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Abstract

We have constructed a modified BFT method that preserves the chain structure of constraints. This method
advantages: first, it leads to less number of primary constraints such that the remaining constraints emerge auto
and second, it gives less number of independent gauge parameters. We have applied the method for bosonized chiral
model. We have constructed a gauge invariant embedded Lagrangian for this model.
 2004 Elsevier B.V.Open access under CC BY license.
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Dirac as a pioneer, quantized classical gauge th
ries by converting Poisson brackets to quantum c
mutators [1]. However, for second class constraint s
tems it is necessary to replace Poisson bracket
Dirac brackets and then convert them to quantum c
mutators. Sometimes this process implies proble
such as factor ordering which makes this approach
proper. The BFT method, however, solves this am
guity by embedding the phase space in a larger sp
including some auxiliary fields [2,3]. In this way on
can convert second class constraints to first class
and then apply the well-known quantization meth
of gauge theories [4,5]. In our previous paper [6]
showed that if one chooses arbitrary parameters o
BFT method suitably then the power series of au
iary fields for the embedded constraints and Ham
tonian could be truncated in some cases.
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In this Letter we want to preserve thechain struc-
ture of a second class system (except for the last
ement of the chain) during the BFT embedding. T
main idea of the chain structure, as fully discussed
[7], is that it is possible to derive the constraints
commuting distinct chains such that within each ch
the following iterative relation holds

(1)Φa
α = {

Φa
α−1,Hc

}
,

whereΦa
0 stand for primary constraints. The adva

tages of this method will be discussed afterward.
Consider a second class constraint system

scribed by the HamiltonianH0 and a set of secon
class constraintsΦα ; α = 1, . . . ,N satisfying the al-
gebra

(2)∆αβ = {Φα,Φβ },
where∆ is an antisymmetric and invertible matrix. F
simplicity and without loss of generality we suppo
that the second class constraintsΦα are elements o
one chain. The results can be extended to multi-ch
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system by adding the chain index (like the supersc
a in Eq. (1)) to the constraintsΦα . For converting
this second class system into a gauge system,
can enlarge the phase space by introducing auxil
variablesη where weassume their algebra to be

(3)ωαβ = {
ηα, ηβ

}
.

We demand that the embedded constraintsτα(q,p,η)

and HamiltonianH̃ (q,p,η) in the extended phas
space satisfy the following algebra

(4){τα, τβ} = 0,

(5){τα, H̃ } = τα+1, α = 1, . . . ,N − 1,

(6){τN , H̃ } = 0.

This gives an Abelian first class chain such that
terminating element commute with the Hamiltonia
We call this system asemi-strongly involutive system;
compared with strongly involutive one in which th
constraints commute with the Hamiltonian.

As discussed in [2–4], considering the power se

(7)τα =
∞∑

n=0

τ (n)
α , τ (n)

α ∼ ηn,

(8)H̃ =
∞∑

n=0

H (n), H (n) ∼ ηn,

in which τ
(0)
α = Φα and H (0) = Hc(q,p), one can

show that these may be solutions to Eqs. (4) and
if

(9)τ (1)
α = χαβ(q,p)ηβ,

(10)τ (n+1)
α = − 1

n + 2
ηβωβγ χγ δB

(n)
δα , n � 1,

(11)H (n+1) = − 1

n + 1
ηαωαβχβγ Λ(n)

γ

in which

(12)B
(1)
αβ = {

τ
(0)
[α , τ

(1)
β]

}
(η)

,

B
(n)
αβ = 1

2
B[αβ]

=
n∑

m=0

{
τ (n−m)
α , τ

(m)
β

}

(13)+
n−2∑
m=0

{
τ (n−m)
α , τ

(m+2)
β

}
(η)

, n � 2,

(14)Λ(0)
α = {

τ (0)
α ,H (0)

} − τ
(0)
α+1, α < N,

Λ(1)
α = {

τ (1)
α ,H (0)

} + {
τ (0)
α ,H (1)

} + {
τ (2)
α ,H (1)

}
(η)

(15)− τ
(1)
α+1, α < N,

Λ(n)
α =

n∑
m=0

{
τ (n−m)
α ,H (m)

}

+
n−2∑
m=0

{
τ (n−m)
α ,H (m+2)

}
(η)

(16)

+ {
τ (n+1)
α ,H (1)

}
(η)

− τ
(n)
α+1, n � 2, α < N

andχαβ(q,p) should satisfy the following equation

(17)∆αβ + χαγ ωγ λχβλ = 0.

