Available online at www.sciencedirect.com
S(:IEN(:EC;JDIF!EGT®
PHYSICS LETTERS B

ELSEVIER Physics Letters B 584 (2004) 220—224

www.elsevier.com/locate/physletb

The BFT method with chain structure

A. Shirzad*®, M. Monemzadeh

@ Department of Physics, Isfahan University of Technology (IUT), Isfahan, Iran
b |nstitute for Sudies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran, Iran

Received 6 October 2003; received in revised form 11 November 2003; accepted 19 January 2004
Editor: L. Alvarez-Gaumé

Abstract

We have constructed a modified BFT method that preserves the chain structure of constraints. This method has two
advantages: first, it leads to less number of primary constraints such that the remaining constraints emerge automatically;
and second, it gives less number of independent gauge parameters. We have applied the method for bosonized chiral Schwinge
model. We have constructed a gauge invariant embedded Lagrangian for this model.

0 2004 Elsevier B.VOpen access under CC BY license.

Dirac as a pioneer, quantized classical gauge theo- In this Letter we want to preserve tichain struc-
ries by converting Poisson brackets to quantum com- ture of a second class system (except for the last el-
mutators [1]. However, for second class constraint sys- ement of the chain) during the BFT embedding. The
tems it is necessary to replace Poisson brackets bymain idea of the chain structure, as fully discussed in
Dirac brackets and then convert them to quantum com- [7], is that it is possible to derive the constraints as
mutators. Sometimes this process implies problems commuting distinct chains such that within each chain
such as factor ordering which makes this approach im- the following iterative relation holds
proper. The BFT method, however, solves this ambi- B
guity by embedding the phase space in a larger space% = {q)a—l’ HC}’ @)
including some auxiliary fields [2,3]. In this way one  where ®§ stand for primary constraints. The advan-
can convert second class constraints to first class onesages of this method will be discussed afterward.
and then apply the well-known quantization method  Consider a second class constraint system de-

of gauge theories [4,5]. In our previous paper [6] we scribed by the HamiltoniarHy and a set of second
showed that if one chooses arbitrary parameters of the class constraint®,; o = 1, ..., N satisfying the al-

BFT method suitably then the power series of auxil- gebra
iary fields for the embedded constraints and Hamil-
tonian could be truncated in some cases. Aop ={Pa, P}, (2)

whereA is an antisymmetric and invertible matrix. For

simplicity and without loss of generality we suppose
 E-mail addresses: shirzad@ipm.ir (A. Shirzad), that the second class constraidts are elements of
monemzadeh@sepahan.iut.ac.ir (M. Monemzadeh). one chain. The results can be extended to multi-chain
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system by adding the chain index (like the superscript
a in Eq. (1)) to the constraint®,. For converting

n—2
(n—m) _(m+2)
2wy nz2 (9)
this second class system into a gauge system, one m=0

can enlarge the phase space by introducing auxiliary A&O) = {to(,o), H(O)} - tﬁl, a <N, (14)
variablesy where weassume their algebra to be @D _ [, O 0 @ @ g

S 9 Ay —{Ta H }+{fa H }+{Toz H }(77)
w*f = {Ua, 77/3}- (3) — I;Bl, a <N, (15)

n

We demand that the embedded constraiptg, p, n) (
. .~ ) ) — (n—m) py(m)
and HamiltonianH (¢, p,n) in the extended phase A" = Z{fan " H™ }

space satisfy the following algebra m=0
n—2
- (m+2
(Ta. 75} =0, @) + Y fzm B2
(ta, H) = Tar1, a=1,...,N—1, (5) m=0

+{IOE"+1),H(1)} ™ =2 a<N

(m  Catl
(16)
This gives an Abelian first class chain such that its andx.s(¢, p) should satisfy the following equation
terminating element commute with the Hamiltonian. ”
We call this system aemi-strongly involutive system; Aap + Xay@"" xpr =0. (17)
compared with strongly involutive one in which the Fora = N, due to Eq. (6), the last terms in Egs. (14)—

{tn, H} =0. (6)

constraints commute with the Hamiltonian. (16) are absent. The above results for semi-strongly
As discussed in [2—4], considering the power series involutive system is different from our previous results
o for strongly involutive one [2—4] in termso(ffl, rﬁl
Ty = Zf(fl"), M~ (7) andro(t'fil) in Egs. (14)—(16), respectively. We remind
n=0 that [6], the aim is to choose a suitable solution for

