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ABSTRACT 

We consider the linear matrix equation AX + YB = C where A, B, and C are 
given matrices of dimensions (r + 1) X r, s X ( s + l), and (r + 1) X (s + l), respectively, 
and rank A = r, rank B = s. We give a connection between the least-squares solution 
and the solution which minimizes an arbitrary norm of the residual matrix C - AX - 
YB. 

1. INTRODUCTION 

Let Mm,, denote 
linear matrix equation 

where A E drnr, B E 

the space of real m x n matrices. We consider the 

AX+YB=C, (1.1) 

Asn and C = (cij) E .Mm, are given. We may write 
the equation (1.1) in the form 

Dx=d (1.2) 

with D = (Z,@A, B%Z,), DE J?,,,,,,,,+~~, and appropriate definitions of 
the vectors x and d, x E Rmism, d E R”“, where Q denotes the Kronecker 
product and I, is the identity matrix of order n. The equation (1.1) has a 
solution X and Y if and only if [l] 

(z-AA-)c(z-B-B)=o, (1.3) 
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where A- and B- are any g-inverses of A and B, respectively, i.e., 
M-A= A and BB-B= B. We denote 

Pp= AK, Q,= B-B. 

If the condition (1.3) is satisfied, then the general solution of (1.1) has the 
form [I] 

X=A-C-A-ZB+(I-A-A)W, 

Y=(Z-AA-)CB- +Z-(I-AA-)ZBB- (1.4) 

with WE A,,, and ZE A,,,, arbitrary. 
In the paper we assume that the condition (1.3) is not satisfied and we 

find a solution of (1.1) which minimizes an arbitrary norm of the residual 
matrix 

R(X;Y)=C-AX-YB. 

In particular, we may choose the $,-norm for 1~ p < cc. Then the matrices 
X, and Y, are the I,-solution of (1.1) if 

(IC- AX,-Y&=S,=?;li;](C- AX-YBI(,, 

where 

We denote 

R, = (l;o) = R( x,; Y,). 

The least-squares solution and the Chebyshev solution correspond to the 
values p = 2 and p = co, respectively. The properties of the Chebyshev 
solution and the 16solution for 1 < p < 00 and for m > r, n > s were investi- 
gated in [lo] and [9], respectively. 

We may reduce the number of unknowns in (1.1) imposing additional 
conditions on some of the unknowns in (1.1) which do not change the residual 
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matrix R(X; Y ). Thus, for m > r and n > s the number of single equations in 
(1.1) is greater than the number of the remaining unknowns (see [lo]). In this 
paper, however, we impose no additional conditions to reduce the number of 
unknowns in (1.1). 

The main purpose of this paper is to present the relations between the 
least-squares solution and the solution which minimizes an arbitrary norm of 
the residual matrix under the assumptions 

m=r+l, n=s+l, rank A = T, rank B = s. 0.5) 

This special case of (1.1) plays an important role in studying the properties of 
Chebyshev solution of (1.1) with arbitrary m and n (see [lo]). 

2. MAIN RESULT 

The matrix C may be interpreted as an element c of the vector space 
59 . mn. 

c=(c,,,...,c l”t...~Cml,..*,c,~n 1’. 

Let the space 6%‘“” be equipped with an arbitrary vector norm I(. (1, and let 
[ICI] be equal to the norm of the vector c. Together with the norm ]].]I, we 
consider also the dual norm /]./I * determined in the following way: 

llCII*= max (C,W), 
IlWT= 1 

where W = ( wij), W E A,,,,,, and 

(C, W) = c c cijwij. 
i=l j-1 

If l/p + l/q = 1, then the Z6norm is the dual norm of the $-norm (1~ p < 
co). The matrix C *, C* E .4? mn, such that I]C*l( = 1 and (C*,C) = ]IC[I* is 
called a dual matrix to C # 0. 

We consider the following problem. For the given matrices A, B, and C 
and for a given vector norm )I. 1). find matrices r? and Y such that 

Ill@?; Y)II = 8 = nyR(X; Y)II. (2.1) 



252 K. ZI&TAK 

Since we assume that the condition (1.3) is not satisfied, the error 6 is 
nonzero: 8 > 0. The solution of (2.1) is not unique. 

The problem (2.1) is related to the discrete approximation of a function 
f(& T,I) in two variables over a discrete point set 

{(tiyVj):i=l ,‘.., m; j=l >...> 4 

by functions of the form 

5 a,(Ox,bd+ l$lYl(l)bl(d. 
k=l 

where ak([) and b,(q) are given functions. When m = r + 1 and n = s + 1 
we have the simplest case of such approximation. 

We define the following set of matrices (the subdifferential of ](R(X; Y)]]): 

v-([IR(X;Y)II)= {W:WEJr,,, IIwII*~L II~(x;y)ll=(~(x~y)~w)~~ 

Now we formulate the theorem which states the characterization of the 
solution of the problem (2.1). 

