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ABSTRACT

Let (E,E, .| - ||) be an ordered normed space with a positive cone E,, let 0 < ¢ € E”, let N be a
finite-dimensional subspace of E’ and ¢ > 0. In terms of the notions of half-full injections and half-
decomposable surjections, sufficient conditions for N to ensure the existence of x € E, with

x| <livll+¢ and¢=Kgxon N

have been found (Theorems 3.5 and 3.6). As an application of Helly's selection theorem of ordered
type, the principle of local reflexivity of ordered type is obtained (Theorem 4.7).

1. INTRODUCTION

The classical Helly’s selection theorem (see {17] or [14, p.63]) says that for a
normed space E, if y» € E” and N is a finite-dimensional subspace of £’, then for
any ¢ > 0, there exists an x € E with ||x|| < ||4|| + € such that

(%) Yp=Kpgx onN.

Now if (E, E;) is an ordered normed space with a positive cone E,, and ¢ € E”
is positive, it is natural to ask whether there exists an x € E; with ||x|| < ||¢|| + ¢
such that () holds. The answers are, in general, negative. One of the purposes of
this paper is devoted to give some sufficient conditions for the finite-dimensional
subspace N of E’ to ensure that the answer is affirmative. To this end, we intro-
duce the notions of half-full injection modulus and half-decomposable surjection
modulus which are useful for normal cones and conormal cones (open decom-
position in the terminology of Jameson [6]) respectively (Propositions 2.9 and
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2.8), and then establish their duality result (Theorem 2.4). In terms of these two
notions, sufficient conditions for N to answer the above question have been
found (Theorems 3.5 and 3.6). On the other hand, the ‘principle of local
reflexivity’, due to Lindenstrauss and Rosenthal [5], can be derived from the
equation L(E,F)" = L(E,F") (where dim E < c0), by using Helly’s selection
theorem (see [2]). As an application of Helly’s selection theorem of ordered type,
the principle of local reflexivity of ordered type is obtained (Theorem 4.6). Also a
necessity and sufficient condition for a subspace M of an ordered normed space
(E,EL,|| - ||) such that each positive continuous linear functional on M can be
extended positively and continuously on the whole space is also found (Theorem
2.5) by means of the notion of half-full injection modulus.

2. HALF-FULL INJECTIONS AND HALF-DECOMPOSABLE SURJECTIONS

We shall assume throughout this paper that the scalar field for vector spaces is
the real field R, and that all topological vector spaces (abbreviated by TVS) will
be Hausdorff.

By an ordered convex space (abbreviated by ordered LCS), denoted by
(X, X+, P), is meant a locally convex space (X, P) equipped with a cone X ; and
a normed (resp. Banach) space with a cone is called an ordered normed space
(resp. ordered B-space), abbreviated by ordered NS (resp. ordered BS) and de-
noted by (E, E,, || - ||} or (E, E}). In general, we shall not assume that cones are
closed or proper.

Let (X,X;,P) and (Y,Y,,7) be ordered LCS. Throughout this paper,
L(X,Y) will denote the vector space of all continuous linear maps (called
operators) from X into Y, and

LAX,Y)={TeL(X,Y): T(X,)C Y.}

(elements in £, (X, Y) are called positive operators); in particular, we write the
topological dual of X and the dual cone of X, by:

X' =L(X,R) and X|=L.(XR).

If (E,E.,| -])|) and (F, F,,]|| - ||) are ordered normed spaces. We denote by Ug
(resp. Ug/) the closed unit ball in E (resp. in E'); when E and F are isometric or
metrically isomorphic (resp. isometric and order preserving, called order iso-
metric), we write E = F (resp. E (%) F).

Let (E,E..||-||) and (F,F,,||-|) be ordered normed spaces and T €
L. (E,F). For a given 7 > 0, we say that 7 is a (or an):

(a) T-half-full injection (resp. almost T-half-full injection) if

7T Y (Up —F,) C Ug— E, (resp. 7T Y(Ur — F,) Cc Ug — E});

(b) 7-half-decomposable surjection (resp. almost T-half-decomposable surjec-
tion) if
T(UsNFy) C T(UgNE,) resp. (UrNFy) C T(UgNEL)).
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AT ¢ L, (E,F)is called a half-full injection (resp. almost half-full injection, half-
decomposable surjection, almost half-decomposable surjection) if it is a A-half-full
injection (resp. almost A-half-full injection, A-half-decomposable surjection,
almost A-half-decomposable surjection) for some A > 0.

Let T € £, (E, F). It is easily seen that:

{(a) 7 is an almost 7-half-full injection f and only if T is a
injection for any € > 0;

(b) T' € L,(F',E’) is an almost 7-half-full injection if and only if 77 is also a
7-half-full injection (since Uy is weakly compact).

Denote by pg (resp. gr) the guage of Ug — E, (resp. Up — Fy). It is easily seen
that

pe(x) = inf{[|uf| : u > x}
=inf{ljx+v||:ve E} (<|x]|) (forany x € E),
hencea T € L, (E, F) is an almost 7-half-full injection if and only if

pE(x) < qr(Tx) (for any x € E).

This observation enables us to induce the following notions analogues to that of
injection modulus and surjection modulus, introduced by Pietsch in [8, (B.3)].

Definition. Let (E,E,, | -||) and (F, F;,| - ||) be ordered normed spaces. For
any T € L. (E, F), we write:

Juw (T) =sup{r > 0: 7T (Ur - F.) C Ug — E; };
th (T)=sup{r >0: 7T~ (Ur - F,) C Ug — E; };
qr (T) =sup{r 2 0: 7(Upr N F,) C T(UgNE})};
th (T) =sup{r > 0: 7(Ur NF,) C T(Us NE;)}.

Jur (T) (resp. ]hf)(T)) is called the half-full injection modulus (resp. almost half-full
injection modulus) of T; while g, (T) (resp. g,f}’)(T)) is called the half-decompos-
able surjection modulus (resp. almost half-decomposable surjection modulus) of T.

It is clear that T € £, (E, F) is a half-full injection (resp. almost half-full
injection) if and only if ji (T) > 0 (resp. j,ffa) (T) > 0). Similar conclusions hold
for half-decomposable surjections or almost half-decomposable surjections. It is
also clear that

Jr(T) =ji(T) and g (T) < q\P(T).

