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a b s t r a c t

d-dimensional polycubes are the generalization of planar polyominoes to higher
dimensions. That is, a d-D polycube of size n is a connected set of n cells of a
d-dimensional hypercubic lattice, where connectivity is through (d−1)-dimensional faces
of the cells. Computing Ad(n), the number of distinct d-dimensional polycubes of size n,
is a long-standing elusive problem in discrete geometry. In a previous work we described
the generalization from two to higher dimensions of a polyomino-counting algorithm of
Redelmeier [D.H. Redelmeier, Counting polyominoes: Yet another attack, Discrete Math.
36 (1981) 191–203]. The main deficiency of the algorithm is that it keeps the entire set
of cells that appear in any possible polycube in memory at all times. Thus, the amount of
required memory grows exponentially with the dimension. In this paper we present an
improved version of the same method, whose order of memory consumption is a (very
low) polynomial in both n and d. We also describe how we parallelized the algorithm and
ran it through the Internet on dozens of computers simultaneously.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A d-dimensional polycube1 of size (or order) n is a face-connected set of n cells on the hypercubic lattice Zd. Fixed
polycubes are considered distinct if they differ in their shapes or orientations. The number of fixed d-dimensional polycubes
of size n is denoted by Ad(n). For example, Fig. 1(a,b) show the A3(2) = 3 and A3(3) = 15 dominoes and trominoes,
respectively, in three dimensions. There are twomain open problems related to polycubes: (i) The number of d-dimensional
polycubes of size n, as a function of d and n; and (ii) For a fixed dimension d, the growth-rate limit of Ad(n) (that is,
limn→∞ Ad(n + 1)/Ad(n)). Since no analytic formula for Ad(n) is known, even for d = 2, a great portion of the research
has so far focused on efficient algorithms for computing A2(n) for as high as possible values of n. In recent years, most
of the effort has been focused on utilizing algebraic methods for enumerating exactly special classes of two-dimensional
polyominoes (see, e.g., [4,6]).
Polyominoes and polycubes have triggered the imagination of not only mathematicians. Extensive studies of them can

also be found in statistical-physics literature, where fixed polycubes are usually referred to as strongly embedded lattice
animals. Animals play an important role in computing the mean cluster density in percolation processes, in particular those
of fluid flow in random media [5], and in modeling the collapse of branched polymer molecules in dilute solution [22].
Polyominoes are also used by two-dimensional error-correcting codes [24].
Redelmeier [23] introduced the first efficient algorithm for counting polyominoes (two-dimensional polycubes), in the

sense that it generates all the polyominoes sequentially without repetitions. Thus, it wastes time neither on computing
previously-generated polyominoes, nor on checking whether a generated polyomino is really new. The algorithm only

I Work on this paper has been supported in part by Jewish Communities of Germany Research Fund.
∗ Corresponding author. Tel.: +972 4 829 3219; fax: +972 4 829 5538.
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1 Term coined by Lunnon [14].
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(a) Three-
dimensional
dominoes.

(b) Three-dimensional trominoes.

Fig. 1. Fixed three-dimensional dominoes and trominoes.

has to count the number of generated polyominoes. Since the algorithm generates each polyomino in constant time, its
total running time is O(A2(n)).2 Redelmeier implemented his algorithm in Algol W (and for efficiency also in the PDP
assembly language). The program required about 10 months of CPU time on a PDP-11/70 to compute the number of all
fixed polyominoes of up to order 24.
It is known [13] that the limit λ2 := limn→∞ n

√
A2(n) exists. A similar method shows that the limit λd := limn→∞ n

√
Ad(n)

exists for any fixed value of d > 2. Only less than a decade ago it was proven by Madras [17] that the limit limn→∞(Ad(n+
1)/Ad(n)) also exists and that it is equal to λd, for any fixed value of d ≥ 2. None of the values of the constants λd (for d ≥ 2)
is to-date known. The constant λ2 is estimated to be around 4.06 [9]. It is proven in [3] that the asymptote of λd is roughly
2ed, where e is the natural base of logarithms.
The best currently-knownalgorithm (in termsof running time) for counting two-dimensional fixedpolyominoes is that of