Xep in EQ. (17) such that the series fex and H

00 truncates after a few steps. For example wheris

H= ZH(”), H® ~ ", (8) the symplectic matrixJ, the choicew = —J and
n=0 x = J solves (17); similarly whemA is a constant

) ) ©) 0 (antisymmetric) matrix, the choiee= —A andy =1
in which 7,” = @, and H® = H.(q, p), one can s appropriate.

show that these may be solutions to Egs. (4) and (5)  Now let see what is the advantage of the chain

if structure in our modified BFT method. We emphasize
on two points.

@ _ B
o = Xep(d, PIN”, ©) (1) Suppose we are given a singular Lagrangian
TOEn+1) __ nﬁwﬁyXySng)’ n>1, (10) L which leads to one primary constrai@ . Let the .
n+2 secondary constraints emerge as a second class chain

with elementsp, (¢« =1,..., N) resulting from con-

n+1 n
H*Y = “ar1! w“ﬂXﬁVA;) (11) sistency of the constraints implicit in the chain re-
in which lation (1). After embedding one finds in the tradi-
tional BFT method a HamiltoniaH together withv
W _ {t<0)’ T(l)} 7 (12) constraints, all in strongly involution. The constraints
op Lo > A1 T can be viewed in this case a6 given primary con-
B™ — } B straints. However, preserving the chain structure, one
of 2 [aB]

" (nem) _(m) one primary constraint. The othéf — 1 constraints
- Z{fa ' Tp J are then obtained automatically from the consistency
m=0 conditions.

ultimately obtains an embedded Hamiltonian with just
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It should be added that sometimes it is possible generating function of gauge transformation
to reconstruct a singular Lagrangian from a given
canonical Hamiltonian and primary constraints, even G = Zé‘“(l)fa(q, psn)- (18)
though it is not guarantied generally. However, the
less the number of primary constraints, the more the
chance to find the original Lagrangian which gives the
desired primary constraints and Hamiltonian. In the
following we will give an example to show this point.
We think that our modified BFT method improves the
chance of finding a corresponding Lagrangian yielding
the embedded primary constraints.

To be more precise, when the Hamiltonian is
quadratic and the primary constraints are linear with
respect to the phase space coordinates, one can easil

As is apparent, here the number of gauge parameters
£%(¢) is equal to the total number of constraints.

However, in the presence of the chain structure it
can be shown that the number of gauge parameters is
just equal to the number of distinct chains [8]. There
exist two equivalent methods to construct gauge gener-
ating function [9,10]. In the special case, where all the
constraints are Abelian and the terminating elements
of each chain commute strongly with Hamiltonian, the
)gauge generating function can be written as

reconstruct the corresponding singular Lagrangian. To m N 4\ Ni—«
do this, one should solve the constraint equations fora G = Z Z(__) L)W, (19)
number of momenta; and then insert just linear terms i=1 a=1 dt

with respect to the corresponding velocities (with

coefficients given by the solutions of the momenta)
in the Lagrangian. The remaining quadratic terms of
the Lagrangian can be found from the corresponding
terms of the Hamiltonian in a regular way.

The important point is that for the cases considered
in this Letter @ = J or A = constant) the constraints
are necessarily linear before embedding. As explained
in more details in [6] after embedding, the constraints
remain linear with respect to the coordinates of the ex-
tended phase space. Moreover, if the original Hamil-
tonian is quadratic, it would remain quadratic after
embedding. It is clear that beginning with a quadratic
singular Lagrangian (which is the case for most in-
teresting models) a number of linear primary (as well
as secondary) constraints and a quadratic Hamiltonian 1 1
emerge. Therefore, using our method, after embeddingﬁN - 58/“7’8% + (8" —e")up Ay — ZF““FW
one finds a quadratic embedded Hamiltonian together 1
with some linear primary constraints in the same num- +5AuA" (20)
ber as the original mode!. This guarantees t.hat one in which ¢ is a scalar andi, is a vector field. There
can find the embedded singular (Wess—Zumino) La- . o )
grangian, with the primary constraints of the embed- is one gecond class c.haln including four second class

. . constraints as follows:
ded model as the primary constraints.