Forα = N , due to Eq. (6), the last terms in Eqs. (14
(16) are absent. The above results for semi-stron
involutive system is different from our previous resu
for strongly involutive one [2–4] in termsτ (0)

α+1, τ
(1)
α+1

andτ
(n+1)
α+1 in Eqs. (14)–(16), respectively. We remin

that [6], the aim is to choose a suitable solution
χαβ in Eq. (17) such that the series forτα and H̃

truncates after a few steps. For example when∆ is
the symplectic matrixJ , the choiceω = −J and
χ = J solves (17); similarly when∆ is a constan
(antisymmetric) matrix, the choiceω = −∆ andχ = 1
is appropriate.

Now let see what is the advantage of the ch
structure in our modified BFT method. We emphas
on two points.

(1) Suppose we are given a singular Lagrang
L which leads to one primary constraintΦ1. Let the
secondary constraints emerge as a second class
with elementsΦα (α = 1, . . . ,N) resulting from con-
sistency of the constraints implicit in the chain r
lation (1). After embedding one finds in the trad
tional BFT method a HamiltoniañH together withN

constraints, all in strongly involution. The constrain
can be viewed in this case asN given primary con-
straints. However, preserving the chain structure, o
ultimately obtains an embedded Hamiltonian with j
one primary constraint. The otherN − 1 constraints
are then obtained automatically from the consiste
conditions.
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It should be added that sometimes it is poss
to reconstruct a singular Lagrangian from a giv
canonical Hamiltonian and primary constraints, ev
though it is not guarantied generally. However,
less the number of primary constraints, the more
chance to find the original Lagrangian which gives
desired primary constraints and Hamiltonian. In
following we will give an example to show this poin
We think that our modified BFT method improves t
chance of finding a corresponding Lagrangian yield
the embedded primary constraints.

To be more precise, when the Hamiltonian
quadratic and the primary constraints are linear w
respect to the phase space coordinates, one can e
reconstruct the corresponding singular Lagrangian
do this, one should solve the constraint equations f
number of momenta; and then insert just linear te
with respect to the corresponding velocities (w
coefficients given by the solutions of the momen
in the Lagrangian. The remaining quadratic terms
the Lagrangian can be found from the correspond
terms of the Hamiltonian in a regular way.

The important point is that for the cases conside
in this Letter (∆ = J or ∆ = constant) the constrain
are necessarily linear before embedding. As expla
in more details in [6] after embedding, the constrai
remain linear with respect to the coordinates of the
tended phase space. Moreover, if the original Ham
tonian is quadratic, it would remain quadratic af
embedding. It is clear that beginning with a quadra
singular Lagrangian (which is the case for most
teresting models) a number of linear primary (as w
as secondary) constraints and a quadratic Hamilto
emerge. Therefore, using our method, after embed
one finds a quadratic embedded Hamiltonian toge
with some linear primary constraints in the same nu
ber as the original model. This guarantees that
can find the embedded singular (Wess–Zumino)
grangian, with the primary constraints of the emb
ded model as the primary constraints.

(2) When a chain structure exists the num
of independent gauge parameters is much less
when we lack it. By “gauge parameters” we me
arbitrary functions of time that appear in the solutio
of equations of motion. To be more precise, in
traditional BFT method where we have ultimate
the strongly involutive constraintsτα and Hamiltonian
H̃ , it is clear that the following function acts as th
y

generating function of gauge transformation

(18)G =
∑

εα(t)τα(q,p,η).

As is apparent, here the number of gauge parame
εα(t) is equal to the total number of constraints.

However, in the presence of the chain structur
can be shown that the number of gauge paramete
just equal to the number of distinct chains [8]. The
exist two equivalent methods to construct gauge ge
ating function [9,10]. In the special case, where all
constraints are Abelian and the terminating eleme
of each chain commute strongly with Hamiltonian, t
gauge generating function can be written as

(19)G =
m∑

i=1

Ni∑
α=1

(
− d

dt

)Ni−α

ζi(t)Φ
(i)
α ,

where ζi(t) are infinitesimal arbitrary functions o
time, m is the total number of first class chains a
Ni is the length of theith chain.

It should be remembered that the generating fu
tion (18) gives the symmetries of the extended act
while G in (19) gives the symmetries of the total a
tion. The former formalism (i.e., the extended Ham
tonian), however, may be shown to give the correct
sults for physical (non-gauged) observables.