Jensen [11]. This is a so-called transfer-matrix algorithm, which does not generate all the polyominoes. Instead, it generates
classes of polyominoes with identical ‘‘boundaries’’, while being able to compute efficiently the number of polyominoes in
each such class. Jensen was able to parallelize his algorithm and to compute A2(n) up to n = 56 [12].
Here is a brief summary of attempts to count three-dimensional fixed polycubes:

• Lunnon [15] analyzed in 1972 three-dimensional polycubes by considering symmetry groups, and computed (manually!)
A3(n) up to n = 6. Values of A3(n) up to n = 12 can be derived from a subsequent work of Lunnon [16] in 1975 (see
below).
• Sykes et al. [25] used in 1976 a method proposed by Martin [19] in order to derive and analyze series expansions on a
three-dimensional lattice, but did not compute new values of A3(n).
• Gaunt, Sykes, and Ruskin [9] listed A3(n) up to n = 13 (with a slight error in A3(13)).
• Gong [10] computed, in a series of attempts (in 1992, 1997, and 2004) A3(n) up to n = 9, 15, and 16, respectively.
• However, Flammenkamp [7] computed A3(17) already in 1999.
• Nevertheless, the correct values of A3(n) up to n = 17 could already be derived from data provided by Madras
et al. in 1990 [18].3
• The authors of this paper computed A3(18) in 2006 [1].

In higher dimensions, the first work on counting polycubes that we are aware of is that of Lunnon [16], in which he
counted polycubes that could fit into restricted boxes. (In fact, Lunnon counted proper polycubes, that is, polycubes that
cannot be embedded in lower-dimensional lattices, but thenumbers of all polycubes can easily bededuced from thenumbers
of proper polycubes.) Lunnon computed values up to A4(11), A5(9), and A6(8) (with slight errors in A6(7) and A6(8)). Gaunt,
Sykes, and Ruskin [9] provided values up to A4(11), A5(10), A6(9), and A7(9). Gaunt [8] provided values up to A8(9) and
A9(9). In [1] we generalized Redelmeier’s algorithm in a rather naive way, and computed values up to A4(15), A5(13), A6(9),
A7(6), A8(5), and A9(4).
Redelmeier’s original algorithm [23] counts (two-dimensional) polyominoes. Although it is not presented in thisway, it is

based on counting connected subgraphs in the underlying graph of the two-dimensional orthogonal lattice, that contain one

2 This is true under the regular assumption that operations on integer numbers can be done in constant time. Thiswork is targeted, however, at situations
where the handled numbers are large enough tomake this issue significant, so that each operation requires time that is linear in the number of bits required
to represent the respective number. In this perspective, just counting the polyominoes really takes O(A2(n) log A2(n)) = O(A2(n)n) time.
3 To do this, one needs to consider all the coefficients cn,e,u of terms of the form xnbeλu in [18, App. B, pp. 5346–5349], ignore all coefficients with u > 0,
and sum up the rest. That is, A3(n) =

∑
e cn,e,0 . Note that the symbol λ used here is not the asymptotic growth rate of polyominoes.
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(a) Reachable cells in pentominoes. (b) Corresponding graph.

Fig. 2. Pentominoes as subgraphs of some underlying graph.

particular node. However, as already observed by Mertens [20], Redelmeier’s algorithm does not depend on any particular
property of the graph. In the generalization of this algorithm to higher dimensions [1], we first computed the respective
lattice graphs, clipped to the size of the sought-after polycubes, and then applied the same subgraph-counting algorithm.
Themain drawback of this approach in higher dimensions is that it keeps inmemory at all times the entire set of ‘‘reachable’’
cubes—that is, all cubes that are part of some polycube. Since the number of such cells is roughly (2n)d, the algorithm
becomes useless for relatively small values of d. For example, we were able in [1] to compute A7(n) up to only n = 6. In the
current paper we significantly improve the algorithm by not keeping this set of reachable cells in memory at all. Instead, we
maintain only the ‘‘current’’ polycube and a set of its immediate neighboring cells, entirely omitting the lattice graph. The
latter is computed locally ‘‘on demand’’ in the course of the algorithm. Hence, we need to store in memory only O(nd) cells.
Furthermore, we parallelized the new version of the algorithm.
In a sense, our algorithm bears some resemblancewith the general reverse search technique of Avis and Fukuda [2], which