(2) When a chain structure exists the number ®1=m~0,
of independent gauge parameters is much less than P
when we lack it. By “gauge parameters” we mean P2=E +¢ +7+A1~0,
arbitrary functions of time that appear in the solutions ¢z = E ~ 0,
of equations of motion. To be more precise, in the _ / N
traditional BFT method where we have ultimately Pa=—7—¢ — 241+ A0~0, (1)
the strongly involutive constraintg and Hamiltonian where 7, 7gp and E are momenta conjugate o,
H, it is clear that the following function acts as the Ag, and A1, respectively. The canonical Hamiltonian

where ¢;(¢) are infinitesimal arbitrary functions of
time, m is the total number of first class chains and
N; is the length of theéth chain.

It should be remembered that the generating func-
tion (18) gives the symmetries of the extended action,
while G in (19) gives the symmetries of the total ac-
tion. The former formalism (i.e., the extended Hamil-
tonian), however, may be shown to give the correct re-
sults for physical (non-gauged) observables.

Now it is instructive to apply the general idea
discussed above to a specific model. The bosonized
chiral Schwinger model in # 1 dimensions with
regularization parameter = 1 is described by the
Lagrangian density [11,12]:



A. Shirzad, M. Monemzadeh / Physics Letters B 584 (2004) 220-224 223

density corresponding to Eq. (20) is According to Eq. (19) the gauge generating func-
1 1 tion written in terms of just one infinitesimal gauge
HY = ST T’ 4+ ¢’2 + 2E2 + EA} parametet (x, 1) is
A1)(A1— Ap). 22
+(n+¢+ D41~ 40) (22) /( Ctat i3 —Eta+ i) dx. (29)
Egs. (21) represent a second class constrained system
with the algebra The infinitesimal gauge variations of the original and
auxiliary fields generated by are as follows
{@ix, 1), @j(y, )} = A;j8(x — ), (23) .
where dp=¢-¢, bAo=¢.
0O o 1 o0 dmo=¢, SE=¢—-2¢,
A= 0o -1 0 2| (24) spl=—¢, sn?=—¢,
to =0 =20 % ent=2i-F. (30)

Let define four auxiliary fieldg* (x) with the algebra
given by w = —A. As discussed above, the choice
x = 1 satisfy Eq. (17). Then following the instructions
given in Egs. (9) and (10), the new set of first class
constraint are found to be

It can be directly checked that the total action is
invariant under these variations.

We can redefine the auxiliary fieldg to n* into
two fieldsn, & and their canonical moments, and
me as follows

u=mo+nt~0,

_ 1 — 422
TQEE/+¢/+JT+A1+)72%0, = Ty =1+ 20
= =n? (31)
3 §=n> e =n°.
n=E+n°~0,
ta=—7 —¢ — 241+ Ao+ n* ~0. (25) Fortunately all the terms in Hamiltonian (26) are

guadratic. This make it easy to reconstruct the follow-
From Egs. (14)-(16) the embedded Hamiltonian which ing Lagrangian
preserves the chain structure (except for the last ele-

ment) is L=L"+n(¢" +rt+241+2E)
H=H +HY +H?, (26) + (ﬁz—n’z—ﬁn’+ﬁé+2ns+ %EZ)
h :
where O, (32)
HD = —nl¢" + 7' + 24, + 2E), (27)

The first term is the original Lagrangian (20), the
second and third terms are due tY and H®@
H® =00+ 0?0 +n°n® — ' — 2n™y in Egs. (27) and (28) respectively and the last term
1,4 (28) (—nAY) is the crucial term which converts the primary
277 - constraintrg into o+ n of the embedded system. One
Here it can be checked that the constraints in Eqgs. (25) ¢an directly check that beginning with the Lagrangian
satisfy the chain structure relation (1) wheteis the  (32) the first class system given by Hamiltoniéhin
primary constraint. The chiral Schwinger model has Ed- (26) andr to 74 in Eq. (25) would be obtained.
also been discussed in [6] where the set of first class

constraints are the same as (25) while the embedded

Hamiltonian A is different. It is worth nothing that ~ Acknowledgement

this Hamiltonian does not differ from that of the

strongly involutive formulation by the mere addition The authors thank referee for giving essential
of a suitable combination of the first class constraints. comments.
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