α
f (t)

∥∥∥∥ +
∥∥∥∥sα+ρ−1 f (t) − f (s)

(t − s)α

∥∥∥∥
� (t − s)min(α+ρ−1,1)tα[f ]α + sα+ρ−1[f ]α.

Thus, using [20, Theorem 4.3.1(iii)], it follows that u̇,Au ∈ Cα([δ, T ],E0) for any given δ > 0
and

‖u̇‖α + ‖Au‖α � c‖f ‖α

which gives Hölder continuity everywhere away from the origin. �
Theorem 4.4. Assume that A satisfies assumptions (2.27)–(2.29) and let f ∈ Cα

α((0, T ],E0) for
some α ∈ (0,1). Then the solution u of (2.23) given by (3.4) on (0, T ] satisfies

u̇,Au ∈ Cα
α and ‖u̇‖α,s + ‖Au‖α,s � c‖f ‖α,s .

Proof. Step 1. First consider regularity in the origin. From (3.6) it follows that

A(t)

t∫
0

U(t, τ )f (τ ) dτ = A(t)

t∫
0

W(t, τ )f (τ ) dτ +
t∫

0

e(t−τ)A(τ)f (τ ) dτ = I1 + I2.

The first term leads to

‖I1‖ �
t∫

1

(t − τ)ρ−1
dτ = ct2−ρ.
0
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I2 needs to be further split

I2 = A(t)

t∫
0

U(t, τ )
[
f (τ) − f (t)

]
dτ + A(t)

t∫
0

[
e(t−τ)A(τ) − e(t−τ)A(t)

]
f (t) dτ

+ etA(t)f (t) − f (t)

= I + II + III,

where Lemma 4.1 was used. The estimate for III follows. As for II one has

‖II‖ � c

t∫
0

t − τ

t

1

t − τ
dτ � c

by Lemma 4.2. Finally III gives

‖III‖ � c

t∫
0

1

(t − τ)1−α

1

τα
dτ = c

1∫
0

1

(1 − σ)1−α

1

σα
.

Step 2. Away from the origin it is again possible to argue as in the regular case. Using

u(δ) ∈ D
(
A(δ)

)
, A(δ)u(δ) + f (δ) ∈ Eα∞ and∥∥u(δ)

∥∥
D(A(δ))

+ ∥∥A(δ)u(δ) + f (δ)
∥∥

Eα∞ � c‖f ‖α,ρ−1.

It follows again from [20, Theorem 4.3.1(iii)] that

u̇,Au ∈ Cα
([δ, T ],E0

)
and that

‖u̇‖α,[δ,T ] + ‖Au‖α,[δ,T ] � c
(‖f ‖α,[δ,T ] + ∥∥u(δ)

∥∥
D(A(δ))

+ ∥∥A(δ)u(δ) + f (δ)
∥∥

Eα∞
)

� c
1

δα
‖f ‖α,s

because of the embedding

Cα
α,ρ−1

(
(0, T ],E0

)
↪→ Cα

α

(
(0, T ],E0

)
and since

‖f ‖α,[δ,T ] � c
1

δα
‖f ‖α,s

as can be easily checked. The desired estimate is therefore obtained. �
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Remark 4.1. It should be pointed out that, whereas conditions (2.27)–(2.29) are quite general,
they, however, exclude singular families like

A(t) = A

tβ

with β � 1 and the generator A of an analytic exponentially decaying semigroup TA. This is not
due to (2.27)–(2.29) being too restrictive but rather to the fact that the regularity results obtained
here are not valid in that case. This follows from the fact that the inequality

∥∥A(τ)U(t, τ )
∥∥
L(E0)

�
∥∥∥∥∥ A

τβ
TA

( t∫
τ

σ−β dσ

)∥∥∥∥∥
L(E0)

� c
tβ

τβ

1

t − τ

does not yield the needed

∥∥A(τ)U(t, τ )
∥∥
L(E0)

� c
1

t − τ

with a constant independent of τ . If follows that this case has to be treated differently. This
example also shows that condition (2.28) cannot be weakened to an analogous singular Hölder
condition.