allows us to search combinatorial configurations with low time and space resources. In particular, our improved version of
Redelmeier’s algorithm is similar to the application of the reverse search to the enumeration of connected subgraphs [2,
Section 3.4]. The main difference is that we use heavily the self-repeating structure of the square lattice. A minor difference
is that we enumerate only subgraphs that contain one specific vertex; however, this only limits the search.
It is worth noting that in two dimensions, in terms of running time, Redelmeier’s subgraph-counting method is inferior

to Jensen’s transfer-matrix method. However, the latter cannot be adapted easily to higher dimensions since it is not known
how to encode efficiently the polycubes’ boundaries in more than two dimensions.
In the next sections we describe Redelmeier’s original algorithm, its generalization to higher dimensions, our new

ingredient that eliminates the need to hold the entire underlying graph inmemory, and how to parallelize the algorithm. This
enabled us to compute Ad(n) for values of d far beyond any previous attempt. With contemporary computing resources, the
bottleneck of the newest version of the algorithm (in higher dimensions) is again its running time and not its consumed
amount of memory. This bottleneck is partially remedied by our ability to run the algorithm simultaneously on many
computers over the Internet.

2. The original algorithm

In this section we briefly describe Redelmeier’s algorithm for counting two-dimensional polyominoes. The reader is
referred to the original paper [23] for the full details.
Redelmeier’s algorithm is a procedure for connected-subgraph counting, where the underlying graph is induced by the

square lattice. Since translated copies of a fixed polyomino are considered identical, onemust decide upon a canonical form.
Redelmeier’s choice was to fix the leftmost square of the bottom row of a polyomino at the origin, that is, at the square (0, 0).
(Note that coordinates are associatedwith squares and notwith their corners.) Thus, he needed to count the number of edge-
connected sets of squares (that contain the origin) in

{(x, y) | (y > 0) or (y = 0 and x ≥ 0)}.

The squares in this set are located above the thick line in Fig. 2(a). The shaded area in this figure consists of all the reachable
cells (possible locations of cells) of pentominoes (polyominoes of order 5). Counting pentominoes amounts to counting all
the connected subgraphs of the graph shown in Fig. 2(b), that contain the vertex a1. The algorithm [23] is shown in Fig. 3.
Step 4(a) deserves some attention. By ‘‘new neighbors’’ we mean only neighbors of the new cell c that was chosen in Step 2,
which were not neighbors of any cells of the polyomino prior to adding c to the polyomino. This ensures that we will not
count the same polyomino more than once. We elaborate more on this in Section 3.2.
This sequential subgraph-counting algorithm can be applied to any graph (which, indeed, is exactly what we do in the

next sections), and it has the property that it never produces the same subgraph twice.

3. Polycubes in higher dimensions

In this sectionwe describe the extension of Redelmeier’s algorithm to counting polycubes in orthogonal lattices in higher
dimensions.
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Fig. 3. Redelmeier’s algorithm (taken verbatim from [23, p. 196]).

3.1. Naive generalization

In [1] we generalized Redelmeier’s algorithm to higher dimensions in a rather simple way.We reorganized the algorithm
in two stages. In the first stage we computed the cell-adjacency graph and marked the canonical cell. In the second (main)
step of the algorithmwe applied the original procedure, which was nothing else but counting the connected subgraphs that
contained the canonical cell. As noted above, the subgraph-counting method does not depend in any way on the structure
of the graph. Thus, in order to generalize the algorithm to counting d-dimensional polycubes, we only needed to rewrite the
first stage so that it would compute the respective neighborhood graph in the appropriate dimension (and up to the size of
the sought-after polycubes). Then, we invoked the same subgraph-counting procedure.
Let us briefly review the computation of the lattice graph in d dimensions. Denote the coordinates of a cell as a vector

x = (x1, x2, . . . , xd), and regard it as a number in some base t ∈ N with d digits. We mapped the lattice cell x to the
integer number Γ (x) =