In order to study the duality relationship between half-full injections and half-
decomposable surjections, we require the following result:

Lemma 2.1. Let (X, X4, P) be an ordered LCS with the topological dual X' and
dual cone X[, let0 € V C X and0 € D C X'. Then:

229



@ (V-X)=Vn(-X)=Vonxland (V+ X)) =Vo'nx2=r'n
(X))
(b) If, in addition, V is a convex 7(X, X ')-neighbourhood of 0, then:

VX)) =v'+x!=v"-x|
© D-Xx)=D'n(—(x)*)=D"NnXP®=D"NTX,.

Proof. The proofs of (a) and (b) can be found in [12, (1.1.5)]; while (c) follows
directly from the definition of polars. O

As a consequence of Lemma 2.1 and the bipolar theorem, we get the following:

Corollary 2.2. Let (X, X, P) be an ordered LCS. For any convex 7(X,X')-
neighbourhood V of 0, one has:

VX, =VnX,.
Proof. As 0 € VN X, and X, is convex, it follows from the bipolar Theorem,
2.1(b) and (c) that
VX, =Vnx)®=w+x0°=w°-x)°
=vVOnX, =7nX,. O
As an immediate consequence of Corollary 2.2, we obtain:

Corollary 2.3. Let (E,E.) and (F,F.) be ordered normed spaces, let T &
L (E,F) and 7>0. Then T :(E,E,) — (F,F}) is an almost t-half-decom-
posable surjection if and only if T :(E,E,) — (F,F.) is an almost T-half-
decomposable surjection.

We now describe the duality relationship between almost half-full injections
(resp. almost half-decomposable surjections) and half-decomposable surjections
(resp. half-full injections).

Theorem 2.4. Let (E.E.)} and (F,F.) be ordered normed spaces and T €
L. (E,F). Then

JNT) = gug(T") and g(T) =y (T").

In particular, T is an almost T-half-full injection (resp. almost T-half-decomposable
surjection) if and only if (its dual operator) T’ is a T-half-decomposable surjection
(resp. T-half-full injection) for some T > 0.

Proof. The equality jh(f”)(T) = gy (T") follows from
(1) T Up—F,)CUs—E. & 7(UpNE,)CT'(UsNF)).

Thus, we are going to verify (1).
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In fact, let 7 > 0 be such that 77 Y (Ur — F,) C Ug — E;. As Up — F, is
convex and contains Uy, it follows that

() (U~ E) (T (Ur = F)’ = T'((Ur ~ F,)°).
By Lemma 2.1(a), we obtain
3)  (Ug—E;)’=Ugn(-E}) = UpNE|
and
4 T'((Ur=F)")=T'(UIN(=F)) = T"(Us N F));
it then follows from (2) that
T(Ug NEL) C T'(Up NF]).
Conversely, let 7 > 0 be such that 7(Ug: NE]) C T'(Up: N F). As
T(Up NE}) = 7(Ug — Ey)° € T'((Ur = Fy)°) = (T 7/ (Up - F4))°
(by Lemma 2.1(a) or (3) and (4)), it follows that
1T W Up —F) (TN (Up —F)® c (Ug —E)® =Ty - E,.

Therefore (1) holds.
The equality q,f}')(T) = jiy(T") follows from

(5) r(UprNF) CT(UgNEy) & 7(T") "' (Ug —E})C Up — FL.

Therefore, we are going to verify (5).
In fact, we first notice from Lemma 2.1(b) that

) (TWenE) =(T) " (UenE)") = (T (Up — EY)
and
(7) (UrNF)’ = Up — F.
Formula (5) now follows from (6) and (7) and the polar calculations. O
It is amusing to compare the preceding result with classical well-known results
[8, (B.3.8), p. 27].
The preceding result enables us to give a criteria for vector subspaces of

ordered normed spaces such that positive continuous linear functionals can be
extended positively to the whole spaces.

Theorem 2.5. Let (E,E.,| - ||) be an ordered normed space, let M be a vector
subspace of E and T > 0. Then the canonical injection Jy; : M — E is an almost
T-half-full injection if and only if for any g € M| there exists an f € E| such that

(1) e=fu and 171<~ gl

In particular, if Jyr is an almost half-full injection, then any positive continuous
linear functional on M has a positive, continuous extension.
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Proof. The result follows from the following equivalent statements:

Ju : M — E is an almost 7-half-full injection
& Jy:E'— (M',M]) isa r-half-decomposable surjection
& T(UnpNML) CJy(UpNEY)
< (1) holds. O

Remarks. (i) It is clear that if f € E] is an extension of g€ M, then
lgllar <NSIl. Thus Jar : M — E is an almost 1-half-full injection if and only if
each positive continuous linear functional on M has a norm preserving, positive
extension on .

(i) The preceding result is still true for an arbitrary ordered normed space M
that is not a subspace of E.

(iii) It is not hard to verify the dual result for quotient maps; more general,
one can show that if 7 € £, (E, F) and 7 > 0, then T is a 7-half-decomposable
surjection if and only if for any Sy € £, (R, F) there exists an S € £, (R, E) such
that

1
TS=So and [IS]| < — [ISoll

Because of the preceding result, we call a vector subspace M of an ordered
normed space (E, E,) to be a (resp. an almost) T-half-full subspace of E if Jy,
is a (resp. an almost) 7-half-full injection. Dually a closed subspace N of
(E,E4, || - |I) is called a (resp. an almost) T-half co-subspace of E if the quotient
map Qy : E — E/N is an (almost) 7-half-decomposable surjection. A subspace
(resp. closed subspace) M of (E, E, ) is called a half-full subspace (resp. (almost)
half co-subspace) if Jyr : M — E is a 7-half-full injection (resp. Oy : E — E/M
is an (almost) r-half-decomposable surjection) for some 7 > 0.

As another application of Theorem 2.4, we are going to verify that /,(A4)
(resp. 1;(A)) has some sort of positive extension property (resp. positive lifting
property) as follows:

Proposition 2.6. Let (E,E.),(F,F.)and (G, G, ) be ordered B-spaces, let A be a
non-empty index set and v > 0.
(@) Let J € L.(G,E) be an almost T-half-full injection. Then for any
Ty € L(G, 1 (A)), there exists a positive T € L, (E, lo(A)) such that
- ~ 1
(1) TJ=To and |T|<— |ITol.

