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1. Introduction

A deterministic automaton is called synchronizing if there exists an input-sequence, called synchro-
nizing or reset word, such that the state attained by the automaton, when this sequence is read, does
not depend on the initial state of the automaton itself. Two fundamental problems which have been
intensively investigated in the last decades are based upon this concept: the Černý conjecture and the
Road coloring problem.
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The Černý conjecture [11] claims that every deterministic synchronizing n-state automaton has a
reset word of length (n − 1)2. This conjecture and some related problems have been widely inves-
tigated in several papers (cf. [2–4,6,8,9,11,13–15,18–20,23]). The interested reader is referred to [26]
for a historical survey of the Černý conjecture and to [7] for synchronizing unambiguous automata.

In [9], the authors have introduced the notion of local strong transitivity. An n-state automaton A
is said to be locally strongly transitive if it is equipped by a set W of k words and a set R of k distinct
states such that, for all states s of A and all r ∈ R , there exists a word w ∈ W taking the state s
into r. The set W is called independent while R is called the range of W . The main result of [9] is
that any synchronizing locally strongly transitive n-state automaton has a reset word of length not
larger than (k − 1)(n + L)+ �, where k is the cardinality of an independent set W and L and � denote
respectively the maximal and the minimal length of the words of W .

In the case where all the states of the automaton are in the range, the automaton A is said to
be strongly transitive. Strongly transitive automata have been studied in [8]. In particular, it is proved
that any transitive synchronizing automaton is strongly transitive. The notion of strongly transitive
automaton is related with that of regular automaton introduced in [20].

A remarkable example of locally strongly transitive automata is that of 1-cluster automata intro-
duced in [6]. An automaton is called 1-cluster if there exists a letter a such that the graph of the
automaton has a unique cycle labeled by a power of a. One can easily verify that an n-state automa-
ton is 1-cluster if and only if it has an independent set of words of the form

{
an−1,an−2, . . . ,an−k}.

Moreover one can take k equal to the length of the unique cycle labeled by a power of a.
In this paper, by developing the techniques of [9] and [10] on locally strongly transitive automata,

we investigate the synchronization problem and some related topics. A remarkable result we prove,
shows that any synchronizing locally strongly transitive n-state automaton has a reset word of length
not larger than

(k − 1)(n + L + 1) − 2k ln
k + 1

2
+ �,

where k is the cardinality of an independent set W and L and � denote respectively the maximal and
the minimal length of the words of W . As a straightforward corollary of this result, we prove that
every n-state 1-cluster synchronizing automaton has a reset word of length not larger than

2n2 − 4n + 1 − 2(n − 1) ln
n

2
,

so recovering, for such automata, some results of Béal et al. [5] and Steinberg [21] with an improved
bound.

We further investigate two notions that are strongly related with some extensions of the synchro-
nization problem: the notion of stable set and that of word of minimal rank of an automaton. Given
an automaton A = 〈Q , A, δ〉, a set K of states of A is reducible if there exists a word w ∈ A∗ taking
all the states of K into a fixed state. A set K ⊆ Q is stable if for any p,q ∈ K , and for any w ∈ A∗ ,
the set {δ(p, w), δ(q, w)} is reducible. The concept of stability was introduced in [12] and plays a
fundamental role in the solution [24] of the Road coloring problem. Clearly if A is synchronizing,
then every subset of Q is stable. Thus a question that naturally arises in this context is to evaluate,
for a given stable subset K in a non-synchronizing automaton, the minimal length of a word w such
that Card(δ(K , w)) = 1. We prove that if A is a locally strongly transitive n-state automaton, then the
minimal length of such a word w is at most

(M − 1)(n + L + 1) − k ln M + L, (1)
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where k is the cardinality of any independent set W , L denotes the maximal length of the words
of W , and M is the maximal cardinality of reducible subsets of the range of W .

The second topic that we investigate concerns the construction of words of minimal rank of an
automaton. The rank of a word w in an automaton A is the cardinality of the set of states δ(Q , w).
Clearly w is a reset word if and only if its rank is 1. The length of words of minimal rank in an
automaton was first investigated by Pin in [18,19] for deterministic automata and by Carpi in [7] for
unambiguous automata. In this context, we prove that, if A is a locally strongly transitive automaton,
and t is the minimal rank of its words, then there exists a word u of rank t and length

|u| � � + (k − t)(L + n + 1) − tk ln
k

t
,

where, as before, k is the cardinality of an independent set W and L and � denote respectively the
maximal and the minimal length of the words of W . It is also proved that the maximal cardinality of
reducible subsets of the range of W is M = k/t so that (1) can be written as(

k

t
− 1

)
(n + L + 1) − k ln

k

t
+ L.

In the case of 1-cluster n-state automata, the previous bound becomes

2nk

t
− n − 1 − k ln

k

t
.

