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Improving the Assessment of the Outcome
of Nonsynonymous SNVs with a Consensus
Deleteriousness Score, Condel

Abel González-Pérez1,* and Nuria López-Bigas1,*

Several large ongoing initiatives that profit from next-generation sequencing technologies have driven—and in coming years will

continue to drive—the emergence of long catalogs of missense single-nucleotide variants (SNVs) in the human genome. As a conse-

quence, researchers have developed various methods and their related computational tools to classify these missense SNVs as probably

deleterious or probably neutral polymorphisms. The outputs produced by each of these computational tools are of different natures and

thus difficult to compare and integrate. Taking advantage of the possible complementarity between different tools might allow more

accurate classifications. Here we propose an effective approach to integrating the output of some of these tools into a unified classifica-

tion; this approach is based on aweighted average of the normalized scores of the individualmethods (WAS). (In this paper, the approach

is illustrated for the integration of five tools.) We show that this WAS outperforms each individual method in the task of classifying

missense SNVs as deleterious or neutral. Furthermore, we demonstrate that this WAS can be used not only for classification purposes

(deleterious versus neutral mutation) but also as an indicator of the impact of the mutation on the functionality of the mutant protein.

In other words, it may be used as a deleteriousness score of missense SNVs. Therefore, we recommend the use of this WAS as a consensus

deleteriousness score of missense mutations (Condel).
Introduction

More than a dozen computational tools aimed at predict-

ing the effect of missense single-nucleotide variants

(SNVs) on protein function have been developed in the

past ten years, as the advances in high-throughput DNA

sequencing techniques opened the door to massive inter-

pretation of individual sequence variants. Large ongoing

initiatives, such as The Cancer Genome Atlas (Cancer

Genome Atlas Network, 2008),1 the International Cancer

Genome Consortium,2 and the 1000 Genomes Project

Consortium,3 as well as the sequencing of genomes of

patients affected by rare diseases,4–6 are producing compre-

hensive catalogs of mutations in the human genome.

Therefore, the need to determine whether those variants

correspond to polymorphisms in human populations or

whether they are involved in the development of diseases

will cause a continuous growth in the demand for such

methods and tools in the next few years.

The main objective of the tools that investigate the

impact of nonsynonymous SNVs on protein function is

to sort these mutants into those that are probably delete-

rious and those that encode neutral polymorphisms. As

a general rule, these tools are based on the constraints

imposed on amino acid changes in different regions of

the protein. These changes can be discovered through

the use of evolutionary information. Alternatively, some

of the tools directly assess the probable effect of the

mutation on the activity of the mutant protein.7–23 Indi-

vidual SNVs are subsequently sorted via scoring func-

tions,9,12–15,19,23 Bayesian classifiers,7 or machine learning

algorithms.11,20 Some of them are available to the user
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through web servers, whereas others can be downloaded

and run locally. Moreover, diverse datasets of mutations

have been employed for benchmarking the performance

of different methods. As a consequence, the user normally

finds it difficult to compare, complement, and integrate

their outputs.

In this paper, we describe our work to design amethod to

integrate the output of some of these predictive tools. To

implement the method, we combined five predictive tools,

Log R Pfam E-value (Logre),9 MAPP,8,19 Mutation Assessor

(Massessor),18 Polyphen2 (PPH2),7 and SIFT,13–15 into

a unified classification. First, we used these five methods

to score and classify HumVar, a comprehensive dataset of

deleterious and neutral mutations compiled elsewhere.7

Then, we combined the outputs of the five methods in

four different ways. We found that a weighted average of

the normalized scores (WAS) of the five methods outper-

forms each individual tool—and the other three

combining operations assayed—in the task of classifying

SNVs as deleterious or neutral. The process of integrating

the scores of individual methods in theWAS uses the prob-

abilities of the complementary cumulative distribution of

scores produced by eachmethod to compute their weights.

The score of each method is thus penalized in an inverse

manner with respect to its confidence. TheWAS accurately

classified 88.2% of the mutations in HumVar. The accuracy

of the WAS on a second dataset of deleterious and neutral

mutations compiled by the same group attained 89.6%.