5. An example

In this last section an example is considered of a initial boundary value problem on a moving
domain which undergoes an initial dimensional change. It is the latter that will eventually lead to
a singular evolution equation of type (2.23). Let a function 0 < inf(ϕ) � ϕ ∈ BUC2+β(Rn−1,R)

be given. Consider the diffusion equation

u̇ − �u = 0, (x, y) ∈ R
n−1 × R with 0 < y < tϕ(x), t > 0, (5.1)

complemented by the boundary conditions

u(t, x,0) = g(x), (x, t) ∈ R
n−1 × R, (5.2)

∂νu
(
t, x, tϕ(x)

) = h(x), (x, t) ∈ R
n−1 × R, (5.3)

for some given g ∈ BUC2+β(Rn−1,R) and h ∈ BUC1+β(Rn−1,R). Problem (5.1)–(5.3) is a
parabolic initial boundary value problem in the space–time wedge⋃

t�0

{t} × [0 < y < tϕ].

Remark 5.1. For the free boundary problems mentioned earlier in the paper the upper boundary
of the domain would be given by a function ϕ(t, x) which is itself an unknown of the problem
and satisfies an additional evolution equation with initial condition ϕ(0, ·) ≡ 0, thus introducing
a singularity into the problem via the change of variable (5.4).
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In order to apply the abstract results derived in the previous sections, the problem needs to be
reformulated in a new set of variables

(τ, ξ, η) :=
(

t, x,
y

tϕ(x)

)
. (5.4)

If one rewrites the equations in the new variables using the names of the old variables, one obtains

u̇ − �xu − 1 + t2|∇ϕ|2
t2ϕ2

∂yyu = y

t
∂yu + 2

(∇ϕ

ϕ

∣∣∣∣∂y∇u

)
+ ϕ�ϕ − |∇ϕ|2

ϕ2
∂yu,

(x, y) ∈ S, t > 0,

u(t, x,0) = g(x), x ∈ R
n−1, t > 0,

∂yu(t, x,1) = tϕ

1 + t |∇ϕ|2
[
h

√
1 + |∇ϕ|2 + (∇ϕ|∇xu(t, x,1)

)]
, x ∈ R

n−1, t > 0,

for S = Rn−1 × (0,1). As the general case is included in the forthcoming analysis [15] of free
boundary problems, the simplifying assumption ϕ ≡ 1 is now made which leads to the simpler
system

u̇ − �xu − 1

t2
∂yyu − y

t
∂yu = 0, (x, y) ∈ S, t > 0, (5.5)

u(t, x,0) = g(x), x ∈ R
n−1, t > 0, (5.6)

∂yu(t, x,1) = th(x), x ∈ R
n−1, t > 0. (5.7)

The solution of (5.5)–(5.7) can be sought in the form

u(t, x, y) = v(t, x, y) + (
RD(t)g

)
(x) + t

(
RN(t)

)
h(x), (t, x, y) ∈ (0,∞) × S,

where the function v satisfies the equation

v̇ − �xv − 1

t2
∂yyv − y

t
∂yv =

[
y

t
∂y − ∂t

](
RD(t)g + tRN(t)h

)
(5.8)

complemented with homogeneous boundary conditions, i.e. with

v(t, x,0) = 0 = ∂yv(t, x,1). (5.9)

The functions RD(t)g and RN(t)h are defined as follows

RD(t)g = F−1 cosh(t |ξ |(1 − y))

cosh(t |ξ |) Fg, (5.10)

RN(t)h = F−1 sinh(t |ξ |y) Fh, (5.11)

t |ξ | cosh(t |ξ |)
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and satisfy

−�xu − 1

t2
∂yyu = 0,

complemented with the boundary conditions

u(t, ·,0) = g, uy(t, ·,1) = 0 for u = RD(t)g,

u(t, ·,0) = 0, uy(t, ·,1) = th for u = tRN(t)h,

respectively. Setting E0 = BUCβ(Rn−1,C([0,1])) it is possible to use the results collected in
the previous sections to obtain well-posedness of (5.8)–(5.9) in the space Cα

α((0, T ],E0) for
α ∈ (0,1).

