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This paper contains proofs of the prime number theorem, the prime 
ideal theorem and the prime number theorem of arithmetic progressions. 
Wiener's Tauberian theorem and a related theorem of Pitt will be adapted 
to the special situation when the functions occurring in these theorems 
are determined by the coefficients of Dirichlet series. The results so 
obtained will be first applied in the case of the Riemann Zeta function 
and the prime number theorem will be derived in several ways using 
only the fact that 

is convergent in the half-plane &fs > 0 and it does not vanish on the line 
&fs= 1. In the third section of this paper the methods are extended to 
the Zeta functions of number fields and the prime ideal theorem is proved. 
Finally in the fourth section we prove the prime number theorem of 
arithmetic progressions. 

It is assumed that the reader knows the theorems of Wiener and Pitt. 
Both are discussed in Hardy's Divergent series and their group theoretic 
background can be found in Loomis' Abstract harmonic analysis. We 
suppose also familiarity with the elementary results and techniques of 
algebraic and analytic number theory. The second section dealing with 
the prime number theorem requires considerably less number theoretic 
background than the ones following it. Thus the first two sections will 
be accessible to a much larger group of readers than the later ones. 

l. Two principles concerning coefficient sums 

Given a Dirichlet series <X(s)= _2 ann-sit is customary to denote by A 
the coefficient sum of <X, so that A is a function on the positive half-line 
G= (0, +oo) with values 

A(u) = ,2 an (u > 0). 
'n~U 

We fix a real number a> 0 and define the complex valued a on G by 

a(u) = u-a A(u). 

Suppose that a is inside the half plane of convergence of <X i.e. a> y"' 
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where y"' denotes the convergence abscissa of <X. Then <X is convergent at 
a-e for some small o>O and so we have A(u)=O(u"- 8 ). Therefore 

+oo du +oo du 
S Ja(u)l- = S JA(u)l u-"-
0 u 0 u 

exists. G is a locally compact commutative topological group under the 
ordinary multiplication and duju is the Haar measure of G. In view of 
this we see that if a>y"' and a> 0 then a E Ll(G). 

Since we shall perform various computations involving a it is convenient 
to introduce 

lm(u) = ~ 0 for 0 < u < m 

u-" for m<;;u<+oo 

where m > 0. Then a can be written as 

(l) 

and for any u>O we have 

(2) a(u) = .L amlm(u). 
m<u 

It is clear that lm E L 1(G) and 

(3) 
~ m-(cr+itl 

lm(t) = a+it (- 00 < t < + 00 ). 

Moreover if m, n > 0 then 

~ 0 for 0 < u < mn 
(/m * ln)(u) = -cr (1 1 ) £or u og u - og mn .v mn < u. 

The Fourier transform a can be computed from (2) and (3): Since a>y"' 
we have A(x)=o(x") as x --++oo and so for integer x>O we get 

Therefore 

x du ~ oo du f u-it a(u) - = ,L am lm(t) - ,L am f u-it lm(u) -
0 U m<x m<x x U 

= ,L am fm(t) + A(x)(a + it)-1 x-cr-it. 

~ (t) - ""' ~~ (t) - <X (a + it) 
a -£..am m - a+it . 

Now let <X and f3 be Dirichlet series with coefficients a1, a2, .. . and 
b1, b2 , ... respectively. Given u>O we have a(ujv)=O for u<v and b(v)=O 
for 0 < v < l. Therefore a * b exists and 

(a* b)(u) = ,L ambn(/m * ln)(u). 
mn<u 

Using the expression obtained for lm *In we get 

(a* b)(u) = u-" log u .L ambn + u-" .L - ambn log mn. 
mn<u mn<u 
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The sums which occur here have simple interpretations in terms of the 
product series y = tx{J and its derivative y' = (tx{J)': The first is the coefficient 
sum O(u) ofy and the second is that of the differentiated series y'. Therefore 

(4) (a* b)(u) =(log u) c(u) + c'(u). 