Furthermore, we demonstrate that the WAS of cancer

mutations changes significantly with their recurrence

and that it correlates well with the decrease in biological

activity of experimentally assayed TP53 (MIM 191170)
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Table 1. Datasets Used in the Study

HumVar HumDiv Cosmic Recurrence p53 Mutants

Positives 12405 deleterious mutations
collected from UniProt

3155 disease-relatedmutations
collected from OMIM

cancer-related mutations
divided in four groups
by degree of recurrence
(see text)

2312 mutants divided in
bins by percent of
transcription activation at four
yeast promoters with respect
to wild-type
(see text)

Negatives 8257 common
polymorphisms collected
from Swiss-Prot

6321 orthologous changes
in proteins in the positive set

Source Polyphen27 Cosmic database24,25 IARC TP53 database31

Use in the study design and evaluation of integrated scores correlation between WAS and
recurrence

correlation between WAS and
decrease in biological activity
mutants. Therefore, we hypothesize that it could serve as

a good predictor of the impact of missense mutations on

the biological activity of proteins.

In conclusion, we propose that the results of different

methods aimed at predicting the outcome of missense

SNVs may be readily and effectively combined into an

integrated output to produce a better classifier than the

individual methods. Specifically, we recommend that

a WAS be used to carry out this integration. We regard

the resulting index as a consensus deleteriousness score

of missense mutations (Condel). At the bottom of the

Discussion section, we explain how to calculate the Con-

del. Moreover, a PERL script that can compute it from

the individual scores of a set of SNVs is available at our

website (see Web Resources section), along with instruc-

tions for employing it. Furthermore, the Condel, which

reflects the coherence of different methods of classifying

missense SNVs, can provide some insight into the impact

of the mutation on the biological activity of the proteins.
Material and Methods

Datasets
We used four datasets obtained from different sources (Table 1).

First, we used two datasets composed of positive and negative

examples to run five programs aimed at separating deleterious

from neutral missense SNVs and assessing the performance of

different ways to integrate their outputs (see below). These two

sets, named HumVar and HumDiv, were obtained from the web-

site of PPH2, one of the programs included in the study. The

Polyphen team originally compiled them to benchmark their

program.7 HumVar is composed of 12,405 deleterious mutations

and 8257 common polymorphisms, whereas HumDiv contains

3155 disease-related mutations and 6321 amino acid changes

observed in mammalian orthologous proteins. For the sake of

clarity, in this paper we refer to the positive and negative examples

in these two datasets as deleterious and neutral mutations, respec-

tively.

The remaining two datasets contained only deleterious muta-

tions, and we used them to assess whether the WAS correlated

with the recurrence of cancer mutations and with the degree of

impairment of the biological activity caused by the mutations.

The third dataset consisted of four disjointed subsets of the

Cosmic database,24,25 release 49, sampled at increasing degrees

of recurrence, as follows: 9543 mutations appearing in only one

cancer sample; 1791 mutations in two, three, or four cancer
The Am
samples; 561 mutations in five to nine cancer samples; and

745 mutations in ten or more cancer samples. Finally, the fourth

dataset was composed of 2312 TP53 mutants and their associated

biological activity data measured as the trans-activation of tran-

scription at four yeast promoters.26,27 The mutations were

grouped in ten bins according to the fraction of the biological

activity of the wild-type protein retained by the mutants.

Running Predictive Tools
Two of the tools (SIFT and PPH2) receive as input the identifier (or

sequence) of the mutant protein, the position of the mutation,

and the wild-type andmutant amino acids. They internally search

for orthologous and paralogous proteins from a given database

and construct and refine a multiple-sequence alignment, which

they use as the starting point to calculate the score for the amino-

macid substitution. Therefore, we downloaded them from their

respective websites and installed and ran them locally by using

just PERL scripts to control their inputs from the four datasets

and their outputs.We followed all indications from the developers

when we ran the tools.