∑d
k=1 xkt

k−1. The number t was chosen large enough so that no two cells were mapped to the same
number. The minimum possible choice of t was obviously the size of the range of coordinates attainable by reachable cells
of the polycubes, that is, t = 2n − 2, where n is the polycube size. A clear benefit of this representation was the ability to
compute neighboring cells efficiently: The images under Γ (·) of the immediate neighbors of a cell x along the kth direction
were Γ (x)± tk−1.
Originally, the canonical cell was fixed as (0, . . . , 0). Except in the dth direction, the original range of reachable

coordinates was [−(n − 2), . . . , n − 1], so it was shifted by n − 2 in order to have only nonzero coordinates. In the dth
direction the range of reachable coordinates is [0, . . . , n−1], and so no shift was needed. Thus, the canonical cell was shifted
to 0 = (n− 2, . . . , n− 2, 0). It is easy to verify that a cell x = (x1, . . . , xd) is reachable if and only if x ≥ 0 lexicographically,
and reachable cells are in the d-dimensional box defined by (0, . . . , 0) and xM = (2n− 3, . . . , 2n− 3, n− 1). The function
Γ (·)maps reachable cells to numbers in the range 0 toM = Γ (xM) =

∑d−1
k=1(2n− 3)(2n− 2)

k−1
+ (n− 1)(2n− 2)d−1 =

(2n − 2)d−1n − 1.4 Fig. 4 shows the algorithm for building the d-dimensional graph. The cell-neighborhood relations are
kept in the array neighbors [x][y], where x is the identity number of the current cell and y is a serial number in the range
(0, . . . , 2d− 1) (all possible directions in d dimensions). The subgraph-counting step starts from the cell with identity 0.
The cell-adjacency graph contains, then, at most (2n − 2)d−1n nodes. Actually, only roughly one half of these nodes,

that is, about 2d−2(n− 1)d−1n, are really reachable (see Fig. 2(a) for an illustration). In two dimensions, this number (n2) is
negligible for polyominoes whose counting is time-wise possible. For example, Redelmeier counted polyominoes of up to
size 24. However, in higher dimensions the ‘‘dimensionality curse’’ appears. The size of the graph, and not the number of
distinct polycubes, becomes the algorithm’s bottleneck. For example, in order to count polycubes of size 7 in 7 dimensions,
we need to maintain a graph with about 107 nodes. Recall that each node has 2d neighbors—14, in the last example. This
means that even for modest values of d and n the algorithm would need hundreds of Megabytes of memory, let alone for
higher values, for which computing Ad(n) becomes infeasible.

3.2. Eliminating the computation of the graph

The main goal of this work is to eliminate the need to hold the entire graph in memory throughout the computation.
Clearly, the distribution of cells of different statuses is extremely uneven: At most n cells are (at a time) in the current
polycube, at most 2nd cells are (at a time) in the untried set (since each of the n used cells has at most 2d free neighbors),
and all the other cells are free (unoccupied). Since the lattice graph, in any dimension, has a well-defined structure, it is not

4 In fact, xM itself is not reachable. The reachable cell with the largest image under Γ is y = (n − 2, . . . , n − 2, n − 1) (the top cell of a ‘‘stick’’ aligned
with the dth direction). We have Γ (y) = (td+1 − 2td−1 − t + 2)/(2(t − 1)), where t = 2n− 2.