This interpretation is very useful in actual computations. 
Wiener's Tauberian theorem leads to the following general principle: 

Theorem 1. Let a > 0 and let tx, f3 be Dirichlet series such that a is 
bounded, a>yfl and f3 does not vanish on the line &lls=a. Then (a* b}(u)-+ 0 
as u -+ + oo implies (a * k }( u) -+ 0 for any Dirichlet series " with a> y". 

A second useful principle is obtained from Pitt's theorem: 

Theorem 2. Let a>O and let tx, f3 be Dirichlet series such that a is 
bounded and slowly oscillating, a> yfl and f3 does not vanish on the line 
&lls=a. Then (a *b)(u} -+0 as u-+ +oo implies 

A(x) = z an= tl{x"). 
n~re 

2. The prime number theorem 

First we use the principle expressed in Theorem l to derive the prime 
number theorem in the form n(x) .-..J x2f2 where 

n(x) = z '!J'(n) (x > 0). 
n..;;m 

The elementary equivalence of this proposition to the prime number 
theorem is well known; it is discussed for instance in Ingham's book on 
The distribution of prime numbers. In the second half of this section 
we shall prove directly that 1p(x) .-..J x and ,M(x)=o(x). The proof of these 
statements will be based on Theorem 2. Both of these propositions are 
elementary equivalents of the prime number theorem. 

We start from Theorem l where we let a= l and tx=C-1 so that the 
coefficients of tx are ,u(l}, ,u(2}, ... and a(u)=u-1M(u). Then a is bounded, 
as a matter of fact ja(u)i .;;;;u. Next we let 

(5) {J(s) = (2-21-s-31-s) C(s). 

The first factor could be replaced by a variety of others, e.g. instead of 
the bases 2,3 we could choose any pair of distinct primes p, q > l. The 
only essential requirement is that the factor should not vanish on the 
line &Is= l. We have yfi=O<a= l and using the fact that the Riemann 
Zeta function does not vanish on the line &Is= l and has a pole at s = l 
we see that {J(s)-#0 on &lls=a= l. Since y=tx/3 is the finite series 

2 3 
y(s) = 2- 2s - 3s 

we see that O(u} and Q!(u) are bounded functions and so c(u)=O(u-1) 
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and c'(u) =O(u-1). Therefore (a* b)(u)--+ 0 as u--+ +=and by Theorem 1 
(a* k)(u) --+0 as u--+ +=for any x satisfying y"<a. 

Let x denote the Dirichlet series 

(6) 

where y denotes the Euler constant. Then the nth coefficient of x is 
log n-d(n)+2y where as usual d(n) denotes the number of divisors of n. 
Using the elementary estimates 

L d(n) = x log x + (2y -1) x +O(xt) (x--++=) 
n~x 

and 

L log n = x log x- x + O(log x) (x --++=) 
n<x 

we see that the coefficient sum K of x is 

(7) K(u) = O(ut). 

From this estimate we obtain y" <; t < 1 =a so that x satisfies the require­
ment y"<a. The convolution a* k can be easily computed from (4): The 
coefficients of ax are Cn=A(n)-1 for n>1 and so C(u)='!f!(u)-u+0(1). 
Moreover 

C'(u) =- L Cn log n = L C(n) log (1 + 1/n)- C(u) log ([u] + 1). 
n~u n~u 

Using C(u)=O(u) and (4) we obtain 

u (a * k) (u) = L C(n) + o(u). 
n<u n 

Hence by (a* k)(u) --+ 0 we have 

(8) L '!f!(n) = u + o(u) as u--+ + =· 
n~u n 

The prime number theorem is an easy consequence of (8). For if o denotes 
the left hand side of (8) then 

1J(x)= L '!f!(n)= L {o(n)-o(n-1)}n= 
n~x n::::;;;x 

x2 
= - L o(n) + o(x) O(x) = 2 + o(x2) + L o(n). 

n~x n<x 

We have in general 

L o(n) = o(x2) 
n<<t: 

and so we proved that 1J(x) ,..._, x2 j2 as x --+ =· 
Now we turn to Theorem 2 and use it to give a simple proof of the 

proposition M(x)=o(x) (x--+ +=).Indeed this result follows immediately 
because if we let (J = 1 then for iX we may choose c-1 and as earlier we may 
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let f3 be the function given in (5). The fact that m(u)=M(u)ju is bounded 
and slowly oscillating can be proved in a few lines. 