THEOREM 2.1. The matrices X and Y are a solution of the problem (2.1) 
if and only if there exists a matrix U E V( JjR(X; Y)ll) such that 

UTA = 0, UBT=O. (2.2) 

We omit the proof of the theorem because it follows immediately from 
Theorem 1.7 given in [S, p. 161 and applied to the equation (1.2). Theorem 
2.1 generalizes the characterizations of the Chebyshev solution and the 
$-solution (1 < p < co) of the equation (1. l), which were given in [lo] and [9], 
respectively. 

For arbitrary m and n the &-solution of (1.1) is given explicitly only for 
p = 2. The matrices X, and Ys are the least-squares solution of (1.1) if and 
only if (see [9]; compare [6]) 

R2=(Z-P)C(Z-Q), (2.3) 

where P = AA-, Q = BT(BT)- and A-, (BT)- are symmetric g-inverses of 
A and BT, respectively. This means that P and Q are symmetric and 

Ar(Z-P)=O, B( Z - Q) = 0. (2.4) 
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LEMMA 2.1. Let the assumptions (1.5) be satisfied, and let the vectors w 
and u satisfy 

wTw=l, uTu = 1, (2.5) 

ATw = 0, Bu=O. (2.6) 

Then 

I- P=wwT, 1 - Q = uuT, (2.7) 

R, = YwuT, (2.8) 

6, = IYL (2.9) 

where 

y = wTcu, 

and there exist nonzero vectors v and z such that 

I-Pg=vwT, I - Q, = uzT. (2.10) 

Proof. Since rank A = r and rank B = s, it follows that ker( AT) and 
ker( B) are one-dimensional and are spanned by the vectors w and U, 
respectively [see (2.6)]. Moreover, we have (see [2, p. 161) 

rankP=rankP,=r, 

rankQ=rankQ,=s, 

and consequently 

rank(Z - P) = rank(Z - Q) = rank(Z - P,) = rank(Z - Q,) = 1. 

Therefore the expressions (2.7) are true, because P and Q are symmetric and 
the relations (2.4) and (2.5) hold. 

The formula (2.8) follows immediately from (2.3) and (2.7). From (2.5) 
and (2.8) we obtain 

S, = )lR,lI, = [ y2( WU~)~WU~]~” = )y), 

so (2.9) holds. 
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Now, by the definitions of Pg and Q, we have 

(I - P&A = 0, B( I - Q,) = 0. 

Thus the rows of I - Pg belong to ker(Ar) and the columns of Z - Q, belong 
to ker(B). Since the matrices Z - Pg and I - Qc: have rank 1, there exist 
vectors o and z such that (2.10) holds, which completes the proof. W 

From Lemma 2.1 we obtain that if the assumptions (1.5) are satisfied then 

(R(X;Y), R,) = (C, Rd. (2.11) 

LEMMA 2.2. Let F = (Aj) E An,,,, and let the assumptions (1.5) he 
satisfted, Zf the condition (1.3) is not satisfied and 

(F, R,) = 0, (2.12) 

then the equation AX + YB = F has a solution. 

Proof. Let the vectors W, u, o, and z satisfy (2.5), (2.6), and (2.10). 
Then 

(I - P,)F( I - Q,) = vwTFuxT = az)zT, (2.13) 

where CI = wTFu. From (2.8) we obtain 

(F, R,) = ywTFu = ya. (2.14) 

Because the condition (1.3) is not satisfied, we have R, # 0 and consequently 
y # 0 [see (2.9)]. From (2.12) and (2.14) it follows that (Y = 0. Therefore for 
the equation AX + YB = F the condition (1.3) is satisfied [see (2.13)], which 
completes the proof. W 

Now we prove the theorem which determines the connection between the 
solution of the problem (2.1) for an arbitrary vector norm and the least-squares 
solution under the assumption (1.5). This theorem is an extension of 
Sreedharan’s theorem concerning an overdetermined system of n + 1 linear 
equations in n unknowns (see [7], [5]). 
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THEOREM 2.2. Let the assumptions (1.5) be satisfied, and assume that 
the condition (1.3) does not hold. Then the equation 

AX+YR=C------ (C, Rs) R* 

W.J* a 
(2.15) 

has a solution, and any solution of (2.15) is a solution of the problem (2.1). 
Moreover, the error 6 is equal to 

6 = (CT R2) 
IIRzll* ’ 

(2.16) 

REM-. If the condition (1.3) holds, then the equation AX + YB = C 
has a solution which is also a solution of (2.1). 

Proof. Since the condition (1.3) is not satisfied, we have R, # 0. First we 
show that the equation (2.15) has a solution. For this purpose we apply 
Lemma 2.2. From the definition of the dual matrix we have 

llR211* = (RX, R,) and IlRSll = 1. 