We also downloaded the MAPP tool from its website. This tool

receives a multiple-sequence alignment as an input and calculates

scores for all possible substitutions at all positions of the align-

ment where at least 50% of the sequences are represented.19

Hence, we implemented a PERL pipeline to automatically recover

all plausible orthologous and paralogous proteins from the En-

sembl-compara database28 and built a multiple-sequence align-

ment and a phylogenetic tree from them by using ProbCons29

and ClustalW,30 respectively, which were then used by MAPP. Its

output file was parsed to retrieve the score corresponding to the

mutant amino acid in themodified position. The Logre was imple-

mented ad hoc according to the description of its algorithm.9

Mutation Assessor (Massessor) was launched at its web server,

and the results were obtained through its webAPI.

We ran all five tools on the four datasets described above, andwe

integrated their outputs as described in the following section. The

details on each tool’s version, the options we used to run each of

the tools, the databases that we searched for orthologous and

paralogous proteins, the implementation of the Logre algorithm,

and the automation of the MAPP are available in Table S1 of the

Supplemental Data.

Integrating the Output of Predictive Tools
After running the five tools on HumVar and HumDiv, we con-

structed the complementary cumulative distributions of the scores

of deleterious and neutral mutations produced by each tool. The

corresponding receiver operator characteristic (ROC) curves were

also built. In order to determine the optimal cutoff of each tool
erican Journal of Human Genetics 88, 440–449, April 8, 2011 441



for the datasets—it had only been reported for Polyphen2, which

was the only tool that had previously classified these datasets—we

assayed the dependence of their accuracy with respect to their

sensitivity (Figure S1). For each tool, we selected as a cutoff the

score that produced the sensitivity yielding the maximum accu-

racy at classifying each dataset. For HumVar, for example, the

optimal cutoffs (as normalized scores: see below) were as follows:

SIFT, 0.85; Logre, 0.51; MAPP, 0.06; Polyphen2, 0.28; and Masses-

sor, 0.26.

The internal scores of the five predictive tools, although

different in nature, reflect the probability that an amino acid

change will be accepted at a given position of a protein sequence.

Whereas SIFT computes directly, from a multiple-sequence align-

ment, a probability that a given substitution takes place,14,15

PPH2 calculates an a posteriori probability that a mutation is dele-

terious.7 It makes this calculation on the basis of a number of

features, one of which is a substitution score from a multiple-

sequence alignment. On the other hand, the MAPP score for

a given amino acid represents the violation of physico-chemical

constraints at a position of the protein sequence.19 The Logre

computes the alteration in the fit of the protein domain where

the mutation is located to an HMM profile caused by the amino

acid change.9 Finally, Massessor scores amino acid substitutions

on the basis of the conservation of residues that define subfamilies

within protein families in a multiple-sequence alignment.18 In

order to operate with comparable scores, we normalized the

internal scores of MAPP, Logre, and Massessor to values between

0 and 1 and took the complement of the SIFT probability as the

normalized score of this tool.

For each mutation, let Ni be a binary term that takes value 1 if

the i-th tool succeeds at classifying the mutation as either delete-

rious or neutral; let Ci be another binary term that takes value 1

if the i-th tool classifies the mutation as deleterious and 0 other-

wise. Let Si be the normalized score produced by that tool. Finally,

let Pni and Ppi be the probabilities of finding a neutral or delete-

rious mutation, respectively, with a score greater than Si in the

given dataset, obtained from the complementary cumulative

distribution of the scores produced by the i-th tool. We assayed

four ways to integrate the outputs of the tools in these two data-

sets: a simple vote score (SVS), a simple average score (SAS), a

weighted vote score (WVS), and a weighted average score (WAS).