Finally another application of our techniques concerns the study of a conjecture related to the well-
known Road coloring problem. This problem asks to determine whether any aperiodic and strongly
connected finite digraph, with all vertices of the same outdegree (AGW-graph, for short) has a syn-
chronizing coloring, that is, a labeling of its edges that turns it into a synchronizing deterministic
automaton. The problem was formulated in the context of Symbolic Dynamics by Adler, Goodwyn
and Weiss and it is explicitly stated in [1]. In 2009, Trahtman [24] has positively solved it. The solu-
tion by Trahtman has electrified the community of formal language theorists and recently Volkov has
raised in [25] (see also [2]) the problem of evaluating, for any AGW-graph G , the minimal length of
a reset word for a synchronizing coloring of G . This problem has been called the Hybrid Černý–Road
coloring problem. It is worth to mention that Ananichev has found, for any n � 2, an AGW-graph of n
vertices such that the length of the shortest reset word for any synchronizing coloring of the graph is
(n − 1)(n − 2) + 1 (see [2]). In [9], the authors have proven that, given an AGW-graph G of n vertices,
without multiple edges, such that G has a simple cycle of prime length p < n, there exists a synchro-
nizing coloring of G with a reset word of length (2p − 1)(n − 1). Moreover, in the case p = 2, that is,
if G contains a cycle of length 2, then, also in presence of multiple edges, there exists a synchronizing
coloring with a reset word of length 5(n − 1).

In this paper, we continue the investigation of the Hybrid Černý–Road coloring problem on a very
natural class of digraphs, those having a Hamiltonian path. The main result of this paper states that
any AGW-graph G of n vertices with a Hamiltonian path admits a synchronizing coloring with a reset
word of length

2n2 − 4n + 1 − 2(n − 1) ln
n

2
.

The paper is organized as follows: Section 2 contains the definitions and elementary results necessary
for our purposes. In Section 3, we present locally strongly transitive automata. Reducible sets of states
of a locally strongly transitive automaton are studied in Section 4. In Section 5, we obtain upper
bounds for the minimal length of a reset word of a locally strongly transitive synchronizing automaton
and, more generally, for the minimal length of a word taking a reducible set of states of a locally
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strongly transitive automaton into a single state. The construction of short words of minimal rank is
studied in Section 6. Finally, in Section 7 we consider the Hybrid Černý–Road coloring problem for
graphs with a Hamiltonian path.

Some of the results of this paper were presented at MFCS 2009 [9] and at DLT 2010 [10].

2. Preliminaries

We assume that the reader is familiar with the theory of finite state automata. In this section we
shortly recall a vocabulary of few terms and we fix the corresponding notation used in the paper.

Let A be a finite alphabet and let A∗ be the free monoid of words over the alphabet A. The identity
of A∗ is called the empty word and is denoted by ε . The length of a word w ∈ A∗ is the integer |w|
inductively defined by |ε| = 0, |wa| = |w| + 1, w ∈ A∗ , a ∈ A. For any positive integer n, we denote by
A<n the set of words of length smaller than n.

For any finite set of words, W , we denote respectively by LW and �W the maximal and minimal
lengths of the words of W .

A finite automaton is a triple A= 〈Q , A, δ〉 where Q is a finite set of elements called states and δ

is a map

δ : Q × A → Q .

The map δ is called the transition function of A. The canonical extension of the map δ to the set
Q × A∗ is still denoted by δ.

If P is a subset of Q and u is a word of A∗ , we denote by δ(P , u) and δ(P , u−1) the sets:

δ(P , u) = {
δ(s, u)

∣∣ s ∈ P
}
, δ

(
P , u−1) = {

s ∈ Q
∣∣ δ(s, u) ∈ P

}
.

In the sequel, if no confusion arises, for any set of states K and any w ∈ A∗ , we denote by K w−1

the set δ(K , w−1). With any automaton A = 〈Q , A, δ〉, we can associate a directed multigraph G =
(Q , E), where the multiplicity of the edge (p,q) ∈ Q × Q is given by Card({a ∈ A | δ(p,a) = q}). If the
automaton A is associated with G , we also say that A is a coloring of G . An automaton is transitive if
the associated graph is strongly connected. If n = Card(Q ), we will say that A is an n-state automaton.

The rank of a word w is the cardinality of the set of states δ(Q , w). A synchronizing or reset word
of A is any word u ∈ A∗ of rank 1. A synchronizing automaton is an automaton that has a reset word.
The following conjecture has been raised in [11].

Černý Conjecture. Every synchronizing n-state automaton has a reset word of length not larger than (n −1)2 .

Let A= 〈Q , A, δ〉 be any n-state automaton. One can associate with A a morphism

ϕA : A∗ →QQ ×Q ,

of the free monoid A∗ in the multiplicative monoid QQ ×Q of matrices over the field Q of rational
numbers, defined as: for any u ∈ A∗ and for any s, t ∈ Q ,

ϕA(u)st =
{

1 if t = δ(s, u),

0 otherwise.

Let us consider a linear order on Q so that Q = {q1, . . . ,qn}. If K is a subset of Q , then one can
associate with K its characteristic vector K ∈QQ defined as: for every i = 1, . . . ,n,

K i =
{

1 if qi ∈ K ,
0 if qi /∈ K .
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We denote by xt the transpose of any matrix (or vector) x. It is easily seen that, for any S1, S2 ⊆ Q
and v ∈ A∗ , one has:

S1ϕA(v)S2
t = Card

(
S2 v−1 ∩ S1

)
. (2)

The following well-known lemma will be used in the sequel. The proof can be found for instance
in [15] or in [17].