In order to prove 1p(x) ,..._, x by our second principle we let a= 1 and 

C' 
CX=---C+2y 

' where y stands for the Dirichlet series whose first coefficient is the Euler 
constant and whose remaining coefficients all vanish. For f3 we choose 
again the series given in (5). We show that (a* b)(u) -+ 0 as u-+ +=. 
Since 

y(s) = cxf3(s) = ( 2- :s-:8 ) u(s) 

where u denotes the series given in (6), by (7) we have O(u) =O(u~) and 
c(u) =O(u-t). Moreover 

O'(u) =- ! Cn log n =- ! {O(n)- O(n-1)} log n = 
n<u n<u 

= ! O(n) log ( 1 + !) + O(uilog u) = 
n<u n 

= .Z O(n-t) + O(ullog u) = O(ullog u). 
n<u 

Hence by ( 4) we obtain 

(a* b)(u) = c(u) log u + c'(u) = O(u-! log u) as u -++=. 

Since a=1 we have ua(u)=1f(U)-u+0(1) and so the boundedness of a 
follows from the elementary estimate 1p(u)=O(u). Hence 1p(u)-u=o(u) 
will be obtained by proving that a is slowly oscillating. This can be 
achieved by having the following: 

Lemma 1. Let K be a real or complex valued function on (0, +=) 
which is of bounded variation on every finite interval (0, x) and is O(xl) as 
x-+ +=.Then an=0(1) implies that 1/x ! an K(xjn) is slowly oscillating. 

n<re 

Proof. We wish to show that 

-- ! anK -1 (X) 
y x<n,;;;y n 

approaches 0 as x -+ + = and yjx -+ 1 + 0. The second term on the right 
hand side is 

(9) - --1 .Z 0 - = 0 --1 = o(1) 1 (y ) (x)t (y ) 
y X n,;;;x n X 
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as x ~ + oo and yjx ~ 1 + 0. The third term is 

(10) - _L 0- =0- (yi-xt)=O - -1 =o(1). 1 (x)t (xt) ((y)t ) 
Y x<n<;y n Y X 

The first term can be estimated by splitting it up in the form 

~ .L=~ .L +~ .L 
Y n<;y Y n<;oy Y oy<n<;y 

where 0 < o < L Then we have 

(11) ~ .L =~ .L o(!i.)* =0(1)ot 
Y n<;oy Y n<;oy n 

where 0(1) is bounded by a constant which is independent of x, y and o. 
Finally 

{12) ~ .L = o(~) Var (x; o, ~) 
Y oy<n<;y Y 0 

where "Var" stands for the variation of K on the interval (0, 1/o). Now 
it is clear that the inequality 

-.L--.L <B 1
1 1 I 
Y n::(y X n::(x 

will hold for all sufficiently large x and y-;;;.x such that yjx is sufficiently 
close to 1. For by choosing yjx-1 small (9) and (10) can be made less 
than s/4. Then we choose o(0<0<1) so small that (11) is less than s/4. 
Now o being fixed we can make (12) less than s/4 by letting x, and ipso 
facto y, sufficiently large. 

If we let an=tJ(n) and K be the coefficient sum of x then 

is the coefficient sum of 

Then a is slowly oscillating and the prime number theorem is proved 
once more. 

We would like to add that the prime number theorem can be derived 
from the proposition "M(x) = o(x) as x ~ + oo" by elementary reasoning. 
It can be found for instance in Appendix IV of Hardy's Divergent series. 

3. The prime ideal theorem 

Given an algebraic number field <1> we let H(x) denote the number of 
integral ideals a whose norm N a is at most x: 

H(x) = .L 1. 
Na.::(x 

20 Series A 
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It is known that 

(13) H(x) = ,ux+O(xl-lfn) (x~+=) 

where p is a positive constant and n is the degree of <!> over the rationals. 
This formula is proved for example in Weyl's Algebraic theory of numbers. 