The SVS and the SAS of each mutation can be defined as follows:

SVS ¼
X

i

Ci ; SAS ¼
P
i

Si
P
i

Ni

:

The equation used for calculating the WVS would be

WVS ¼
P
i

Ci �Wi

P
i

Wi

; where
Wi ¼ 1� Pni if Ci ¼ 1;
Wi ¼ 1� Ppi if Ci ¼ 0:

And, finally, the WAS can be obtained as follows:

WAS ¼
P
i

Si �Wi

P
i

Wi

; where
Wi ¼ 1� Pni if Ci ¼ 1;
Wi ¼ 1� Ppi if Ci ¼ 0:

Note that the term 1� Pni corresponds to the probability that an

above-the-score (predicted deleterious) mutation is not a false

positive, given the complementary cumulative distribution of

scores exhibited by the i-th tool. This probability will increase

with the score of the mutations, and as it increases, the contribu-
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tion of Si to the WVS or WAS will grow. On the other hand, for

mutations predicted to be neutral, the lower Si,, the smaller the

term 1 � Ppi,, which reflects the probability that the mutation

predicted to be neutral is not a false negative, and the lower the

contribution to the WVS or WAS. Also, the denominator of the

expression in both weighted approaches is the summation of

the weights, rather than the summation of methods that succeed

at classifying the mutation. These contributions may be thought

of as being also weighted. This ensures that the WVS and WAS

actually hold values between 0 and 1. See Figure S2 for further

details.
Results

Combined Classification of Missense Mutations

The approach we designed in this work to integrate the

output of different methods that assess the effect of

missense SNVs can, in principle, be applied to any array

of suchmethods. To implement it, we selected a set of tools

that could be readily installed and run locally, queried

through a webAPI, or easily implemented. This screening

process yielded the five aforementioned tools. It is impor-

tant to point out, however, that the approach to this inte-

gration does not depend on the array of predictive tools

employed; both weighted and average scores (see below)

may be applied to a subset of these five tools or to an

altogether different set of them.

After running the five tools on every mutation in the

positive and negative sets of HumVar and HumDiv7 (see

Material and Methods), we found that 97.9% deleterious

and 97.3% neutral mutations of HumVar and 99.7% posi-

tive and 98.8% negative mutations of HumDiv could be

classified by at least three of the tools (Table 2 and

Figure S3). Therefore, it was feasible to design an approach

that combined the output of the five tools into one unified

result. We pursued this integration at two levels: classifica-

tion and score. At the first level, we integrated the classifi-

cations of different methods by using both an SVS and

a WVS. At the second, the internal scores calculated by

each method to achieve a classification were combined

through an SAS and a WAS.

The weights employed reflect how extreme a value of

score is within the complementary cumulative distribu-

tion produced by a given tool. For a predicted deleterious

mutation, the weight—the probability that it is not a false

positive—increases with the score, thus inflicting a higher

penalty on scores that are closer to the cutoff and lower

costs to scores closer to the tail of the complementary

cumulative distribution of true neutral mutations

(Figure S2). For a mutation predicted to be neutral, on

the other hand, the lower the score, the smaller the

weight—the probability that it is not a false negative—

and thus, the higher the penalization. (The actual comple-

mentary cumulative distributions of scores that were

produced by the five methods of classifying HumVar and

subsequently used for computing the weights used for

calculating the WAS are presented in Figure S4.)
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Table 2. Coverage of Mutations in HumVar and HumDiv by the Five Tools

Number of Methods Classifying a Mutation

HumVar HumDiv

Disease Related Polymorphisms Disease Related Changes Orthologs

at least 1 100% 100% 100% 100%

at least 2 100% 100% 100% 100%

at least 3 97.9% 97.3% 99.7% 98.8%

at least 4 90.3% 81.1% 95.2% 84.8%

all 58.1% 46.8% 73.2% 48.5%
This way, if two methods produce the same score for

a mutation, more weight will be given to the positive

vote (or the above-cutoff score) of the tool for which the

complementary cumulative distributions of true delete-

rious and true neutral mutations are better separated.

Conversely, the below-cutoff score of this tool will get

a lower weight. This system of weights thus has the effect

of fine tuning the comparison of scores (or votes) from

different tools because the underlying probabilities depend

on the complementary cumulative distributions of scores

that a method produces for a given dataset.