Lemma 1 (Fundamental lemma). Let ϕ : A∗ → QQ ×Q be a monoid morphism. Let V be a linear subspace of
dimension k of the vector space QQ and let v ∈ QQ . If vϕ(w) /∈ V for some word w ∈ A∗ , then there exists a
word w ′ ∈ A∗ such that

vϕ
(

w ′) /∈ V, and
∣∣w ′∣∣ � k.

3. Independent systems of words

In this section, we will present some results that can be obtained by using some techniques on
independent systems of words. We begin by recalling a definition introduced in [9].

Definition 1. Let A = 〈Q , A, δ〉 be an automaton. A set of k words W = {w1, . . . , wk} is called inde-
pendent if there exist k distinct states q1, . . . ,qk of A such that, for all s ∈ Q ,{

δ(s, w1), . . . , δ(s, wk)
} = {q1, . . . ,qk}.

The set R = {q1, . . . ,qk} will be called the range of W .

An automaton is called locally strongly transitive if it has an independent set of words. The following
example shows that local strong transitivity does not imply transitivity.

Example 1. Consider the following 6-state automaton A:

The automaton A is not transitive. On the other hand, one can easily check that the set W =
{(ab)2, (ab)3} is an independent set of A with range R = {0,2}.

It is worth to point out some remarkable facts about locally strongly transitive automata.
We recall that an n-state automaton A = (S, A, δ) is strongly transitive if there exists an indepen-

dent set W of n words. Thus, in this case, S is the range of W . The notion of strong transitivity was
introduced and studied in [8]. In particular it has been proved that every transitive synchronizing
automaton is strongly transitive. More precisely, one has that, if a transitive n-state automaton has a
reset word of length �, then it has an independent set of words whose maximal length is not larger
than n + � − 1.
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Another meaningful class of locally strongly transitive automata is the one of u-connected automata
introduced in [9]. Let A = (S, A, δ) be an n-state automaton and let u ∈ A∗ . Then A is called u-
connected if there exists a state q ∈ S such that, for every s ∈ S , there exists k > 0, such that suk = q.

Let A be a u-connected n-state automaton. Define the set R as:

R = {
q,qu, . . . ,quk−1},

where k is the least positive integer such that quk = q. Let i be the least integer such that, for every
s ∈ S , sui ∈ R . Finally define the set W as:

W = {
ui, ui+1, . . . , ui+k−1}.

One easily verifies that W is an independent set of A with range R .
In the case that the word u is a letter, one gets the class of 1-cluster automata introduced and

studied in [6].

Example 2. Consider the automaton A of Example 1. Taking u = ab and q = 0, one can check that, for
all s ∈ S one has suk = q for some k � 2. Thus A is u-connected. Since qu2 = q, one has R = {0,2}
and one can check that i = 2. Thus W = {u2, u3} is an independent set of A with range R . We notice
that A is not a 1-cluster automaton.

The following useful properties can be derived from Definition 1 (see [8, Section 3]).

Lemma 2. Let A be an automaton and let W be an independent set of A with range R. Then, for every u ∈ A∗ ,
the set uW is an independent set of A with range R.

Proposition 1. Let W = {w1, . . . , wk} be an independent set of a locally strongly transitive automaton A =
〈Q , A, δ〉 with range R. Then, for every subset P of R,

k∑
i=1

Card
(

P w−1
i ∩ R

) = k Card(P ).

Proof. Because of Definition 1, for every s ∈ S and r ∈ R , there exists exactly one word w ∈ W such
that s ∈ {r}w−1. This implies that the sets {r}w−1

i , 1 � i � k, give a partition of S . Hence, for any
r ∈ R , one has:

k = Card(R) =
k∑

i=1

Card
(

R ∩ {r}w−1
i

)
. (3)

Let P be a subset of R . If P is empty then the statement is trivially true. If P = {p1, . . . , pm} is a set
of m � 1 states, then one has:

k∑
i=1

Card
(

R ∩ P w−1
i

) =
k∑

i=1

Card

(
m⋃

j=1

R ∩ {p j}w−1
i

)
.

Since A is deterministic, for any pair pi, p j of distinct states of P and for every u ∈ A∗ , one has:

{pi}u−1 ∩ {p j}u−1 = ∅,
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so that the previous sum can be rewritten as:

k∑
i=1

m∑
j=1

Card
(

R ∩ {p j}w−1
i

)
.

The latter equation together with (3) implies that

k∑
i=1

Card
(

P w−1
i ∩ R

) = k Card(P ). �

Remark 1. As an immediate consequence of Proposition 1, one derives that either Card(P w−1
i ∩ R) =

Card(P ), for all i = 1, . . . ,k or Card(P w−1
j ∩ R) > Card(P ), for some j ∈ N with 1 � j � k.

4. Reducible sets

Let A = 〈Q , A, δ〉 be an n-state automaton. We say that a set K of states of A is reducible if, for
some word w , δ(K , w) is a singleton.