Now we derive a few simple consequences of (13), all of which will be 
needed in the proof of the prime ideal theorem: First of all we have 

(I4) L log Na = px log x- ,ux + O(xl-l/n log x). 
Na<x 

For, the left hand side can be rearranged as 

L {H(n)-H(n-1)} log n = H(x) log [x]- L H(n) log (I+.!.) 
n<x n<x n 

and the first term on the right hand side will give the main term px log x 
while the second contributes - px. 

Next, we prove the existence of a constant f3 such that 

(15) 
1 L - = p log x + f3 + O(x-lln). 

Na<.IJJ Na 

Indeed we have for any exponent 

I (Na)"' = I H(m){m"'-(m+ I)"'}+H(x) ([x] +I)"'. 
Na<x m<x 

We let £X= -1, substitute from (I3) and get 

L (Na)-1 = L H(m) (_!__- - 1-) + p + O(x-lln), 
NC.<,IJJ m<.IJJ m m +I 

[.Ill 

= J H(t) t-2 dt + p + O(x-lln). 
1 

Using (I3) once more we obtain (15). There is a good reason to write 
an arbitrary exponent £X instead of £X= - I. For we shall need the estimate 

(16) L (Na)lln-l = O(xlln) 
Na<x 

which follows via the mean value theorem. 
Formulae (15) and (I6) yield 

(17) L 1 = p2 log x + c:x + O(xl-lf2n): 
Nab<.IJJ 

(Summation is extended over all pairs of integral ideals a, {J such that 
N av,;;;; x.) Indeed the left hand side of ( I7) is the difference 

2 I I 1 - I L 
Na<.Vx Nb<.IJJ/Na Na,Nb<.Vx 
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The second sum being H(Vx)2 , it can be estimated by using (13) and 
one gets ,u2x+O(xl-l/2n). The first double sum is 

{ x (x)l-1/n} I H(xjNa) = I .UNa +0 Na . 
Na.;;;ji; Na.;;;ji; 

Hence by (15) and (16) we obtain (17). 
The prime ideal theorem states that 

X 
n<~>(x)= I 1,....., --

Nil.;;., log X 
(x --l>- oo ). 

This proposition is an elementary equivalent of 

where 

1J'<~>(x) = I A( a) ,....., x (x --l>- oo) 
Na<.x 

~ log N'f) if a= 'f)m for some m = 1, 2, ... , 
A(a) = 

0 otherwise. 

The prime ideal theorem can be proved along the same lines as the prime 
number theorem was derived in the preceding section: One can start with 

where 'fJ and q are proper integral ideals of distinct prime norms. Choosing 
a(s)=,<~>-l(s) one heads for one of two alternatives. The first leads to 
the proposition 

M<~>(x) = I ,u(a) = o(x) (x --l>- oo) 
Na~x 

where ,u(a) denotes the generalized the Mobius function: ,u(a) = ( -1)' 
if a='f)1 ... 'fJr with distinct tJi's and ,u(a)=O otherwise. The second 
alternative leads immediately to 

(x --l>- oo ). 

In either case one needs the Dirichlet series 

The coefficient sum of x is 

K(x) = I 1 - I log N- ~ H(x) 
Nao.;;;., Na.;;;, .U 

and so by (13), (14) and (17) one obtains K(x)=O(xl-1/2nlogx). 
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4. The prime number theorem of arithmetic progressions 

The object is to prove that 

1 X 
na(x) = :n:(x, m, a) ,...._, -( -) 1-­

rp m og x 

as x __,. oo for every prime residue class ii modulo m. Given any a> 0 we let 

?f'a(x) = 1p(x, m, a) = ! A(n). 
n~z 
n=a 

The prime number theorem of arithmetic progressions is a simple elemen­
tary equivalent of 

(18) 
X 

?f'a(x) = 1p(x, m, a) ,...._, rp(m) (x __,. oo ). 

In order to apply Theorem 1 we need two results from elementary number 
theory. The first is 

(19) ! a(-(~))= rp(m) X (log X+ 2y -1) + O(xi). 
n.;;x m, n m 

Here d(nj(m, n)) is the number of those divisors of n which are prime 
to the modulus m. 