Lemma 5.1. The function f := [ y
t
∂y − ∂t ][RD(t)g + tRN(t)h] satisfies

f ∈ Cα
α

(
(0, T ],E0

)
.

Proof. A direct computation shows that

Ff = [
(1 − y) sinh

(
t |ξ |(1 − y)

) + tanh
(
t |ξ |) cosh

(
t |ξ |(1 − y)

)] 1

cosh(t |ξ |) |ξ |Fg

− [
y cosh

(
t |ξ |y) − tanh

(
t |ξ |) sinh

(
t |ξ |y)] 1

cosh(t |ξ |)Fh

− y
sinh(t |ξ |(1 − y))

cosh(t |ξ |) |ξ |Fg + y
cosh(t |ξ |y)

cosh(t |ξ |) Fh.

The claim then follows from [18, Lemmata 2.2, 2.5, 2.6] combined with the operator-valued
Fourier multiplier theorem [3, Theorem 6.2]. The fact that only the case n = 2 is considered in
[18] is an immaterial difference, since the results involving n remain valid with some obvious
modifications for n > 2. (See [15].) �

It is well known that

B = �x : dom(B) ⊂ BUCβ
(
R

n−1) → BUCβ
(
R

n−1) (5.12)

generates a bounded analytic semigroup on BUCβ(R,C([0,1])) and it is easy the check by stan-
dard elliptic theory (see [20, Chapter 3] for instance) that

C = ∂yy + ty∂y : dom(C) ⊂ C
([0,1]) → C

([0,1]) (5.13)

(with boundary conditions) generates an exponentially decaying analytic semigroup on
BUCβ(Rn−1,C([0,1])) for any fixed t ∈ [0, T ]. In either case the missing variables can be
considered as parameters. The sum A(t) = B + 1

2 C then generates an exponentially decaying

t
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analytic semigroup on E0 with constant domain of definition, provided t > 0. In order to verify
that all conditions (2.27)–(2.29) are satisfied we still need to estimate

[
A(t) − A(s)

](−A(τ)
)−q =

[(
1

s2
− 1

t2

)
∂yy +

(
1

s
− 1

t

)
y∂y

][
−�x − 1

τ 2
∂yy − 1

τ
y∂y

]−q

for 0 < τ � s � t � T and q = 1,p. Since the estimate is only needed in the base space E0, it
causes no problem that [−τ 2�x − ∂yy − τy∂y

]−q

looses its x-regularizing effect as τ → 0 provided ∂yy (with boundary conditions) is invertible,
as it is. This leads to the estimates∥∥[

A(t) − A(s)
](−A(τ)

)−q∥∥
L(E0)

� c(t − s)/t
p−q
p−1 , q = 1,p.

Theorem 4.4 can now be safely applied to obtain the following result.

Theorem 5.2. Assume that g ∈ BUC2+β(Rn−1,R) and h ∈ BUC1+β(Rn−1,R) for β ∈ (0,1).
Then problem (5.5)–(5.7) possesses a unique solution with

u, u̇,Au ∈ Cα
α

(
(0, T ],BUCβ

(
R

n−1,C
([0,1]))).

It is given by

u(t) =
t∫

0

UA(t, τ )f (τ ) dτ +RD(t)g + tRN(t)h,

where U is the evolution operator generated by the singular family A(t) = B + 1
t2 C with B and

C as in (5.12)–(5.13) and the operators RD and RN are as defined in (5.10)–(5.11).
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