We now introduce the important notion of stability [12]. Given two states p,q of A, we say that
the pair (p,q) is stable if, for all u ∈ A∗ , the set {δ(p, u), δ(q, u)} is reducible. The set ρ of stable
pairs is a congruence of the automaton A, which is called stability relation. It is easily seen that an
automaton is synchronizing if and only if the stability relation is the universal equivalence. A set
K ⊆ Q is stable if for any p,q ∈ K , the pair (p,q) is stable. Any stable set K is reducible. Thus, even
if A is not synchronizing, one may want to evaluate the minimal length of a word w such that
Card(δ(K , w)) = 1.

In the sequel, we assume that W = {w1, . . . , wk} is an independent set of A with range R . We de-
note by M the maximal cardinality of reducible subsets of R . The following proposition characterizes
maximal reducible subsets of R .

Proposition 2. Let K be a non-empty reducible subset of R. The following conditions are equivalent:

1. Card(K ) = M,
2. for all w ∈ W , v ∈ A∗ , Card(K (v w)−1 ∩ R) � Card(K ),
3. for all w ∈ W , v ∈ A∗ , Card(K (v w)−1 ∩ R) = Card(K ).
4. K is a maximal reducible subset of R.

Proof. Implication 1. ⇒ 2. is trivial, since K (v w)−1 ∩ R is reducible.
Implication 2. ⇒ 3 is a straightforward consequence of Remark 1, taking into account that for any

v ∈ A∗ , the set vW is independent by Lemma 2.
Now, let us prove implication 3. ⇒ 4. Let X be a reducible subset of R with Card(X) = M . One

has δ(X, v) = {q} and δ(q, w) ∈ K for some v ∈ A∗ , q ∈ Q , w ∈ W . Hence, X ⊆ K (v w)−1 ∩ R so that
Card(K ) = Card(K (v w)−1 ∩ R) � M . One concludes that K is maximal.

Finally, let us prove implication 4. ⇒ 1. Let X be a reducible subset of R with Card(X) = M . One
has δ(K , v) = {q} and δ(q, w) ∈ X for some v ∈ A∗ , q ∈ Q , w ∈ W . Hence, K ⊆ X(v w)−1 ∩ R . Since
X(v w)−1 ∩ R is reducible, from the maximality of K one obtains K = X(v w)−1 ∩ R . We have yet
proved that 1. ⇒ 3. It follows that Card(X(v w)−1 ∩ R) = Card(X), that is, Card(K ) = M . �

Our next goal is to evaluate the length of a word v such that δ(K , v) is a singleton for some
maximal reducible subset K of R .
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Lemma 3. The condition

Card
(

K (v wi)
−1 ∩ R

) = Card(K ), i = 1, . . . ,k,

holds if and only if the vector RϕA(v) is a solution of the system⎧⎨⎩
(

K w−1
i − Card(K )

Card(R)
Q

)
x = 0,

i = 1, . . . ,k.

(4)

Proof. By taking into account Eq. (2), we obtain

(
K w−1

i − Card(K )

Card(R)
Q

)(
RϕA(v)

)t = RϕA(v)

(
K w−1

i − Card(K )

Card(R)
Q

)t

= Card
(

K w−1
i v−1 ∩ R

) − Card(K )

Card(R)
Card

(
Q v−1 ∩ R

)
= Card

(
K (v wi)

−1 ∩ R
) − Card(K ).

The statement then follows from the equality above. �
Lemma 4. Let A be a matrix with k rows. Suppose that no row is null and any column of A has at most t > 0
non-null entries. Then rank(A) � k/t.

Proof. Let {c1, . . . , cr} be a maximal set of linearly independent columns of A. Hence we have r =
rank(A). If rt < k, there exists an index i, with 1 � i � k, such that the entries at position i of c1, . . . , cr

are null. Since all columns of A linearly depend on {c1, . . . , cr}, this implies that the ith row of A is
null, contradicting our assumption. Thus rt � k and the conclusion follows. �
Lemma 5. Assume that K w−1

i �= ∅ and K w−1
i �= Q , for 1 � i � k. The rank of the system (4) is larger than or

equal to

max

{
Card(R \ K )

Card(K )
,

Card(K )

Card(R \ K )

}
.

Proof. Let C be the matrix of the system (4). One has

C = A − Card(K )

k
U ,

where

A =
⎛⎜⎝

K w−1
1

...

K w−1
k

⎞⎟⎠ ,

and U is the matrix with all entries equal to 1.
Since W is an independent set, any column of A has exactly Card(K ) non-null entries. By

Lemma 4, one has rank(A) � k/Card(K ), so that
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rank(C) � rank(A) − rank(U ) � k

Card(K )
− 1 = Card(R \ K )

Card(K )
.

Similarly, one has also that

C = A − U +
(

1 − Card(K )

k

)
U .