4580 G. Aleksandrowicz, G. Barequet / Discrete Mathematics 309 (2009) 4576–4583

Fig. 4. Computing the graph for a d-dimensional orthogonal lattice.

necessary to create it in advance. Instead, one could create the graph locally ‘‘on demand’’. Given a cell, one could compute
its neighbors on-line and always in the same order. In principle, instead of maintaining a huge vertex set (lattice cells) of
the graph, and keeping the status of each cell (occupied, in the untried set, or free), we could keep only the first two small
sets of cells, and deduce that a cell is free from the fact that it does not belong to any of these two sets.
The major potential obstacle is that, in principle, we need to distinguish between free cells that, in the course of the

algorithm, were already part of some counted polycubes, and are thus ‘‘done with’’, and cells that were not yet part of any
polycube. It turns out that this differentiation is redundant, and we can manage without keeping this information for each
free cell.
To show this, let us formally prove the correctness of the algorithm.5 We need to prove that even though the graph

contains plenty of cycles, no subgraph is obtained twice with different orders of nodes. It will then become clear that no
information about thenodes of the underlying graph should bemaintained in the course of the algorithm. From thedefinition
of the algorithm, it is clear that every polycube will be counted at least once. This is because a polycube is a connected set of
cells that includes the origin, and so any exhaustive procedure of adding cells by connectivity will reach any polycube. The
more delicate issue is to prove that every polycube is counted only once.

Theorem 1. Redelmeier’s algorithm counts every connected subgraph (polycube) that contains the origin exactly once.

Proof. Denote a polycube of size n as an ordered set (a1, . . . , an), where the cells ai are ordered according to their arrival
at the polycube in the course of the algorithm. (Obviously, a1 = 0 in all polycubes.) Assume for contradiction that the same
polycube P is generated twice, i.e., there are two ordered sets A = (a1, . . . , an) and B = (b1, . . . , bn), generated by the
algorithm, which differ only in their permutations of cells. Let A be the set that was generated first, and k (for 2 ≤ k ≤ n)
be the smallest index for which ai 6= bi. (It is clear from the definition of the algorithm that the same ordered set cannot be
generated twice.)
Let us focus on the recursion subtree whose root is the polycube P ′ = (a1, . . . , ak−1). We can assume by induction (on

the level of recursion) that P ′ is generated only once in the course of the algorithm. First, ak is moved from the untried
set to the polycube. Then, in a lower subtree of the recursion, all the sets whose prefix is (a1, . . . , ak−1, ak) are explored.
Following this, ak is removed from the polycube. Possibly, other cells are moved (one at a time) from the untried set to the
polycube, and subtrees of the recursion are performed. Finally, bk is moved from the untried set to the polycube, forming
the set (a1, . . . , ak−1, bk), and the recursion goes down again. Our goal is to prove that in this subtree of the recursion, the
cell ak cannot be added to the polycube, and, hence, P cannot be generated again.
To this aim we need a few observations:

1. When P ′ is generated the first time, both ak and bk are in the untried set. This is because a recursion subtree fully exhausts
all the polycubes whose prefix is the one at the top of that subtree. Thus, A and Bmust be generated at the same subtree,
and for this to happen, the untried set must contain both ak and bk when P ′ is generated.

2. Executing a subtree of the recursion does not change the untried set at the top of the subtree; down the recursion, cells
are added and removed to the untried set in a symmetric way.6

5 Redelmeier [23, p. 195] only gave a brief description of the course of the algorithm, from which the main point of the current paper could not be
inferred. The reader is also referred to the discussion in [20, Section 2].
6 In his actual implementation of the algorithm, Redelmeier [23, p. 197] took advantage of this fact to avoid the creation of copies of the untried set in
the recursive calls; instead, he used only one expanding and shrinking stack for maintaining all versions of this set.
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3. By definition, a cell is in the untried set if it is an immediate neighbor of the current polycube. A cell is added to this set
only when it becomes a new neighbor; later in the course of the algorithm, the cell cannot remain in the untried set if it
is no longer a neighbor of the polycube. This follows from the order of the algorithm: once a cell enters the untried set,
this set is fully exhausted before the recursion goes up and shrinks the polycube at the top of this subtree.