Therefore 

C_ (C’R2)R* R 

IlR,II* ” 2 ’ 

Thus the condition (2.12) is satisfied for 

F=C- &!d,;, 
ll%.ll* 

which means that the equation (2.15) has a solution. 
Now, we verify that each solution of (2.15) is a solution of the problem 

(2.1). Let 

cc, R2) 

’ = IlR,lI* ’ 
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From (2.8) we obtain that p > 0, because (C, R,) = y2. Let X and Y be 
arbitrary, X E A,,,+r and Y E JH,+~,~. Then from (2.11) and by the defini- 
tion of the dual norm (we recall that llRX[j = I) we have 

II fw Y) II a 
(R(X Y), R,) (C, R,) =---= 

ttJM* It&II* p. 
(2.17) 

Therefore 

For the matrices X and Y, which are the solution of (2.15), we obtain equality 
in (2.17). So they are the solution of the problem (2.1) and the error 8 is 
equal to p, which completes the proof. a 

In Sreedharan’s theorem, the matrix of an overdetermined system of n + 1 
linear equations in n unknowns is assumed to have rank n. In Theorem 2.2, 
however, we only assume that A and B have full rank. 

Let the assumptions of Theorem 2.2 be satisfied. Then for the solution X 
and Y of the problem (2.1) we obtain [see (2.16) and (2.11)] 

,rR(g. y>,, = cc, Rd Pm 0 R2) -= 
lIR,lI* IIR,Il* . 

Therefore the following corollary is valid. 

COROLLARY 2.1. Let the assumptions of Theorem 2.2 be satisfied. Then 
the matrix 

U=LR, 
llRzll* 

belongs to V( ljR(%; y)(l), where the matrices 2 and y are the solution of 
(2.1). 

3. CONCLUSIONS 

Now, we consider the I,-norm. Then the Ii-norm is the dual norm. Let 
x=(rl,.‘.,X,)rE.P. Then the vector x*=(x:,...,x,*)rdefined by rT= 
sign xi is the dual vector to the vector x. From Theorem 2.2 we have the 
following corollary for the l,-norm, i.e. for the Chebyshev norm. 
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COROLLARY 3.1. Let the assumptions of Theorem 2.2 be satisfied. Then 
the equation 

AX+YB=C-pS, (3.1) 

where S = (sij), sij = sign(r/f’), p = (C, R2)/((R,((,, has a solution, and 
any solution of (3.1) is a Chebyshev solution of AX + YB = C and S, = p. 

A similar corollary may be formulated for the $,-norm for 1~ p < CO. We 
can compute the Chebyshev solution of AX + YB = C under the assumptions 
(1.5) by means of the formulae (1.4) applied to the equation (3.1). 

We introduce auxiliary vectors & = (tZl, . . . , 61~~~)~ and B = 

(Q l,...,Gic,+,)Twith 

Gi=(-l)‘detAi, iij=( -l)‘detBj, 

where Ai and Bj are obtained from A and B by deletion of the i th row and 
the jth column, respectively. Then there exist scalars (Y and /3 such that (see 

[41) 

w=cG, u=pi2, (3.2) 

where w and u are determined as in Lemma 2.1. Let the assumptions of 
Theorem 2.2 be satisfied. Let 9 = (C, zi,QT)/JIG&‘JI1. We know (see [lo]) 
that 8, = \?I and the matrices X, and Y, are a Chebyshev solution of (1.1) if 
and only if 

r(m’= sign(tZiGj~)lIR(X,; Y,)JI, 
‘I (3.3) 

for all pairs (i, j) such that Gicj + 0. The expression on the right side of (3.3) 
is equal [see (3.2) and Lemma 2.11 to 

sign( r,:2’) p, 

where p is determined as in (3.1). Hence, we have the following corollary. 

COROLLARY 3.2. Let the assumptions of Theorem 2.2 be satisfied. Then 
for each Chebyshev solution of AX + YB = C we have 

r(,m) = 
‘I 

slgn( ri(i”) S, 

for (i, j) such that r,(j2) + 0, 



258 K. ZIETAK 

The solution of (3.1) is a strict Chebyshev solution of (1.1) under the 
assumption (1.5) (see e.g. [3] for the definition of the strict Chebyshev 
solution). We can obtain the other Chebyshev solutions of (1.1) modifying the 
definition of S in (3.1) in the following way: 

Sij = 

( 

sign( r/:)) for r,(:) # 0, 

hij 
for r.(F) = 0 

(3.4) 
‘I ’ 

where ) hi jI < 1. The matrix S determined as in (3.4) is the dual matrix to R,. 
Therefore each solution of (3.1) in this case is a Chebyshev solution of (1.1) 
(see Theorem 2.2). 

The author is indebted to Professor P. Lancaster from the University of 
Calgary for his comments and suggestions, which improved the presentation. 
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