We notice that an entry of the matrix A − U is non-null if and only if the corresponding entry of A
is null. Thus any column of A − U has exactly k − Card(K ) non-null entries. By Lemma 4, one has
rank(A − U ) � k/(k − Card(K )), so that

rank(C) � rank(A − U ) − rank(U ) � k

k − Card(K )
− 1 = Card(K )

Card(R \ K )
. �

Lemma 6. Let K be a non-empty reducible subset of R such that Card(K ) �= M. Then there exist a word v ∈ A∗
and a positive integer i with 1 � i � k such that

Card
(

K (v wi)
−1 ∩ R

)
> Card(K ),

and

|v| � n − max

{
Card(R \ K )

Card(K )
,

Card(K )

Card(R \ K )

}
. (5)

Proof. Taking into account that, by Lemma 2, for any word v ∈ A∗ , {v w1, . . . , v wk} is an independent
set with range R , in view of Remark 1, it is sufficient to find a word v such that

Card
(

K (v wi)
−1 ∩ R

) �= Card(K ), (6)

for some i with 1 � i � k. Moreover, we may suppose that

K w−1
i �= ∅ and K w−1

i �= Q ,

since, otherwise, (6) is trivially verified with v = ε .
Let V be the space of solutions of the system (4). Since, by hypothesis, Card(K ) �= M , by

Proposition 2 and by Lemma 3, there exists v ∈ A∗ such that RϕA /∈ V . Moreover, by Lemma 1,
we may suppose that |v| � dimV . By Lemma 5, (5) holds true. Hence, by Lemma 3, we have
Card(K (v wi)

−1 ∩ R) �= Card(K ), for some i and the claim is proved. �
Now we are ready to prove the announced result.

Proposition 3. Let q ∈ R. There exist K ⊆ R and v ∈ A∗W ∪ {ε} such that

Card(K ) = M, |v| � (M − 1)(LW + n + 1) − k ln M, δ(K , v) = {q}.

Proof. If M = 1, the statement is trivially verified by v = ε . Thus we assume M � 2. Let K0 = {q}. By
Lemma 6, there are subsets K1, . . . , Kt of R , with t � 1, such that

1 = Card(K0) < Card(K1) < · · · < Card(Kt) = M,
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where, for every i = 0, . . . , t − 1,

Ki+1 = Ki(vi wγi )
−1 ∩ R,

and

|vi| � n − Card(R \ Ki)

Card(Ki)
,

with γi ∈ N, 1 � γi � k. By taking K = Kt and v = vt−1 wγt−1 · · · v0 wγ0 , we have Card(K ) = M and
δ(K , v) = {q}.

Moreover, we have

|v| �
t−1∑
i=0

(
n − Card(R \ Ki)

Card(Ki)
+ LW

)
�

M−1∑
j=1

(
n − k − j

j
+ LW

)

= (M − 1)(n + LW + 1) − k
M−1∑
j=1

1

j
� (M − 1)(n + LW + 1) − k ln M.

The statement of the proposition is therefore proved. �
5. Some applications

We now present some applications of the results proved in Section 4 to stable sets and to syn-
chronizing automata. As before, let A = 〈Q , A, δ〉 be an n-state locally strongly transitive automaton
where W = {w1, . . . , wk} is an independent set of A with range R . We denote by M the maximal
cardinality of reducible subsets of R . We start by proving a useful lemma.

Lemma 7. Let K be a reducible subset of R of maximal cardinality. There is no stable pair in K × (R \ K ).

Proof. By contradiction, let (p,q) ∈ K × (R \ K ) be a stable pair. Then, δ(K , v) = {δ(p, v)} and
δ(p, vu) = δ(q, vu) = s, s ∈ Q for some u, v ∈ A∗ . Thus δ(K ∪ {q}, vu) = {s}, contradicting the maxi-
mality of K . �
Proposition 4. For any stable set C there exists a word v such that

Card
(
δ(C, v)

) = 1, |v| � (M − 1)(n + LW + 1) − k ln M + LW .

Proof. By Proposition 3, there exist K ⊆ R and u ∈ A∗ such that Card(K ) = M , Card(δ(K , u)) = 1,
|u| � (M − 1)(n + LW + 1)−k ln M . Since W is an independent set with range R , there is w ∈ W such
that δ(C, w)∩ K �= ∅. Moreover, δ(C, w) is a stable subset of R . By Lemma 7, one derives δ(C, w) ⊆ K ,
so that Card(δ(C, wu)) = Card(δ(K , u)) = 1. The statement is thus verified for v = wu. �

The following result refines the bound of [8].

Proposition 5. Any synchronizing n-state automaton with an independent set W has a reset word of length
not larger than

(k − 1)(n + LW + 1) − 2k ln
k + 1

2
+ �W .
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Proof. In the case M = k, by following the first part of the proof of Proposition 3, one obtains a
word v such that Card(δ(R, v)) = 1 where

v = vk−1 wγk−1 · · · v1 wγ1 ,

with wγ1 , . . . , wγk−1 ∈ W and

|vi| � n − max

{
Card(R \ Ki)

Card(Ki)
,

Card(Ki)

Card(R \ Ki)

}
.

Therefore one obtains

|v| � (k − 1)(n + LW ) −
k−1∑
j=1

max

{
k − j

j
,

j

k − j

}

= (k − 1)(n + LW + 1) − k
k−1∑
j=1

1

min{ j,k − j} .

Let us verify that

k−1∑
j=1

1

min{ j,k − j} � 2 ln
k + 1

2
. (7)

Let t = �(k − 1)/2�. One easily verifies that
∑t

j=1 1/ j = ∑k−1
j=k−t 1/(k − j) � ln(t + 1), and conse-

quently

t∑
j=1

1

j
+

k−1∑
j=k−t

1

k − j
� 2 ln(t + 1).