Proof: First of all we have 

! ! 1=2 ! [i-d]+OUIX) 
n.;;x din a.;;Vi 

(d,m)=l (d,m)=l 

1 -
=2x ! d-2 ! d+O(Vx). 

a.;;Vi a.;;VX 
(d,m)=l (d,m)=l 

Thus it is sufficient to show that the condition (d, m) = 1 can be dropped 
by introducing a factor rp(m)Jm. This modification is justified in view 
of the following : 

Lemma 2. If the number theoretic function f(n) is such that for each 

fixed a 

(20) f(n+a)- f(n) = 0(1) resp. 0 (~) 

where the constant of 0( ·) may depend on a then 

(21) ! f(n) - rp(m) ! f(n) = O(x) resp. O(log x). 
n~x n n~x 

(m,n)=l 

Proof. By (20) we have 

! f(n) - ! f(n) = O(x) resp. O(log x) 
n<x n~x 
n=a n=a~' 



291 

and so it is clear that 

(22) 
1 L f(n) -- L f(n) = O(x) resp. O(log x). 

'n~X m'Jl~X 
n=a 

Thus (21) follows immediately from 

I f(n) = I I f(n). 
n<x O<a<m n<x 

(m,n)~l (a.m)~l n~a 

If we let f(n)=log n we obtain the second elementary estimate needed 
in the proof: 

(23) L log n = rp(m) x(log x-1) + O(log x). 
n<x m 

(m,n)~l 

Now comes the proof of (18) in a rapid succession of steps. We shall 
apply Theorem 1 rp(m)-times with a= l. We fix a residue class character 
x and let cx=L-1 . The nth coefficient of ex is x(n)fl(n), so A(u)=O(u) and 
a E L 00(G). If X =1= ewe let {J = L so that the convergence abscissa yfi = 0 <a= 1 
and sob ELl(G). Since cx{J(s) 1 we obtain (a *b)(+oo)=O. Therefore 
by Theorem 1 (a * k )( + oo) = 0 for every Dirichlet series u such that 
y"<a=l. If we let u= -L' then by the boundedness of Ix(n) we have 

K(u) = L x(n) log n = O(log u) 
n<u 

and so the abscissa of u is y"= 0< a= 1. Since cxx= -L' JL the nth coefficient 
of y=cxu is Cn=x(n)A(n) and so O(u)=O(u). Partial summation gives 

(24) L 'lfx(n) = o(u) 
n~u n 

(u-+oo) 

where for simplicity 

(25) 'lfx(n) = L x(k) A(k). 
k<n 

If x is the principal character e then a few modifications are necessary. 
First of all the convergence abscissa of L is 1 and so instead of {J=L 
we must choose for instance 

{J(s) = (2-pl-s_ql-s) L(s[e) 

where p and q are prime to the modulus m. Then {J is holomorphic in the 
positive half plane and yfi = 0. Since cx{J is a finite Dirichlet series 
(a* b)( +oo) = 0 and so by Theorem 1 we have (a* k)( + oo) = 0 for every 
Dirichlet series u with y" < l. We choose 

u = - L' - LC + 2y rp(m) L 
m 
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where y denotes the Euler constant. The nth coefficient of " is 

Cn = B(n) log n- L B(d) + 2y cp(m). 
d/n m 

Since B(n)= 1 or 0 according as (m, n) is 1 or not we have 

C(u) = L log n- L a(-( n )) + 2y cp(m) [u]. 
n~u n~u m, n m 

(m,n)~l 

Hence by (19) and (23) we obtain O(u)=O(ul). Consequently y"<i<a=1 
and " is admissible. The rest of the situation is similar to the one which 
we met in the case xi= B: Since 

L' cp(m) 
y = !XU = - - - C + 2y --

£ m 

its coefficient sum is 

C(u) = L B(n) A(n)- u + 0(1). 
n~u 

We have C(u) and so (a* k)( +=)=0 gives 

(26) L 1p,(n) = u+o(u) 
n~n n 

(u --++=) 

where 

(29) 1p.(n) = L B(k) A(k). 
k~n 

The rest is straight forward: From (24) and (26) we get 

(28) 

( o(x2) if X i= B 

L 1p (n) =) x2 
n~"' x ( 2 + o(x2) if X= B. 