(b) Dually let Q € L, (F,G) be a T-half-decomposable surjection. Then for any
So € L (/(A), G), there exists a positive S € L (I|(A), F) such that

- = 1
() 085=S and |3 <— sl
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Proof. (a)Foranyi e A, let P; : [,(A) — R be the i-th projection and f; = P;T.
Then f; € G/ is such that

) {Ifi(X)l = [PiTo(x)| < |To x[loo < |70l |Ix[| and
Tox=[Pi(Tyx), ied] (xeG),

hence
(4) sup || fill < || Toll.
ied
As J € £, (G, E) is an almost T-half-full injection, it follows from Theorem 2.4
that J' € £, (E',G’) is a T-half-decomposable surjection, i.e.,
T(UG! n G_,'_) C JI(UE/ ﬁE_:_)
For any i € A, there exists a g; € Ug» N E such that

(5) f;: J/gl'v

-
1 oll
hence the map T : E — I(A), defined by
||To||

( )= gi(z),ie A (for any z € E),

1s a positive operator such that

= || 0||
[T]| = su Hg||< | Toll
E
and

T(Jx) = [” Tl gi(Jx), i € A] [filx), ie Al = Tyx (for any x€G)

(by (3) and (5)).

(b) As Sy : /1(A) — G is an operator, it follows from a well-known result (see
[7, p. 280] or [14, (3.j)(1)’]) that there exists a bounded family [y;, i € 4] in G such
that

(6) So([¢i, i € A]) = ZA) Gyi (forany [G;, i € A € [1(A))
and

(7) sup [|yil| = [1So]l-
ieA

Since Sy is positive, it is easily seen from (6) that y; € G, (i € A). On the other
hand, since 7(Ug N G+) C Q(Up N F,), it follows from (7) that there exists a
z; € Up N F such that

(8) m yi=0(z;) (forallie A),

233



and hence that [(||So||/7) z;, i € 4] is a bounded family in F;. Now the map
S : i (A) — F, defined by

S([G, i€ Ay=3% ¢— 2z (forany [(, i€ A]€l(A)),

[1Soll
A T

satisfies all requirements. O

In order to give some examples of half-full injections and half-decomposable
surjections, let us recall the following terminology: Let (E,E,, | -||) be an
ordered normed space. A vector subspace M of E is a positive complemented
subspace of E if there exists a positive projector P € £, (E,E) such that
M = P(E).

Proposition 2.7. Let E be an ordered normed space.

(a) Suppose that M is a positive complemented subspace of E. Then the canonical
injection Jp; - M — E is a half-full injection, and the positive projector P : E — M
is a 1-half-decomposable surjection.

(b) The canonical embedding Ki : (E,E,) — E" EY) is an almost 1-half-full
injection.

Proof. (a) We have
Jig'(Ug — Ey) = (Ug — Ex) "M C P(Ug - Ey)
C P(Ug) = M, C||P|| Uy — My = ||P|| (Un — M),
hence Jy is a (1/|| P||)-half-full injection.
As Uy NM, C UgNE, and P? = P, we conclude that
Uy "M, = P(Uy N M,) C P(UgNE,),
and hence that P is a 1-half-decomposable surjection.
(b) In view of Theorem 2.4, it is required to show that K : E" — E’isa 1-
half-decomposable surjection, or, equivalently
(1) Ug: ﬂE_‘I_CKé(UE”/nE_:_”).
In fact, let f € Ug: N E; and let us define
g=Kp(f)
where Kg/ : E' — E" is the canonical embedding. Then g € Ug» N E" is such
that f = Kj(g) [since Ig = (Kg) Kg)]. O

Examples. (a) Let E be a normed vector lattice. Any sublattice of E is a 1-half-
full subspace, and any closed lattice ideal in E is a 1/(1 + £)-half co-subspace
(for any € > 0).

(b) Any ordered and topological isomorphism between ordered normed
spaces must be a half-full injection as well as a half-decomposed surjection.

(c) Metric injections are, in general, not half-full injections, and dually open
maps are, in general, not almost half-decomposable surjections.
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Proof. Parts (a) and (b) are obvious. To prove (¢), consider the ordered B-space
E = [, and define

(*) M = {[pn] € lo : p2n = —npoa—1 (foralln=1,2,.. )}

Then M, = (I), N M = {0} [since p, .1 > 0 and —npy, 1 > 0 will imply that
ton—1 = 0]. Moreover, we claim that (Ug — E;) N M is not a subset of nU,, (for
all n > 1), thus the canonical embedding Jys : M — E is a metric injection which
is not a half-full injection.

In fact, let us take { = [(,] € Ug with { = 1 (for all k > 1). For a fixed n > 1,
let us define v = [v\"] € E, by

{0, if kisoddand k <2n+1;
vl = {(k/2)+1, if k is even and k < 2n + 2;
1, if k> 2n+3.
Then the k-th coordinate of ¢ — v, denoted by a,ﬁ") , 18
1, if kisoddand k <2n+1;
oV = { —(k/2), if kisevenand k <2n+2;
0, if k>2n+3.

hence ( — v € M and || — v™|| = n+1 > n, this shows that  — v ¢ nUg.

Dually, let G = /;. Then G’ (—i) I = E. Observe that the subspace M, defined
by (%), is o(E,G)-closed [since, if (W =[], ¢ =][¢,] are in E such that
¢ =0(E,G) —limy ¢™, then limy (¥ = ¢, (forall n > 1). Let N = M (C G)
and Oy : G — G/N the quotient map. Then Q) = Ju and Qy is not an almost
half-decomposable surjection (by Theorem 2.4). 0O

Because of Example (b), it is natural to ask that under what conditions on
(E,E.) or (F,F,), half-full injections (resp. half-decomposable surjections)
must be injections (resp. open).

Proposition 2.8. Let (E,E.) and (F,F,) be ordered normed spaces, and let
T € L (E, F) be a T-half-decomposable surjection for some v > 0. Then

(a) T(E;) = Fy.

(b) If F=F; — F,,then T is onto.