Thus, if k is odd, then
∑k−1

j=1 1/min{ j,k − j} � 2 ln(t +1) = 2 ln((k +1)/2). If on the contrary k is even,

then
∑k−1

j=1 1/min{ j,k − j} � 2 ln(t + 1) + 2/k. Since ln((k + 1)/2) − ln(t + 1) = ln(1 + 1/k) � 1/k, we
obtain again (7). From (7) one derives

|v| � (k − 1)(n + LW + 1) − 2k ln
k + 1

2
.

The claim follows by remarking that, for every w ∈ W , Card(δ(Q , w v)) = 1. �
In the case of 1-cluster automata the following corollary recovers the results of Béal et al. [5] and

Steinberg [21] with an improved bound.

Corollary 1. Any synchronizing 1-cluster n-state automaton has a reset word of length

2n2 − 4n + 1 − 2(n − 1) ln
n

2
.
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Proof. A synchronizing 1-cluster n-state automaton has an independent set of the form W =
{an−1, . . . ,an−k}, where a is a letter and k is the length of the unique cycle labeled by a power of a.
If k = n, then the considered automaton is circular and therefore [13] it has a reset word of length
(n − 1)2. Since

(n − 1)2 � 2n2 − 4n + 1 − 2(n − 1) ln
n

2
,

in such a case, the statement is verified. Thus, we assume k � n − 1. By Proposition 5 and taking into
account that LW = n − 1 and �W = n − k, one has that there exists a reset word of length not larger
than

2nk − n − k − 2k ln
k + 1

2
.

In order to complete the proof, let us verify that, for 1 � k < n,

2nk − n − k − 2k ln
k + 1

2
� 2n2 − 4n + 1 − 2(n − 1) ln

n

2
.

This inequality can be rewritten as

2(n − 1) ln n − 2k ln(k + 1) � (2n − 1 + 2 ln 2)(n − k − 1). (8)

Using the inequality ln x � x − 1, one has

2(n − 1) ln n − 2k ln(k + 1) = 2k ln
n

k + 1
+ 2(n − k − 1) lnn

� 2k
n − k − 1

k + 1
+ 2(n − k − 1)(n − 1) � 2n(n − k − 1).

This proves (8) and the proof is complete. �
6. Words of minimal rank

We now present some applications of the results proved in Section 4 to estimate the length of a
shortest word of minimal rank. As before, let A = 〈Q , A, δ〉 be an n-state locally strongly transitive
automaton where W = {w1, . . . , wk} is an independent set of A with range R . We denote by M the
maximal cardinality of reducible subsets of R . The following lemma is useful.

Lemma 8. Let 1 � t � �k/M�. There are t pairwise distinct states q1, . . . ,qt ∈ R and a word v ∈ A∗ such that

Card
(
qi v−1 ∩ R

) = M, i = 1, . . . , t, (9)

|v| � t(M − 1)(LW + n + 1) − tk ln M. (10)

Proof. We proceed by induction on t . If t = 1, the claim follows from Proposition 3.
Let us prove the inductive step. For the sake of induction, suppose we have found pairwise distinct

states q1, . . . ,qt−1 ∈ R and a word v ′ ∈ A∗ such that

Card
(
qi v ′−1 ∩ R

) = M, i = 1, . . . , t − 1,∣∣v ′∣∣ � (t − 1)(M − 1)(LW + n + 1) − (t − 1)k ln M.



A. Carpi, F. D’Alessandro / Advances in Applied Mathematics 50 (2013) 339–355 351
Since (t − 1)M < k, there exists q ∈ R \ ⋃t
i=1 qi v ′−1. By Proposition 3, there exist K ⊆ R and u ∈

A∗W ∪ {ε} such that

Card(K ) = M, |u| � (M − 1)(LW + n + 1) − k ln M, δ(K , u) = {q}.

Set qt = δ(q, v ′) and v = uv ′ . Clearly, v satisfies (10). Taking into account Proposition 2, one verifies
that also (9) is satisfied, concluding the proof. �
Proposition 6. The minimal rank of the words of A is t = k/M. Moreover, there is a word u of rank t with

|u| � �W + (k − t)(LW + n + 1) − tk ln
k

t
. (11)

Proof. Applying the previous lemma in the case t = �k/M�, one finds a word v satisfying (10) such
that R may be partitioned by the sets qi v−1, i = 1, . . . , t , of cardinality M . Hence, k = tM .

Let us verify that t is the minimal rank of the words of A. Indeed, let u′ be a word of rank
smaller than t . Then one has δ(qi, u′) = δ(q j, u′) = q for some i, j, 1 � i < j � t , q ∈ Q . It follows that
(qiu−1 ∪ q ju−1) ∩ R is reducible, which contradicts the fact that this set has cardinality 2M . On the
other side, if u = w v with w ∈ W , then δ(Q , u) ⊆ δ(R, v) = {q1, . . . ,qt} so that u has rank t .

To complete the proof, it is sufficient to check that, choosing w ∈ W of minimal length, (11) holds
true. �

As an immediate consequence of Proposition 4 and Proposition 6, we obtain the following three
corollaries.