For all deleterious and neutral mutations in HumVar and

HumDiv, we calculated the four aforementioned integrated

scores. Then, we constructed the ROC curves of these

indicators for both datasets (Figure 1; see also Figure S5)

and computed their accuracy at classifying them (Figure 2

and Figure S6). The accuracy of the five tools and the four

integrated scores in each dataset was computed at the sensi-

tivity fraction thatmaximized the success rate (seeMaterial

and Methods and Figure S1). The accuracies of the assayed

tools at classifying HumVar ranged from 69% to 77.1%,

and the integrated scores correctly classified between

76.3% and 88.2% of the mutations. Between 84.5% and

89.6%of themutations inHumDivwere correctly classified
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by the four integrated scores. TheWAS achieved thehighest

accuracy values in both datasets.

Both the original five tools and the four integrated scores

were better at classifying HumDiv than HumVar. This

behavior came as no surprise given the composition of

both datasets. They contain disease-related SNVs as posi-

tive examples; however, whereas the negative examples

in HumVar are common human polymorphisms, HumDiv

contains observed amino acid changes in mammalian or-

thologous proteins. Because all the five tools (and, conse-

quently, the integrated results) are designed to distinguish

between amino acid changes that are probably deleterious

and those that are accepted in evolution, the negative

examples in HumDiv are as a rule awarded lower scores

than their HumVar counterparts, whose alterations are

not necessarily found in orthologous proteins. This is

why we give higher relevance to the results obtained

with HumVar (where the improvement of the WAS with

respect to the individual methods is more notable) and

use the weights computed from this dataset in the remain-

ing parts of this work. For the same reason, the comple-

mentary cumulative distributions of scores distributed

with the script that calculates the WAS (see last section of

the Discussion) correspond to HumVar mutations.
massess
logre
pph2
MAPP
SIFT
SVS
WVS
SAS
WAS

Figure 1. ROC Curves Produced by the Five
Tools and the Four Integrated Scores with the
HumVar Dataset
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Figure 2. Accuracy with which the Five Tools
and the Four Integrated Scores Classify the
Hum Var Dataset
Green bars: accuracy of individual methods. Red
bars: accuracy of integrated scores.
We recalculated the WAS for all HumVar mutations by

using the weights computed from the tools’ classification

of HumDiv.We have called this process cross-classification,

and we employed it as a means of validating the WAS

approach on a dataset different than the one used for

computing the weights. (The complementary cross-classifi-

cation was also performed.) Figure S7 presents the ROC

curves resulting from cross-classification of both datasets

along with the original ROC curves. It is apparent from

this graph that the accuracy of HumVar cross-classification

is practically equal to that of to its self-classification. On the

other hand, cross-classifying HumDiv decreases the accu-

racy of the WAS on this dataset by only approximately 2%.

We also performed a 10-fold cross-validation of the WAS

on HumVar (Figure S7). The ROC curve resulting from this

cross-validation shows that very little accuracy is lost when

the weights are computed from 90% of the mutations in

HumVar and used for classification of the remaining 10%.

Cancer Mutation Recurrence Correlates with WAS

Because theWAS exhibited the best performance in the task

of classifying the mutations in HumVar and HumDiv, we

then evaluated whether the WAS could be used as an indi-

cator of the importance of cancer-associated mutations.

For that we assessed how well it correlated with cancer

mutation recurrence. To perform the analysis, we sampled

four disjoint subsets of Cosmic mutations with increasing

recurrence:mutations appearing in only one sample,muta-

tions recurring in two to four samples, mutations recurring

in five to nine samples, and those appearing in ten or more

samples (see Material and Methods). We calculated two

values of WAS for each mutation by using the weights ob-

tained from the complementary cumulative distributions

of deleterious and neutral mutations in HumVar.