(c) If F. is a conormal cone (i.e., F, is A-generating [6, p. 112] or [16)), then T is
an order topological surjection (i.e., T is open and T(E,) = F,).

Proof. (a) For any 0 #v e F,, 7(v/|v]]) € 7(Ur N F,), it then follows from
T(UpNFy) C T(UgNEL) that there exists an x&€ UgNE, such that
T(v/[vll) = Tx, thus v = T((|jv]l/7) x) € T(E,).

(b) Follows from (a).

(c) As F, is conormal, there exists a A > 0 such that A\Up C D(Uf) (where
D(Ur) = I'(Ur N Fy), (the disked hull)), it then follows that

AU CTD(Up) C 7(UpNF, — UpNF.)Cc T(UgNE) — T(UgNE,)
=T(UgNEy - UgNE,) C2T(Ug),
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and hence that 7T is open. Consequently, 7 is an ordered topological surjection
by part (a). O

Remark. By a similar argument given in the proof of part (c), one can show that
if T € L (E,F) is an almost T-half-decomposable surjection and if F, is conor-
mal then T is almost open. (Hence T is open provided that E is complete).

As another application of Theorem 2.4, we are able to verify the dual result of
Proposition 2.8 as follows:

Proposition 2.9. Let (E,E.) and (F,F,) be ordered normed spaces, and let
T € L, (E, F) be a -half-full injection for some T > 0.

(a) If E. is closed then T is order preserving, i.e., T(Ey) = F, N T(E).

(b) If E, is proper and closed then T is one-one.

(¢) If E, is a closed normal cone (i.e., E, is A-normal [6, p.112]), then T is an
order topological injection (i.e., order preserving and uT ~'(Ur) C U (for some

p > 0)).

Proof. (a) Let x € E be such that Tx € F,. It is required to show by the closed-
ness of E, that f(x) > 0 (for all f € E!).

In fact, it is clear that T is an almost r-half-full injection, it then follows
from Theorem 2.4 that T' € £, (F', E’) is a 7-half-decomposable surjection, i.e.,
T(Ug NE]) C T'(UpNF]). Now for any 0#f € E|, there exists a g€
Up N F] such that T'g = 7(f/| f|); it then follows from T € L, (E, F) and
g € F| that

£ =0 gy = gy 0,

which obtains our requirement.

(b) Suppose that Tx = 0. Then =7x > 0, hence x € E; and —x € E (by part
(a)), thus x = 0.

(c) We first show that 7 is a topological injection or, equivalently, there exists
a > 0 such that uT ' (Ur) C Ug.

In fact, as E, is a normal cone, there exists a A > 0 such that F(Ug) C AUg
(where F(Ug) = (Ug + E.) N (Ug — E,)). On the other hand, the symmetry and
7T Y (Up — Fy) C Ug — E imply that 77 ~1(Urp + F,) C Ug + E4. It then fol-
lows that

T Y Up) c T '((Up = Fy) 0 (Ur + Fy))
0 — (TN (Ur = F2)) N (T (Ur + Fy)
1 A
C7 (UE—E+)ﬂ(UE+E+) C-; Ug,
which proves our assertion by taking p = 7/

The closedness of E, ensures that T(E,) = F. N T(E) (by part (a)), thus T is
an ordered topological injection. 0O
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Remark. By a similar argument given in the proof of part (c), one can show that
if T € L, (E,F)is an almost m-half-full injection and if E, is a normal cone then
T is still a topological injection. [Observe that Ug — E, and Ug + E. contain
Ug, hence (Ug — E.) N (Ug + E;) = F(Ug) (see [12, (1.1.4)])].

Proposition 2.10. Let (G, G, || - ||) be an ordered B-space, let
Us, =UsNG, and UGi =UgN G-’#'

(@) If G, is l-generating (ie., Us = I'(UsNGy) = D(Ug)), then the map
QG : ll(UG+) - (Ga G+7 H ) “)a deﬁnedby

Q6([C:xeUs )= 3 Cox (forany [G:x € Ug] € h(Us,)),

xe€ UG+

is an order metric surjection (i.e., order preserving and metric surjection), and also
an almost 1-half-decomposable surjection.

M) If Gy is l-normal (ie., Usg=(Us— G.)N(Ug+ Gy) =F(Ug)) and
closed, then the map Jg : (G, Gy, || - ||) — Lo(Ug), defined by

Jo(x) = [(x,u) 1 u" € Ug/] (for any x € G),

is an order metric injection (i.e., order preserving, isometry into), and also an
almost 1-half-full injection. Moreover, if, in addition, K¢ is a 1-half-full injection
(and surely G is a normed vector lattice), then Jg is a 1-half-full injection.

Proof. (a) As G is l-generating, it is not hard to show that Ug C Qa( U, v,,));
consequently Og is a metric surjection (since Qg( Ull(U@)) C Ug 1s always true).
By a routine argument, it is easily seen that Qg is order preserving and also
1-half-decomposable surjection.
(b) As G, is 1-normal, it follows that

Ixl| = sup{i(x,u")| : u" € Ug, } = [IJ(x)ll,, (for any x € G)

(see [12, (1.2.1)(a)]). The closedness of G, implies that Jg; is order preserving.

To prove that Jg is also an almost 1-half-full injection, we first notice from
Grosberg-Krein’s theorem (see [16, (5.15)]) that G| is 1-generating, hence part (a)
of this result shows that the mapping

Qo+ h(Ug) = (GG || ) (G iu' €Ul = 3 Guud

u' € Uy

is a l-half-decomposable surjection, hence its dual mapping (Qg/) :
(G",GY,|-1I) = (W(Ug)) is a 1-half-full injection (by Theorem 2.4), thus
Jo = (Q¢') K¢ is an almost 1-half-full injection (by Proposition 2.7(b)).

Finally, if Ky is a 1-half-full injection, then so does J;. 0O

Remarks. (i) If G, is 7-normal and closed, then J is one-one, order preserving
with
7 < j(Jg) and Ul <1,
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and also a (1/7)-half-full injection (where j(J¢) is the injection modulus (see [8,
(B.3.1), p. 26)).
(i) If G, is 7-generating, then Qg is onto, order preserving with

771 <¢(Q¢) and [Qqll <1,

alf Ao~ mrmanan Tla grisiantine fohara /) ) 2o tlan grrseiantia
1dll-UCLuULPUALIT SUL JTLLILIL AWLICLIT 4\ U/G ) 1> LT Sul joeiivil

a {
an { 1
modulus of Qg (see [8, (B.3.4), p. 26])).