Corollary 2. Let t be the minimal rank of A. Then, for any stable set C there exists a word v such that

Card
(
δ(C, v)

) = 1, |v| �
(

k

t
− 1

)
(n + LW + 1) − k ln

k

t
+ LW .

Corollary 3. Let t be the minimal rank of a 1-cluster n-state automaton. Then, for any stable set C there exists
a word v such that

Card
(
δ(C, v)

) = 1, |v| � 2nk

t
− n − 1 − k ln

k

t
.

Corollary 4. Let A be a 1-cluster n-state automaton which is not synchronizing. Then, for any stable set C
there exists a word v such that

Card
(
δ(C, v)

) = 1, |v| � n2 − n − 1 − n ln
n

2
.

Proof. By the previous corollary, it is sufficient to verify that

2nk

t
− k ln

k

t
� n2 − n ln

n

2
.

Indeed, one has



352 A. Carpi, F. D’Alessandro / Advances in Applied Mathematics 50 (2013) 339–355
n ln
n

2
− k ln

k

t
= (n − k) ln

n

2
+ k ln

n

k
+ k ln

t

2

� (n − k)

(
n

2
− 1

)
+ k

(
n

k
− 1

)
+ k

(
t

2
− 1

)
� n(n − k) + nk

t
(t − 2) = n2 − 2nk

t
.

The conclusion follows. �
7. The Hybrid Černý–Road coloring problem

In the sequel, with the word graph, we will term a finite, directed multigraph with all vertices
of the same outdegree. A graph is aperiodic if the greatest common divisor of the lengths of all
cycles of the graph is 1. A graph is called an AGW-graph if it is aperiodic and strongly connected.
A synchronizing automaton which is a coloring of a graph G will be called a synchronizing coloring
of G . The Road coloring problem asks for the existence of a synchronizing coloring for every AGW-
graph. This problem was formulated in the context of Symbolic Dynamics by Adler, Goodwyn and
Weiss and it is explicitly stated in [1]. In 2009, Trahtman has positively solved this problem [24].
Recently Volkov has raised the following problem [25] (see also [2]).

Hybrid Černý–Road coloring problem. Let G be an AGW-graph. What is the minimum length of a reset
word for a synchronizing coloring of G?

7.1. Relabeling

In order to prove our main theorem, we need to recall some basic results concerning colorings of
graphs. Let A = 〈Q , A, δ〉 be an automaton. A map δ′ : Q × A → Q is a relabeling of A if, for each
q ∈ Q , there exists a permutation πq of A such that

δ′(q,a) = δ
(
q,πq(a)

)
, a ∈ A.

It is clear that δ′ is a relabeling of A if and only if the automata A and A′ = 〈Q , A, δ′〉 are associated
with the same graph.

Let A= 〈Q , A, δ〉 be an automaton, α be a congruence on Q and δ′ be a relabeling of A. According
to [12], δ′ respects α if for each congruence class C there exists a permutation πC of A such that

δ′(q,a) = δ
(
q,πC (a)

)
, q ∈ C, a ∈ A.

In such a case, for all v ∈ A∗ there is a word u ∈ A∗ such that |u| = |v| and δ′(q, u) = δ(q, v) for all
q ∈ C .

As α is a congruence, we may consider the quotient automaton A/α. Any relabeling δ̂ of A/α
induces a relabeling δ′ of A which respects α. This means that

1. α is a congruence of A′ = 〈Q , A, δ′〉 and A′/α = 〈Q /α, A, δ̂〉,
2. for all α-class C and all v ∈ A∗ , there exists u ∈ A∗ such that |v| = |u| and δ′(C, u) = δ(C, v).

We end this section by recalling the following important result proven in [12].

Proposition 7. Let ρ be the stability congruence of an automatonA associated with an AGW-graph G. Then the
graph G ′ associated with the quotient automaton A/ρ is an AGW-graph. Moreover, if G ′ has a synchronizing
coloring, then G has a synchronizing coloring as well.
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7.2. Hamiltonian paths

In this section we give a partial answer to the Hybrid Černý–Road coloring problem. Precisely we
prove that an AGW-graph of n vertices with a Hamiltonian path admits a synchronizing coloring with
a reset word of length not larger that 2n2 − 4n + 1 − 2(n − 1) ln(n/2). In order to prove this result, we
need to establish some properties concerning automata with a monochromatic Hamiltonian path.

Let A be an automaton and a be a letter. The subgraph Ra of the graph of A made of the edges
labeled by a will be called the graph of a-transitions. Since each state has exactly one outgoing edge
in Ra , this graph consists of disjoint cycles and trees with root on the cycles. The level of a vertex
in such a graph is its height in the tree to which it belongs. The following proposition was implicitly
proved in [24, Theorem 3].

Proposition 8. If in the graph of a-transitions of a transitive automaton A all the vertices of maximal positive
level belong to the same tree, then A has a stable pair.

As an application of the previous proposition, we obtain the following.

Proposition 9. If an AGW-graph G with at least 2 vertices has a Hamiltonian path, then there is a coloring of
G with a stable pair and a monochromatic Hamiltonian path.