From these observations we deduce that both ak and bk are neighbors of P ′. (Otherwise, they could not be added to the
untried set when P ′ was first created; in addition, since P ′ is created only once, ak and bk are added to the untried set at the
same time.) After the termination of the recursion subtree, at the top of which (a1, . . . , ak−1, ak) is, ak is removed from the
polycube (but not returned to the untried set), and later bk is added to the polyomino. At this time (and down this subtree),
ak cannot be added to the polycube, because it cannot be added to the untried set. This follows from the fact that ak cannot
become a new neighbor of the polycube, since it is already a neighbor of it. (Recall the definition of ‘‘new neighbors.’’)
This contradicts the assumption that (b1, . . . , bn) contains ak as a cell, and the claim follows. �

The above proof implies that after ak is removed from the current polycube, it will never again be added to the untried
set (and hence neither to the polycube) as long as the recursion continues with P ′ as its root. However, when the recursion
is unfolded, and the current polycube is shrunk so that it is a subset of P ′ plus some other cells, it is certainly possible that
ak will be added again to the untried set and later to the polycube. Nevertheless, no future polycube will have P ′ as a subset.
The above proof also implies that we do not need to store any information about the free cells. This is because in order to

avoid counting the same polyomino twice, all that is required is the current polyomino and its neighboring cells. Tomaintain
this information we only need to be able to explore the graph locally ‘‘on demand,’’ and for each neighbor c ′ of a cell c which
is moved from the untried set to the polycube, determine whether or not it is now a new neighbor. The first task is easy to
accomplish, since the structure of the orthogonal lattice is well defined, and so is the definition of the mapping Γ (·). The
second task is also feasible: Such a cell c ′ is a new neighbor if and only if its only neighboring cell in the current polycube is
c. This is easy to determine using the polycube’s set of cells.

3.3. Counting proper polycubes

As reported in Section 5, our counts of A6(7) and A6(8) did not match those of Lunnon [16]. As mentioned in the
introduction, Lunnon actually computed DX(n, d), the number of proper polycubes of size n in d dimensions. (Proper
d-dimensional polycubes span all the d dimensions, and, thus, cannot be embedded in d − 1 dimensions.) According to
Lunnon’s formula, Ad(n) =

∑
i≤d

(
d
i

)
DX(n, i). In order to trace the source of the discrepancies, we modified our program

to also count proper polycubes.
To this aim, we should have maintained a ‘‘dimension status’’ that should have counted, for each dimension 1 ≤ i ≤ d,

how many cells of the current polycube have the ith coordinate different than 0, the cell at the origin. Each addition or
deletion of a cell to/from thepolycube should have been accompanied byupdating the appropriate counter in the dimension-
status record. To achieve this, we needed an efficient implementation ofΓ −1(·), a function thatmaps numbers (cell ids) back
to their original source cells with d coordinates.
However, for efficiency of the program, we wanted to avoid altogether the use of such a function Γ −1(·). When we add a

cell c to the polycube, instead of increasing by 1 the counters of all its dimensions relative to the origin (which aremany, and
not simple to identify), we increase only the counter of its dimension relative to the cell c ′ due to which it was previously
put in the untried set (which is unique, and is knownwhile c is added). This specific counter is decreased by 1 when cell c is
removed from the polycube. During the entire period in which c belongs to the polycube, this dimension of the polycube is
used. Thus, although the counter of dimension i does not really count the number of cells that occupy the ith dimension, it
is easy to see that it is still positive whenever there is any cell that does so. Obviously, the cell at the origin does not occupy
any dimension. In conclusion, a polycube is proper if and only if all the d counters in the dimension-status record are greater
than zero.

3.4. Parallelization

Since now the bottleneck of the algorithm is the running time, we also parallelized the new version of Redelmeier’s
algorithm. Mertens and Lautenbacher [21] did this for the two-dimensional version of the problem, while we do this for any
dimension. Since, as is already observed above, the execution of any subtree of the recursion does not change the contents
of the data structures at the top of the subtree, the computation of the subtree can be done independently and in parallel,
while the main algorithm skips the subtree.
In practice, themain procedure recurses only until some level k < n (for some fixed dimension d). Regardless of the value

of n, this induces Ad(k) subtrees, which can be assigned independently to the processors we have at hand. The results for all
levels k < m ≤ n, and, in particular,m = n, are collected from all the processors, and their summation yields the values of
Ad(m). This can be done for counting both proper and all (proper and improper) polycubes.
Here is a brief description of our parallel implementation. The main server runs on one computer and is continuously