As presented in Figure 3, the subsets of Cosmic exhibited

significantly different WAS distributions, as detected by

the Wilcoxon-Mann-Whitney test. The subset of muta-
444 The American Journal of Human Genetics 88, 440–449, April 8, 2011
tions found in only one sample exhibited

a mean WAS of 0.538, whereas the muta-

tions recurring in ten or more samples pre-

sented a mean WAS of 0.706. The p value

corresponding to the comparison of the

extreme groups was 2.33 3 10�143. In

contrast, neutral polymorphisms from

HumVar present a mean WAS of 0.236,

and their comparison to all groups of cancer

mutations produced p values smaller

than 10�318.

We made the same comparisons by using

the WAS computed with the weights taken
from HumDiv (Figure S8). We found that the mean WAS

of the four groups tended to be smaller, and the differences

were not so well marked as with the HumVar WAS. The

better results obtained with the HumVar WAS are most

likely explained by the deleterious mutations and neutral

polymorphisms in HumVar—and therefore the distribu-

tion of their scores—are more similar to highly recurrent

and nonrecurrent cancer mutations than the Mendelian-

disease-related mutations and orthologous amino acid

changes that compose HumDiv.

The WAS Correlates with the Biological Activity

of TP53 Mutants

In an attempt to determine whether theWAS could serve as

a good predictor of the impact of different missense muta-

tions on the biological activity of proteins, we examined

the correlation between the average WAS and the activity

of the mutant protein. For this analysis we used a dataset

composed of more than two thousand TP53 mutants and

their associated biological activity measured as the trans-

activation of transcription at four yeast promoters.

The mutants in the TP53 database were binned by their

biological activity (as a percentage of the wild-type) at four

yeast promoters, WAF1, MDM2, AIP1, and NOXA.31–33 We

formed ten bins by grouping the mutants with activity

between 0% and 10% of the wild-type, between 10%

and 20%, and so on. We then evaluated to what degree

the WAS of the mutations in each bin correlated with the

higher activity of the bin (Figure 4). We found that the

decrease in the ability of the p53 mutants to stimulate

transcription with respect to the wild-type shows a high

anti-correlation to the WAS of the bins. The Pearson’s

correlation coefficient ranged from �0.9 to �0.94.

A positional analysis of the WAS of mutants occurring in

the DNA binding domain of p53 revealed that positions

175, 176, 179, 196, 242, 248, 278, and 282 exhibited

mean values of WAS with p values below 0.005 (Figure 5).
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Figure 3. Comparison of the WAS of Four Disjoint Sets of Mutations from the Cosmic Database and the WAS of HumVar Neutral
Mutations
The five sets consist, respectively, of the neutral mutations in HumVar, the mutations appearing in only one sample (1), those appearing
in two to four samples (2–4), those appearing in five to nine samples (5–9), and those appearing in ten or more samples (10þ) in the
Cosmic database. The points represent the mean WAS; the error bars represent the standard error of the mean. The weights were
computed from the HumVar dataset. The p values resulting from the Wilcoxon-Mann-Whitney test of each group-group comparison
are shown in the graph. (All comparisons including neutral polymorphisms yielded p values smaller than 10�318.)
In other words, the probability that such mutations are

neutral is lower than 0.5%, as deduced from the comple-

mentary cumulative distribution of HumVar neutral

mutations.
Discussion

Designing and Implementing a Consensus

Deleteriousness Score

In this work we integrated the output of five classifiers that

categorize SNVs as probably neutral or probably delete-

rious. Others have employed this idea in bioinformatics

to accomplish tasks such as the identification of functional

elements within the genome.34–36 We devised a simple

approach, consisting of classifying two very comprehen-

sive datasets of human mutations, both neutral and

deleterious, with five of themost widely employed compu-

tational tools for sorting missense SNVs.7–9,12–15,18,19,23

The basic idea behind the integration of these tools is to

take advantage of their possible complementary perfor-

mance at classifying missense SNVs. An example of this

complementarity can be appreciated in the fact that

although SIFT, PPH2, and Massessor misclassify between

24.7% and 46.4% of HumVar neutral mutations, only

13.5% are misclassified by all three (Figure S9).