3. HELLY’S SELECTION THEOREM OF ORDERED TYPE

The classical Helly’s selection theorem (see [17] or [14, p. 63]) says that for a
normed space E, if ¢ € E” and N is a finite-dimensional subspace of E’, then for
any ¢ > 0, there exists an x € E with ||x|} < ||4|| + ¢ such that

(%) =Kgx onN.

This section is devoted to a study of this theorem with the consideration of an
ordering in E (see Theorems 3.5 and 3.6). Before doing this, let us first recall
some well-known facts about the duality between subspaces and quotients of
ordered normed spaces.

Let (E, E.) be an ordered vector space, let M be a vector subspace of E, let
Oy : E — E/M be the quotient map and

Qu(Es) = (E/M), = E,
(the quotient cone of E (by M)). 1t is clear that

Qu(x) € E; if and only if (x + M) N E, # é.
Om(E, ) is proper ifand only if M = (M + E;) N (M — E,) (i.e., order-convex).
Lemma 3.1. Let (E,E,,|| - ||} be an ordered normed space, let M be a closed

vector subspace, let Qi : E — E/M be the quotient map, and M- = M+ N E;.
Then Qi : (E/M,E,) — (M*, M 1) is an order isometry.

Proof. It is well-known that Q}, is a metric isomorphism. It is also clear that
Q}, is positive. To prove that Q;, is order preserving, let g € M j and let
¢ € (E/M) be such that g = Q},(p) = pQu. We claim that ¢ is positive.

In fact, let Qps(x) € E,. Then there exists a u € E, such that Qp(x) = Qur(u),
hence

0(Qm(x)) = ©(Qum(u)) = g(u) > 0. O

Let (E,E.,| - ||) be ordered normed space, let M be a vector subspace of E,
let Ja : M — E be the canonical injection, and let/.\] wi E'/M L M’ be the
injection associated with J;,. It is well-known that J;, is a metric isomorphism.
It is easily seen that

T (Qui(EL) € ML (= M'NEL),
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ie., j;l is positive. It is clear that J/A’; is order preserving (ie.,
(E’/Mi,QML(EJ’r))g(M’,Mjr) (order isometric) under J;,) if and only if
M C Jy(E}) (and surely M| = J (E_) since Jy is positive). Hence we obtain
the following:

Lemma 3.2. Let (E,E.,| - |) be an ordered normed space, let M be a vector
subspace of E, let Jyy - M — E be the canonical injection, and let J, E'/M* —
M' be the injection associated with J ;. Then J}, is an order isometry if and only if

MY C I}y (E]).

1 if ]

In navticular
uiar, iy

~
aie priar el
¥
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tion) for some T >

Lemma 3.3. Let (E,E,)and (F,F,) be ordered normed spaces,let Q € L. (E, F)
be an open (positive) operator and T > 0. Then Q is an almost T-half-decomposable
surjection if and only if for any v € F, and e > 0, there exist u € E, and z € ¢Ug
such that

(1) [lull < % ol and  Qu+z) =wv.

Proof. We first notice from the openness of Q that
(2) QU NE,)C QUegNEL)+eQ(Ug) (for any € > 0).

Necessity. Forany 0 # v € F,, since 7(Ur N F,) C @Q(Up N E.). it follows from
(2) that there exist xo € Ug N E, and w € (r¢/|[v||) Ug such that (r/]v|}v =
Q(xp + w), so that v = Q((||lull/7)(x0 + w)). Now let

[

v
u:”—ﬂxo and z=-—w.
T T

Then u and z have the required property (1).
Sufficiency. By (2), it is required to show that
(3) T(UrNF,) C Q(UgNEL)+eQ(Ug) (for any ¢ > 0).

Indeed, let 0 # v € 7(Ur N F,) and € > 0. There exist u € E, and z € eUg such
that (1) holds, hence ¥ € Ug N E (since |ju}| < (1/7) ||v]] < 1), and thus

v=Q+z) € QUsNE) +e0(Ug). O

Lemma 3.4. Let (E, E.) be an ordered normed space, let M be a closed subspace
of E, let Qpr - E — E/M be the quotient map and v > 0. Then Qprisa 7/(1 + ¢€)-
half-decomposable surjection (for any e > 0) if and only if for any %=
Oum(x) € Qu(E}), one has

. 1
(1) inf{lix+z||:zeMand x+z€ E;} <— |||
T
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Proof. Necessity. For any 0# % € Quy(E,), since (/1 + ) (Up/m Nk c
Qu{Ug N E,), there exists a u € Ug N E, such that
T

(1+e) |IX]

it then follows that there exists a z € M such that x — ((1 +¢)/7) |X[|u = —z,
and hence that

Oum(x) = Om(u);

1 N
X+Z:(—MMEE+ and ||x+;”§
T

thus (1) holds.

1+

€ -
%1,
-

Sufficiency. For any 0#%x¢ T(Ug/m N E,)and e > 0, there exists a z € M such
that

1
(2) x+zeE,. and ||x+z||<7||5c||+5§1+5.

It then follows that (1/1 +¢e)x € (7/1 + €)(Ug/m NE,)and

1 I 1
14" l+e¢

(by (2)); thus (7/1 +€)(Ugyy NEy) C Qu{Up NEL). O

Ou(x) = %H Ou(x+z) € Ou(Ug NEL)

Remark. For any ¥ = Quy(x) € Qum(E.), we always have
|| < inf{ljx+z||:z€ M and x+z € E, },

thus (1) becomes equality when 7 = 1.
By means of the previous lemmas, we are able to verify the following inter-
esting result which can be regarded as Helly’s selection theorem of ordered type.