waiting for messages sent by Internet clients through a dedicated port. When a new client introduces itself to the server, the
latter responds with a request to compute a specified range of the Ad(k) subtrees mentioned above. The client then invokes
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a polycube-counting program, which performs the entire computation up to level k, and recurses to the subtrees only in the
specified range. By the end of the computation, the program reports the results to the client, which, in turn, forwards the
results to the server. The server keeps track of all tasks (ranges of subtrees) assigned to the clients, being able to reassign
a task to another client if no results were reported by the original client to which the task was assigned. The programs for
the Internet server and client were written in Ruby, while versions of the polycube-counting programwere written in C and
C++. The client can be run in either a Windows or Linux environment.

4. Complexity analysis

For the analysis we assume that n > d, otherwise the polycubes cannot really span all the d dimensions. In d dimensions,
there areΘ((2n)d) distinct reachable cells, so the amount of memory (and time) needed to store (and process) the identity
of a single cell isΘ(d log n). (Note that in other studies this factor was considered asΘ(1) orΘ(d).)
We maintain two data structures: The set of currently-occupied cells (the current polycube) and the set of untried cells

(neighbors of the polycube). The size of the current polyomino is at most n, while the size of the untried set is at most
2dn−2(n−1) = 2((d−1)n+1). That is, the amount of cells stored by the algorithm isΘ(dn). For this we needΘ(d2n log n)
space. For a fixed value of d, this isΘ(n log n).
Since the new version of the algorithm does not compute the lattice graph, the size of the latter does not directly affect

the algorithm’s running time. The important factor is the number of operations (additions and deletions of cells) on the
untried set. This number is proportional to Ad(n), the number of counted polycubes. (More precisely, the number of these
operations is proportional to the total number of d-dimensional polycubes of all sizes up to n, but the polycubes of size n
outnumber all the smaller polycubes.)
We maintain the current polycube as a balanced binary tree (sorted by Γ (·) values), and since it always contains up to

n cells, each search, addition, or deletion requires O(log n) steps (where each step requires O(d log n) time, as explained
above). The untried set should be a queue-like structure which supports two types of operations: (1) Adding new cells at
the rear and removing cells (to be added to the current polycube) from the front. (2) Searching for a node, so that a cell will
not be added twice to the set. An appropriate tree-like structure (or two trees with cross references) can do the job. Since
the size of the untried set is O(dn), each operation on the set requires O(log d+ log n) = O(log n) steps.
When a cell c is moved from the untried set to the polycube, its 2d neighbors are computed, and each such neighbor c ′

is tested to see if it is a new neighbor. Recall that c ′ is a new neighbor if it is free and among all its own 2d neighbors, only
c belongs to the current polycube. Hence, each such test can be done in O(d log n) steps by using the polycube structure,
for a total of O(d2 log n) steps for all the neighbors of c. This can be done more efficiently if we keep a secondary set of
cells that were removed from the polycube but are still its neighbors, thus, they cannot become ‘‘new neighbors’’ as long
as they maintain this property. The size of this set is comparable to that of the untried set, that is, Θ(dn). For each cell c in
this secondary set we maintain the count of its neighbors that belong to the polycube, cells due to which the cell c cannot
become a new neighbor. When a cell is removed from the polycube, not only it is put in the secondary set and its count is
initialized appropriately, but also the ‘‘neighbor counts’’ of all its neighbors (which are in this set) are decreased by 1. When
the neighbor count of a cell reaches 0, the cell is removed from this secondary set, thus, it may again become a new neighbor.
With this set we can test in only O(log n) steps whether or not a cell c ′ is a new neighbor of the polycube. If it is not new,
then it is not added to the untried set. (A byproduct of this is that the data structure implementing the untried set does not
have to support the search operation, since we will never attempt to add to it a cell which is already there.)
Let us now sum up the amount of work (in steps) performed in each operation. Recall that a single operation on any of