The left hand side can be rearranged as follows: 

I I x(k) A(k) = I x(a) I I A(k). 
n:::(x k~n liEGm n:::(x k~n 

k=a 

Thus introducing the functions 1pa (28) becomes 

I x(a) I 1pa(n) = x2 . l o(x2) if X i= B 

iiEGm n~"' 2 + o(x2) If X= B. 

As x varies over Gm we have a system oflinear equations which is solved by 

(29) 
x2 L 1pa(n) = ~( ) + o(x2). 

n~"' cp m 
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From the last equation we obtain 

(30) 
X 

1/'a(x) ,-...;-­
cp(m) 

(x -;.+oo) 

for each prime residue a modulo m. Thus the prime number theorem of 
arithmetic progressions is proved. 

Instead of relying on Theorem l we could have used Theorem 2. 
In Section 2 we gave two proofs of the ordinary prime number theorem 
which were based on Theorem 2. Both variants can be extended to a 
proof of the prime number theorem of arithmetic progressions: One 
choice of the Dirichlet series (X leads very rapidly to a result which turns 
out to be an elementary equivalent of the prime number theorem of 
arithmetic progressions. The passage from this equivalent to the familiar 
form 1/'a(x) ""xjcp(m) is via an analogue of Lemma l due to Axer. A second 
choice of the (X's gives immediately 1/'a(x) ""xjcp(m) but then it is harder 
to verify that the a's are slowly oscillating. Namely one needs Lemma l 
with a suitable choice of u. The two methods are closely related to each 
other and the third variant given above. 

In the first case we let (X=L-1 for every character x including the 
principal character e. For X=l=e we can let fJ=L but if x=e we have to 
choose 

(31) {J(s) = (2-pl-s_ql-s) L(slx) 

where p and q are prime to m. Of course we could use this second choice 
of fJ also when X =1= e. The conclusion is 

(32) ! x(n) 1p(n) = o(x) as (x -;.+oo) 
n~x 

for every residue class character x modulo m. In order to derive (30) 
from (32) first we use the lemma of Axer with 1-C= -L' if X=l=e. Next 
for x=e we let 

where L denotes the L-function corresponding to the principal character e. 
These choices will yield 

(33) ! x(n) A(n) = ~ o(x) ~f X =I= e 
n'(a: (x+o(x) If X=e. 

We rearrange terms so that the left hand side becomes 

and solve the resulting equation system to obtain (30). We see that the 
prime number theorem of arithmetic progressions is an elementary 
consequence of (32). 
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In the second variant of the proof based on Theorem 2 we let lX = - L' J L 
for each character x =1= e. For the principal character e we choose 

L' tp(m} 
lX=---C+2y--L m 

where the last term indicates the Dirichlet series whose only non­
vanishing term is the constant 2ytp(m)Jm. Upon applying the theorem 
we obtain (33). As we had already seen this is an elementary equivalent 
of the prime number theorem of arithmetic progressions. The boundedness 
of the associated functions a can be seen from the elementary estimate 
1J!(X)=O(x). We let {J denote the Dirichlet series given in (31). If x=l=e 
we may simplify the definition by letting {J=L instead of (31}. 

We notice that lX{J = - L' for x =I= e and 

tX{J = (2-pl-s_ql-s) ( -L'-LC+2y tp::} L) 

for x =e. In the first version of the proof we had already seen that the· 
coefficient sum of -L' is O(log x) and of -L' -LC + 2y tp(m)Jm Lis O(xl). 
This is sufficient information to conclude that lX{J and (tX{J}' have coefficient 
sums O(xl) and O(xllog x), respectively. Therefore, a* b vanishes at + oo. 
The fact that the a's are slowly oscillating follows immediately from 
Lemma 1. We let an=x(n) and x= -L' or 

x =- L'- LC + 2y tp(m) 
m 

according as x is principal or not. The coefficient sum K of x is of bounded 
variation on every finite interval (0, x) and satisfies K(x} =O(xl). There­
fore, the a's are slowly oscillating and Theorem 2 can be applied. 
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