Theorem 3.5. Let (E,E,,| -||) be an ordered normed space, let N be a finite-
dimensional subspace of E', let 1 € E\ and T > 0. Suppose that the annihilator NT
of N (in E) is a 7/(1 + 6)-half co-subspace of E (ie., Qyr : E— E/N" is a
7/(1 + 6)-half-decomposable surjection) for any 6 > 0, and that the quotient cone
On+(Ey) is closed in E/NT. Then for any € >0, there exists a u € E, with
llull < (1/7) |9l + € such that

(1) flu)=¢(f) (forall f €N).

Proof. Let M = N . Then M is closed in E such that M+ = (NT)" = N (since
dim N < o). Let M1 = N be the annihilator of N taken in £”. Then Lemma
3.1 shows that

(2) (E/M,0um(Ey)) 2 (N,NNE.) (order isometric)
and

(3) N'=E"/M** (isometric).
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As dim N < oo, it follows from (2) that dim E/M < oo, and hence from (2) and
(3) that

(4) E/M = E"/M*" under Kg,.
Thus it is easily seen that the following diagram commutes:

Kg

(E.E.) (E",EY)

(5) QMV{/ jVQM.l.L

(E/M, O (Er)) — s (E"/M**, Qpr1: (EL))

where Kg/y is an order isometry (see (4)). while Kg is a positive and metric
injection (for definition, see [8, (B.3.2)]). As ¢ € E/, it follows that there is an
x € E such that

(6) Oum(x) € Om(Ey) and  Kg/y(Om(x)) = Opror ().
Suppose now that M = N T is a 7/(1 + ¢)-half co-subspace of E such that

Ou(E,) is closed in E/M. For this Qum(x) € Ou(Es) = Ou(Ey), Lemma 3.4
ensures that there exists a z € M such that

x+ze€E, and |x+z| < % HOm(X)|| + «.
Now let u = x + z. Then u € E, is such that
ol = e+ 21 < = 1 Qu(x)] + <
= LK Qulx))l 2 < - il + ¢

(by (6)) and Qu(u) == Ou(x + z) = Qu(x) (since z € M), hence
O (V) = Kg/m(Oum (X)) = Kg/n(Qur (1)) = Qprir Kg(u),
in other words,

fu)=(f,Kgu) =(f,¢) (forall feN). O

Remark. It is interesting to apply Theorem 3.5 to the case when E is a B-lattice
and N is a finite-dimensional sublattice of E’ such that the canonical injection is
almost interval preserving (i.e., for any u € N, [0,u] (w.r.t. (N, N,)) is dense in
[0,u] (w.r.t. (E, E.))). In this case, N is an ideal of E” (by [11, (11.2.20), p. 74])
and so is M, thus, Oy (E, ) is closed and Qyy is a surjective Reisz homomorphism
(which implies that it is a 1-half-decomposable surjection).

Using a result of V.A. Geiler and I.I. Chuchaev [3], one can easily find another
version of Helly’s selection theorem of ordered type with slightly weaker con-
clusion provided by a simpler assumption. Here, we would like to thank the
referee for suggesting us to compare the original results of Theorem 3.5 to the
results in [1] and [3].
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Theorem 3.6. Let (E, E.) be an ordered normed space and N be a finite dimen-
sional subspace of E'. Then for any € > 0 and ) € E, there exist w € E, and
z € eUg with ||w|| < ||9|| such that

w+z fy=(f,¢v) (forall feN).

Proof. Let C = ||¢|| Us N E; and H be the l-dimensional subspace of E”
spanned by 1. Then C is a convex subset of E containing 0 and the bipolar, C%,
of Cequal to ||[¢f| Ug» N E} . By Theorem 1.2 (more precisely, parts (i) and (it) of
Theorem 1.2) of [3], for any 7 > 0, there exist u € (1 +7) C and v € (¢/2) Ug
such that

(u+twv,f)=(f4) (forallfeF)

in particular, for this n=¢/(2(¢|/), one can take w=u/(1+7n) and z =
v+ u — w, then the result follows. O

4. THE PRINCIPLE OF LOCAL REFLEXIVITY OF ORDERED TYPE

The famous principle of local reflexivity, (found by Lindenstrauss, J. and H.P.
Rotsenthal [5] and strengthened by Johnson, W.B., H.P. Rosenthal and M.
Zipping, [4]) says that if E, F and D are Banach spaces such that E is finite
dimensional and D is a finite dimensional subspace of F’, then for any
T € L(E,F") and any ¢ > 0, there exists an S € L(E, F) with ||S|| < ||T| +¢
such that

(¥, Tx) ={y',Kr Sx) (forall x€ E and y’ € D).
Moreover,

Kp Sx = Tx (for all x € E with Tx € Kp(F)).

It is well-known that this principle has many important applications (see [8,
(28.1) p. 383]) and that the simple proof is given by Dean, D.W. [2] who observes
that local reflexivity theorem (for Banach spaces) can be derived from one-
dimensional ones. In this section, we will borrow Dean’s idea to deduce this
famous theorem for ordered type (Theorem 4.7). Our proof of Theorem 4.7 rests
on the following lemmas which examine the order structure of F(E, F) and its
dual and bidual, and are also interesting themselves (in particular, Lemmas 4.4
and 4.6).

Let (E,E.,| - ||) and (F, F,,| - ||) be ordered B-spaces and let F(E, F) be the
vector space of all all finite operators from (E,|| - ||} into (F, || - ||). We always
identify F(E,F) with the algebraic tensor product E’'® F. Denote by
C.(E' ® F) the projective cone in E' ® F, i.e.,

Cr(E'® F) =co(E{ ® F,) - { Sou®@u;ul € EL and v; € F+};

i=1
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and by C;(E’' ® F) the biprojective cone in E' ® F, i.e.,
C/(E'®F)

= { Zn: x/ ®y;: i (x!, "W yi,v") >0 (¥" € El v € Fi)}

i=1 i=1

It is easily seen that C,(E' ® F) C Ci(E’ @ F) and that
Ci(E'®F)
(4.A) { n ) ¥
iz ’ '

(since E! is the o(E", E')-closure of K¢ E). If F__ is closed, then
(4B)  C(E'®@F)=F.(E,F).

Moreover, if E is a finite-dimensional Banach lattice, then we have the fol-
lowing;

Lemma 4.1. Let E be an n-dimensional B-lattice. For any ordered normed space
(G,Gy),onehas FL(E,G) = C.(E' @ G) and F.(G,E) = C(G' R E).