the lists requires O(log n) steps. Removing a cell c from the polycube takes O(log n) steps. We also add c to the secondary set
in O(log n) steps, and initialize its count in O(d log n) steps by checking which of its 2d neighbors belong to the polycube. In
addition, we need to update the counts of the O(d) neighbors of c in the secondary list. For each such neighbor we compute
its id in O(1) steps, search for it in the list in O(log n) steps, update its count (if it is in the list) in O(1) steps, and remove it
from the list (if necessary) in O(log n) steps. This amounts to O(log n) steps per neighbor, for a total of O(d log n) steps for all
neighbors of c .
Moving a cell c from the untried set to the polycube takes O(log n) steps. In addition, we need to compute which cells,

neighboring to c , become new neighbors of the polycube. For each such neighbor we compute its id inO(1) steps, and search
for it both in the polycube and in the secondary list in O(log n) steps. Then, we either add it to the untried set (if it is neither
in the polycube nor in the secondary set) in O(log n) steps, or update its count (if it is only in the secondary set) in O(1) steps.
This amounts to O(log n) steps per neighbor, for a total of O(d log n) steps for all neighbors of c.
Overall, each basic operation of the algorithm (adding or removing a cell) requires O(d log n) steps. Since the algorithm

performs Ad(n) operations, and each step requires O(d log n) time, the total running time is O(Ad(n)d2 log2 n). In fact, we
implemented the three sets as one hash table. Practically, this reduces only the polynomial term, while the major factor,
Ad(n), is exponential in n, where the base of the exponent is an unknown constant that depends solely on d (e.g.,∼4.06 for
d = 2).
In the variant of the program that identifies proper polycubes we need to invest O(log d) time per generated polycube

to maintain the dimension-status record (by accessing the count of the appropriate dimension), and O(d log d) time for
checking whether or not a polycube is proper (by processing the counts of all the d dimensions). This does not change
asymptotically the running time of the algorithm.
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Table 1
Numbers of fixed d-dimensional polycubes (new values in boldface).

n A6(n) A7(n) A8(n)

1 1 1 1
2 6 7 8
3 66 91 120
4 901 1,484 2,276
5 13,881 27,468 49,204
6 231,008 551,313 1,156,688
7 4,057,660 11,710,328 28,831,384
8 74,174,927 259,379,101 750,455,268
9 1,398,295,989 5,933,702,467
10 27,012,396,022 139,272,913,892

5. Results

We implemented the algorithm in C and C++, and ran the serial program locally in an MS Windows environment on an
IBM X500 with four 2.4 GHz XEON processors and 3.5 GB of RAM. The parallel version ran over the Internet on dozens of
computers simultaneously, offering a wide range of processor frequency and available amount of memory.
Table 1 shows the values ofAd(n) obtained in 6, 7, and 8 dimensions. Newvalues,which are tabulated for the first time, are

shown in bold font. Values ofA8(n) confirmpreviously-published valueswhich relied onunproven formulae. The nonparallel
version of the program computed the reported values of A6(·) and A8(·) in about 26 days and a little more than a week,
respectively. The values of A7(·) were computed by the parallel program in about a week, using a dozen computers for
gathering a total of 91 days of CPU. All the old values in the table agree with previous publications, including ours [1], except
for the values of A6(7) and A6(8) computed by Lunnon [16]. From his calculations of proper polyominoes, one can infer the
values 4038,205 and 71,976,512, respectively. However, the now-known [3] explicit formulae DX(n, n − 1) = 2nnn−3 and
DX(n, n− 2) = 2n−3nn−5(n− 2)(2n2 − 6n+ 9) confirm our counts.

6. Conclusion

In this paper we presented an efficient implementation of Redelmeier’s algorithm for counting fixed high-dimensional
polycubes. We used our program to compute new terms of the series A6(n) and A7(n). The main contributions of this work
is eliminating the need to store the entire lattice graph (in which polycubes are sought), and parallelizing the algorithm.
The parallel version was actually implemented and run over the Internet. We plan to continue running it and compute even
more yet unknown values of Ad(n).
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