Proof. Let G be an AGW-graph with n � 2 vertices. Let us show that one can find in G a Hamiltonian
path (q0,q1, . . . ,qn−1) and an edge (qn−1,q) with q �= q0 (see figure below).

Indeed, if G has no Hamiltonian cycle, it is sufficient to take a Hamiltonian path (q0,q1, . . . ,qn−1) and
any edge outgoing from qn−1: such an edge exists because G has positive constant outdegree.

On the contrary, suppose that G has a Hamiltonian cycle (q0,q1, . . . ,qn−1,q0). Since G is aperiodic,
there is an edge (p,q) of G which does not belong to the cycle. We may assume, with no loss of
generality, p = qn−1, so that q �= q0. Thus, (q0,q1, . . . ,qn−1) is a Hamiltonian path and (qn−1,q) is an
edge of G .

Choose a coloring A of G where the edges of the path (q0,q1, . . . ,qn−1,q) are labeled by the
same letter a. In such a way, there is a monochromatic Hamiltonian path. Moreover, the graph of
a-transitions has a unique tree, so that, by Proposition 8, A has a stable pair. �
Lemma 9. If an automaton A has a monochromatic Hamiltonian path, then any quotient automaton of A has
the same property.

Proof. With no loss of generality, we may restrict ourselves to the case that A is a 1-letter automaton.
Now, a 1-letter automaton has a Hamiltonian path if and only if it has a state q from which all
states are accessible. The conclusion follows from the fact that the latter property is inherited by the
quotient automaton. �

We are ready to prove our main result. We denote by f the real function

f (x) = 2x2 − 4x + 1 − 2(x − 1) ln
x

2
.

With the usual methods of real analysis, one easily verifies that for all x > 0, f ′(x) � x. In particular,
f is strictly increasing.
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Theorem 1. Let G be an AGW-graph with n > 1 vertices. If G has a Hamiltonian path, then there is a synchro-
nizing coloring of G with a reset word w of length

|w| � 2n2 − 4n + 1 − 2(n − 1) ln
n

2
. (12)

Proof. The proof is by induction on the number n of the vertices of G .
Let n = 2. Since G is aperiodic, G has an edge (q,q) which immediately implies the statement.

Suppose n � 3. By Proposition 9, among the colorings of G , there is an automaton A = 〈Q , A, δ〉
with a stable pair and a monochromatic Hamiltonian path. In particular, A is a transitive 1-cluster
automaton. If A is synchronizing, then the statement follows from Corollary 1. Thus, we assume that
A is not synchronizing.

Let ρ be the stability congruence of A, k be its index and Gρ be the graph of A/ρ respectively.
Since A is not synchronizing, one has k > 1. By Proposition 7, Gρ is an AGW-graph with k vertices
and k < n. Moreover, by Lemma 9, Gρ has a Hamiltonian path. By the induction hypothesis, we may
assume that there is a relabeling δ̂ of A/ρ such that the automaton Â= 〈Q /ρ, A, δ̂〉 has a reset word
u such that

|u| � f (k).

As viewed in Section 7.1, δ̂ induces a relabeling δ′ of A which respects ρ . Moreover, since u is a reset
word of Â, C = δ′(Q , u) is a stable set of A.

First, we consider the case n � 2k. By Corollary 4, there is a word v such that Card(δ(C, v)) = 1 and
|v| � n2 − n ln n/2 − n − 1. Since δ′ respects ρ , there is a word v ′ such that |v ′| = |v| and δ′(C, v ′) =
δ(C, v). Set w = uv ′ . Then δ′(Q , w) = δ′(Q , uv ′) = δ′(C, v ′) = δ(C, v) is reduced to a singleton. Hence,
w is a reset word of A′ = 〈Q , A, δ′〉 and

|w| � f (k) + n2 − n ln
n

2
− n − 1.

Since f is increasing and k � n/2, one has

f (n) − |w| � f (n) − f

(
n

2

)
−

(
n2 − n ln

n

2
− n − 1

)
= 1

2
n2 − (1 + ln 2)n + 1 + ln 4 > 0.

Hence (12) holds true.
Now, we consider the case n < 2k. In such a case, there is a ρ-class K of cardinality 1. Moreover,

by the transitivity of Â, there is a word v ∈ A∗ such that δ′(C, v) = K and |v| � k − 1. Hence, w = uv
is a reset word of A′ of length

|w| � f (k) + k − 1.

Since f ′(x) � x, by the Lagrange Theorem, one has f (n) − f (k) � (n − k)k � k. It follows that |w| �
f (n) − 1. This concludes the proof. �

We close the paper with the following remark.

Remark 2. It was already observed in [9] that a bound on synchronizing 1-cluster automata with
prime length cycle leads to bounds for the Hybrid Černý–Road coloring problem. More precisely, by
a result of O’Brien [16], every aperiodic graph of n vertices, without multiple edges, having a simple
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cycle C of prime length p < n, admits a synchronizing coloring of G such that C is the unique cycle
labeled by a power of a given letter a. Then, by Corollary 1, such a coloring has a reset word of length
2n2 − 4n + 1 − 2(n − 1) ln(n/2). Recently this upper bound has been lowered to (n − 1)2 in [22].
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