Proof. Itis well-known (see [9, Ex. (V.21(a)), p. 254]) that E is a norm and lattice
isomorphic to R", ordered in the usual way and normed so that ||e;|| = 1, where
e;=[6ili<j<n (i=1,...,n), under 9. Then u, =y ~'(e;)) € Ey (i=1,...,n)
forms a basis in E such that

"
() S aju€ By ifandonlyif o, >0 (i=1,....,n);
i=1
moreover, (1) shows that any dual basis of {u),...,u,} must be positive, hence
we assume that { f1,..., f,} is a positive dual basis of {uy,...,u,} (ie., f; € E}).

The result now is clear since any T' € F(FE, G) can be represented as
T=5 fi®(Tu)
i=1

and any S € F(G, E) can be represented as

=

S = (S'f,)@u, a

Denote by || - ||, the finite nuclear norm (or m-norm) on F(E, F) (for defini-
tion, see [8, (6.8.1)]). It is well-known that

(3) (F(E,F), Co(E' ® F), || - ;) £ (L(F, E”), Lo (F,E"), |- )
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(order isometric), under the map T — (-, T),, (where 7' € L(F, E")), defined by

(R,T),, =trace(TR) = 3 (x!, Ty)
@)
(for any R=3Y x/®y; € }'(E,F)),

so that (F(E, F), L(F,E"}) is a dual pair and
(5) L (FE") = —(Ci(E'® F))° = (C,(E'® F)) (the dual cone).

Denote by J(E, F) the vector space of all integral operators from FE into F (for
definition, see [8, (6.4.1)]), and by I( -) the integral norm on J(E, F). It is well-
known (see [10, (IV.5.9)] or [13, (4.1.3)]) that

(6) (F(E,F),|- ) = (J(F,EM,I(-)) (isometric)

under the trace duality defined by (4).
Suppose now that E is finite-dimensional (denoted by dim £ < oc). Then

1) =11l on F(EF)
(see [8, (6.8.3)]). It then follows from (6) and (3) that
o {(E(E,F),II-I!)"E (F(E,F), |- D" = (T(F,E), )Y
(FFE)N - Nlm) = (LEF"), 1)

under the trace duality defined similarly by (4).
The dual cone and bidual cone of £, (E, F) can be calculated as follows:

Lemma 4.2. Let E be a finite dimensional B-lattice and (F,F,,| -||) be an
ordered B-space with closed cone F. Then

(8) (L(E,F), Lo (E,F), || - ) € (F(F,E), CeF @ E), || - | )

(order isometric) under the map S — (-, S),, (where S € F(F,E)), defined by

n

(R, TS),, = trace(SR) = Z (Syi, x;
9)
(for any R = E X[ ®y € f(E,F))

i=1

(where the ‘bar’ is the o(F (F,E), F(E, F))-closure), and
(10)  (L(E,F),L(EF), |- )" 2 (LE,F"), Lo (EF"), |- ]).
In other words,
(11) C.(F ®E)=—(F.(E,F))° = F,(E,F) (the dual cone)
and

(12) L. (E,F"Y=(L.(E,F))" (the bidual cone).
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Proof. It has been observed (see (6)) that F(F, E) = J(F, E") can be identified
with the Banach dual of (F(E,F),||-|]) (since dimE < oo); in other words,
(E'® F,F' ® E) is a dual pair (under the trace duality (9)). It then follows that
C{E'® F) = —(C,(F' ® E))° (with respect to (E’® F,F’ ® E)), and hence
from the bipolar theorem that

C.(F'®E) = —(G(E'® F))’ = ~(F.(E,F))",

thus (11) holds, consequently (8) is true.
Moreover, by Lemma 4.1 and the fact that F, (F,E) = (C,(E' ® F))" is
o(F(F,FE), F(E, F))-closed, we have

C.(F'QE)=C,(F'QE)=F.(F,E)=F.(F,E).
Finally, we get from (3) and the above that
(13)  (F(F.E),GE QE| - llw) S (LE.F"), L(EF"), | - ),
so that (F(F,E), L(E,F")) is a dual pair and
(14) L (E,F"Y=—(C,(F QE))" = —(C(F'®E))" (the dual cone)
We then conclude from (11), (13) and (14) that (10) and (12) hold. O

Remark. It is easily seen from this proof that C,(F' ® E) = C,(F' ® E).

Let E be an n-dimensional B-lattice, let /]'(R) = (R", || - ||, ), and let us write
d(E) = inf{||9|| ||~ "|| : ¢ : E — I'(R) is topological

and lattice isomorphic}.

Lemma4.3. Let (F,F,,| - ||) be an ordered normed space, let N be a closed vector
subspace of F and let Qy : F — F/N be the quotient map. If Qy is an T-half-de-
composable surjection (for some 7 > 0), then for any n-dimensional B-lattice E, the
map Qy : L(E,F) — L(E,F/N), defined by

On(T)=0NT (forall T € L(E,F)),

isan 7/(d(E) + ¢))-half-decomposable surjection for any ¢ > 0.

Proof. It is required to show that

(1) c (U rny N L (E,F/N)) C Quy(Uge,ry N L (E,F)).

d(E) +

For any € > 0, there exists a topological and lattice isomorphism v : £ — IJ'(R)
such that

Il =" < d(E) +e.
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Now let S; € T/(d(E) +¢) (UE(E,F/N) NL(E, F/N)) Then
SO wVI € £+(11’1(R)7F/N)a

hence there exists (see Proposition 2.6(b)) an S € £, (I/(R),F), such that
Sov™'=QnS and |S] <~ ||So vl

Let S = Sv. Then S € £, (E, F) is such that

(2) OvS=0nSp =Sy 'v=25

and ~ 1
IWHSHﬂHWHS;H&HM’HHwH< [1Soll(d(E) +¢)

< B +9) g =1,

thus (1) holds by (2). O
Lemma 4.4. Let E be an n-dimensional B-lattice, let (F,F,) be an ordered B-
space with closed cone F.., and let D be a finite-dimensional subspace of F'. If D is a

T-half-full subspace of F'. (ie., Jp : D — F’ is a r-half-full injection) for some
T > 0, then the subspace D ® E, defined by

(1) D®E:{Zd/@xf:di'eDandxieE},
i=1

is a finite-dimensional 1/{d(E) + €)-half-full subspace of (F(F,E), C.{(F'® E),
I ll(r))s where the ‘bar’ is the o(F(F,E),F(E,F))-closure of the projective
cone C,(F', E) (see Lemma 4.2).