Now it is instructive to apply the general ide
discussed above to a specific model. The boson
chiral Schwinger model in 1+ 1 dimensions with
regularization parametera = 1 is described by the
Lagrangian density [11,12]:

LN = 1

2
∂µφ∂µφ + (

gµν − εµν
)
∂µφAν − 1

4
FµνF µν

(20)+ 1

2
AµAµ

in which φ is a scalar andAµ is a vector field. There
is one second class chain including four second c
constraints as follows:

Φ1 ≡ π0 ≈ 0,

Φ2 ≡ E′ + φ′ + π + A1 ≈ 0,

Φ3 ≡ E ≈ 0,

(21)Φ4 ≡ −π − φ′ − 2A1 + A0 ≈ 0,

where π , π0 and E are momenta conjugate toφ,
A0, andA1, respectively. The canonical Hamiltonia
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density corresponding to Eq. (20) is

HN
C = 1

2
π2 + 1

2
φ′ 2 + 1

2
E2 + EA′

0

(22)+ (π + φ′ + A1)(A1 − A0).

Eqs. (21) represent a second class constrained sy
with the algebra

(23)
{
Φi(x, t),Φj (y, t)

} = ∆ij δ(x − y),

where

(24)∆ =



0 0 0 −1
0 0 1 0
0 −1 0 2
1 0 −2 0


 .

Let define four auxiliary fieldsηα(x) with the algebra
given by ω = −∆. As discussed above, the choi
χ = 1 satisfy Eq. (17). Then following the instruction
given in Eqs. (9) and (10), the new set of first cla
constraint are found to be

τ1 ≡ π0 + η1 ≈ 0,

τ2 ≡ E′ + φ′ + π + A1 + η2 ≈ 0,

τ3 ≡ E + η3 ≈ 0,

(25)τ4 ≡ −π − φ′ − 2A1 + A0 + η4 ≈ 0.

From Eqs. (14)–(16) the embedded Hamiltonian wh
preserves the chain structure (except for the last
ment) is

(26)H̃ =HN
c +H(1) +H(2),

where

(27)H(1) = −η1(φ′′ + π ′ + 2A′
1 + 2E),

H(2) = η1 ′η2 + η2η4 + η2η2 − η1η1 ′′ − 2η1η3

(28)− 1

2
η3η3.

Here it can be checked that the constraints in Eqs.
satisfy the chain structure relation (1) whereτ1 is the
primary constraint. The chiral Schwinger model h
also been discussed in [6] where the set of first c
constraints are the same as (25) while the embed
HamiltonianH̃ is different. It is worth nothing tha
this Hamiltonian does not differ from that of th
strongly involutive formulation by the mere additio
of a suitable combination of the first class constrain
According to Eq. (19) the gauge generating fu
tion written in terms of just one infinitesimal gaug
parameterζ(x, t) is

(29)G =
∫

(−ζ τ4 + ζ̇ τ3 − ζ̈ τ2 + ˙̈ζ τ1) dx.

The infinitesimal gauge variations of the original a
auxiliary fields generated byG are as follows

(30)

δφ = ζ − ζ̈ , δA0 = ˙̈ζ ,

δA1 = ∂ζ̈ + ζ̇ , δπ = ∂ζ − ∂ζ̈ ,

δπ0 = ζ, δE = ζ̈ − 2ζ,

δη1 = −ζ, δη2 = −ζ̇ ,

δη3 = 2ζ − ζ̈ , δη4 = 2ζ̇ − ˙̈ζ .

It can be directly checked that the total action
invariant under these variations.

We can redefine the auxiliary fieldsη1 to η4 into
two fields η, ξ and their canonical momentaπη and
πξ as follows

(31)

η = η1, πη = η4 + 2η2,

ξ = η3, πξ = η2.

Fortunately all the terms in Hamiltonian (26) a
quadratic. This make it easy to reconstruct the follo
ing Lagrangian

L= LN + η
(
φ′′ + π1 + 2A1 + 2E

)

+
(

η̇2 − η′ 2 − η̇η′ + η̇ξ̇ + 2ηξ + 1

2
ξ2

)

(32)− ηȦ0.

The first term is the original Lagrangian (20), t
second and third terms are due toH(1) and H(2)

in Eqs. (27) and (28) respectively and the last te
(−ηȦ0) is the crucial term which converts the prima
constraintπ0 into π0+η of the embedded system. On
can directly check that beginning with the Lagrang
(32) the first class system given by HamiltonianH̃ in
Eq. (26) andτ1 to τ4 in Eq. (25) would be obtained.
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