We combined the outputs of SIFT, Logre, MAPP, PPH2,

and Massessor by using two naive (SVS and WVS) and
The Am
two weighted approaches (SAS and WAS). We found that

the WAS performed better that the SAS in the task of

classifying missense mutations as neutral or deleterious,

as expected. On the other hand, the SVS actually outper-

forms its weighted counterpart by 2% in HumVar. All the

gain occurs at low scores, and it is most likely caused by

the different denominator used for calculating the SVS

and the WVS. Whereas the SVS divides the summation

by the number of tools that successfully classified the

mutation, the WVS divides it by the sum of their weights.

As a result, at lower scores—corresponding to mutations

classified as neutral by most methods—the SVS actually

receives a greater penalty than the WVS and separates

the populations of deleterious and neutral mutations

better.

The WAS attains an accuracy of 88.2% for classifying

HumVar and 89.6% for classifying HumDiv. It outperforms

all individual tools and the other three integrated scores at

this task. This behavior makes it the combination of choice

for integrating the output of tools aimed at classifying

the outcome of missense mutations. As cited in the

Results section, the higher accuracy reached by the Hum-

Div WAS is actually an artifact of the composition of the

dataset. Therefore, we recommend that the weights calcu-

lated from HumVar be used to compute the WAS of

missense SNVs, both for the task of classifying them as

deleterious or neutral, and for that of ranking their

deleteriousness.
erican Journal of Human Genetics 88, 440–449, April 8, 2011 445
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Mutants’ activity measured as their ability to trans-activate transcription at four yeast promoters (WAF1, MDM2, AIP1, and NOXA) is
given as a percent of the wild-type activity. The points represent the meanWAS; the error bars represent the standard error of the mean.
We also tested the performance of the WAS at categoriz-

ing subsets of mutations classified by exactly the same

number of tools to make sure that the WAS was not biased

toward sets of mutations recognized by more tools.

Figure S10 shows that the ROC curves produced by the

WAS on the subsets of HumVar and HumDiv mutations

classified by exactly five tools are very similar to those of

the entire datasets. The accuracy of the WAS in the subset

of HumDiv mutations classified by only four tools is

slightly better than its accuracy for the whole dataset.

Probably a lower fraction of mutations incoherently classi-

fied by several tools appears within this subset than in the

entire dataset. (Analogous results were obtained for muta-

tions classified by exactly four tools.)

WAS Used as a Deleteriousness Score

For the above-stated reasons, we chose the WAS computed

fromHumVar weights to proceed to score sets of differently

recurring cancer mutations and p53 mutants (see Material

and Methods). We wanted to assess whether, in addition

toperformingwell at sortingneutral fromdeleteriousmuta-

tions, the WAS would behave as a good predictor of the

effect of different mutations on the biological activity of

the mutants. In other words, we intended to test whether

the WAS could be used as a deleteriousness score of muta-

tions. Theunderlyinghypothesiswas thatmore-deleterious

amino acid changes should coherently be awarded high

scores by all methods, thus resulting in higher WAS values.
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In agreement with this thought, we found that more-

recurrent cancer mutations possess significantly higher

WAS values than their nonrecurrent counterparts. More-

over, the average WAS increases with the number of

samples in which a mutation is found. It also correlates

very well with the decrease in biological activity of p53

mutants. Three of the positions with WAS p values below

5 3 10�3 (175, 248, and 282) correspond to known p53

mutation hotspots. Amino acid changes at the first and

last position are classified as ‘‘structural’’ mutations,

whereas the 248 position (occupied by an arginine in the

wild-type protein) is a ‘‘contact’’ residue.32,37,38 Changes

at these three positions result in mutants whose trans-acti-

vation capability is severely impaired (as shown in the

upper panels of Figure 4). Interestingly, the other five posi-

tions with significantly high average WAS, although not

recognized as p53 mutational hotspots, do harbor

mutants, which exhibit sharp decreases of their trans-acti-

vation capacity. Taken together, these results indicate that

the WAS may indeed serve as a good indicator of the

decrease in biological activity resulting from a missense

deleterious mutation.

Using Condel

Given the above results, we propose that research groups

interested in assessing the probability that a set of missense

SNVs is deleterious run the five tools used in this work

and integrate their resulting scores by using a WAS-type
011
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Figure 5. Mutational Landscape of the C-Terminal Half of the DNA-Binding Domain of p53
The abscissa of all graphs represents the position within the sequence. The bottom graph depicts the meanWAS of mutants at each posi-
tion, and the other four graphs contain the mean biological activity, measured as the trans-activation of transcription at four yeast
promoters (WAF1, MDM2, AIP1, and NOXA, from top to bottom). Only 0.5% of the neutral mutations in HumVar score at or above
the WAS value marked by the red line in the bottom graph; vertical broken lines show the positions with mean WAS greater than
this value.
approach. (To accomplish this first step, groups need not

download and install the five tools locally. Instead, they

may query each tool at its webserver; the URLs are listed

in the Web Resources.) This probability-based integration,

which relies on the consistency of the assessment made by

different methods, should be of interest, primarily to

groups embarked in genome-wide projects producing large

catalogs of missense SNVs. To facilitate the employment of

our integration approach, which we have named Condel,

we have made available a PERL script that computes the

WAS of missense mutations from the complementary

cumulative distributions of scores of deleterious and

neutral mutations in HumVar. This PERL script, along

with the files containing such complementary cumulative

distributions, is available from our group’s website (see

Web Resources).

Examples of projects that could benefit from the use of

Condel include The Cancer Genome Atlas, the Interna-

tional Cancer Genome Consortium, the 1000 Genomes

Project Consortium, and the sequencing of genomes

of patients affected by rare diseases. In particular, projects

of this latter type, which frequently require ranking
The Am
de novo single-nucleotide variants found in exomic se-

quences by their potential effect on protein function,

should find Condel very useful.

The simplicity of Condel allows it to be easily modified

to include the output of new methods to the integrated

score or to change the datasets from which the weights

are calculated. The former requires only a modification of

the PERL script provided at our website and the calculation

of the complementary cumulative distributions corre-

sponding to the new tool, and the latter needs the recalcu-

lation of the complementary cumulative distributions. It

can be used with a subset of the five methods and yield

very good results, as shown in Figure S10.

Supplemental Data

The Supplemental Data contain ten figures and one table and can

be found with this article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

Pph2, HumVar, HumDiv: http://genetics.bwh.harvard.edu/pph2/

dokuwiki/downloads; http://genetics.bwh.harvard.edu/pph2

SIFT: http://sift.jcvi.org/

MAPP: http://mendel.stanford.edu/sidowlab/downloads/MAPP/

index.html; http://www.prophyler.org/

Logre: http://www.cgl.ucsf.edu/Research/genentech/canpredict/

Massessor: http://mutationassessor.org

Online Mendelian Inheritance in Man (OMIM): http://www.ncbi.

nlm.nih.gov/Omim

Condel: http://bg.upf.edu/condel
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Plymoth, A., de Fromentel, C.C., and Hainaut, P. (2009).

Recent advances in p53 research: an interdisciplinary perspec-

tive. Cancer Gene Ther. 16, 1–12.

33. Olivier, M., Hollstein, M., and Hainaut, P. (2010). TP53 muta-

tions in human cancers: Origins, consequences, and clinical

use. Cold Spring Harb. Perspect. Biol. 2, a001008.

34. Allen, J.E., and Salzberg, S.L. (2005). JIGSAW: integration of

multiple sources of evidence for gene prediction. Bioinfor-

matics 21, 3596–3603.

35. Allen, J.E., Majoros,W.H., Pertea,M., and Salzberg, S.L. (2006).

JIGSAW, GeneZilla, and GlimmerHMM: Puzzling out the

features of human genes in the ENCODE regions. Genome

Biol. 7 (Suppl 1: S9), 1–13.

36. Coghlan, A., and Durbin, R. (2007). Genomix: A method for

combining gene-finders’ predictions, which uses evolutionary

conservation of sequence and intron-exon structure. Bioinfor-

matics 23, 1468–1475.
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