Proof. It is clear that dim(D ® E) < oc. Let p be the restriction of || - ||, on
D®E, let
C=C,(F'®@E)n(D®E) (the relative cone),

and let J:(D®E,C,p)— (F(F,E),Cx(F'®E),| - ||(r)) be the canonical
injection. In order to verify the result, it has to show (by Theorem 2.4 and the fact
that ji (T) = jh/ ( )) that the dual operator

(2) J : ('F(FvE)’ C?r(F/ ®E)7 “ ’ “(7r))/ - (D®E’ C’ p),

is a 7/(d(E) + ¢)-half-decomposable surjection. To this end, we first calculate
these two ordered Banach dual spaces. It is well-known that

(3) (F(FE), Ca(F' @ E), | || )) S (L(EF"), L1(E,F"), |- )

(order isometric) under the trace duality

(4) (L, T),, = trace(TL) (T € L(E,F")and L= f:l Y ®x; € f(F,E)).
/=
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To calculate the ordered Banach dual (D ® E, C, p), we first observe the fol-
lowing facts. If N = DT (the annihilator of D taken in F), then D = (F/NY
(isometric), hence we identify the tensor product D ® E with 7 (F /N, E). Let g
be the finite nuclear norm on (F/N) ® E, i.e.,

qim(z) = 1nf{ Z W/ | il : z = E d! ® x;, d/ € D and x; GE}

and let C,((F/N)' ® E) be the projective cone in (F/N) @ E. Then
{(f(F/NvE)vcw((F/N)/®E)’q(7r))/
Q(L(EF" N, L(EF /NS,
(on account of (F/N)" = (D, || - ||)) = F"/N**), hence
(6) (D®E, p) = (F(F/N,E),qn) = (LEF"/N-) - 1)

(since p and ¢, are equivalent on D ® E with dim(D ® E) < oc). On the other
hand, it is clear that C.((F/N) ® E) C C C F.(F/N,E), it then follows from
(6) that

C.(E'® F/N) C —(F.(F/N,E))’ c —=C°

C —(C:((F/N) ® E))’ = F.(E,F"/N*"),

(5)

and hence from Lemma 4.1 and F/N is finite dimensional that
(7) CAE'®F/N)=-C%=L (E,F"/N*Y)
(e, L. (E,F"/N1t) is the dual cone of C). Combining (5), (6) and (7), we

obtain

(8)

S

{(D@E C. pY L (F(F/N,E), C:((F/NY ® E), qn))
O (L(E, F"/N5), L, (E, F"/N )| 1)

under the trace duality
(9) (R, S),, = trace(SR) <S €LEF'YN*), R=Yd/®x;eD® E)
i=1

According to (3) and (8), now we have to show that

(10) {J' (L(E,F"),LAEF"), || - 1))
— (L(E,F"/N**), Lo (EF" /N - )

isa 7/(d(E) + ¢)-half-decomposable surjection.

In fact, as Jp:(D,DNF])— (F',F]) is a r-half-full injection, Jj:
(F",F!y — (D,DNF.) is a r-half-decomposable surjection (by Theorem 2.4)
and (D,DNF]) "9 ”/N L4, Qnii(F!)) (by Lemma 3.2), thus J} can be iden-
tified with the quotlent map Quyu : F” — F”/N1L, which is a 7-half-decom-
posable surjection. By Lemma 4.3, the map Qy, : L(E,F") — L(E,F"/N*),
defined by

(11) On(T)=QnuoT (forall T € L(E,F")),
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is a 7/(d(E) + £)-half-decomposable surjection for any € > 0.
By Theorem 2.4, we complete the proof by showing that

(12)  J' =0y
(on account of Jp : (F/N) — F'). Indeed, let T € L(E,F"). Then J'(T) €

L(E, F”/Nu)z( (F/N,E),q) (by (8)), hence we have for any R=
S 1a’, ® x; € F(F/N,E), that (see (9))

(RI(T))y = (R Ty =3 (d/, Tx)) = 3 (Jnd}, Txs)
(]3) . i=1 . i=1
= ~¥1 <di,,Jé TX,’) = Z_:l <di/3 QNLJ. Tx,-)

(on account of Qyi. = JJ). On the other hand, for any T € L(E, F”), we have
OQu(T)=0nuTc C(E Ffyu) = (F(F/N,E),qm)" (by (8)), hence we ob-
tain forany R=3_7_,d/ ® x; € F(F/N,E) that

QNLL TR = Z (QNLL TX,’) ®dz:
i=1

so that

]

(14) <R7 Oy T)tr = 2 <d,-,, QNu TX,-).

i=1

Combining (13) and (14), we obtain the requirement. I
To verify the dual result of Lemma 4.4, we need the following:

Lemma 4.5. Let E, G and N be ordered Banach spaces such that G' (Q N (metric
and order isomorphic). If there is an order and topological surjection Q : E — G
and an order and metric injection J : N — E' such that Q' = J, then

GYE J[J(N)]"  (metric and order isomorphic).

Proof. Let Qg be the canonical quotient map from E to E/Ker Q, and let ¥ be
the induced map from E/Ker Q to G such that ¥ o Qg = Q. Since Q is an order
and topological surjection, G is order and topologically isomorphic to E/Ker Q
under ¥. Since Ker 0 = [Q'(N)]® = [J(N)]', it has to show that ¥ is isometric.
In fact, as J is a metric isomorphism and N is norm complete, it follows that

(E/Ker Q) ; J(N) QJ(N) QN (metric and order isomorphic).
For any % € E/Ker Q, there exists a x € E such that Qg(x) = X, hence
¥ ()]l = sup{lf(¥(X)]: f € Un} = sup{|f(Q(x))|: f € Un}
= sup{|[Jf |(x)|:f € Uy} = sup{|[Jf [(X)]: / € Un}
(the last equality following from the isometric isomorphism between J(N) and

(E/Ker Q)'). Hence, |[¥(x)]| = {|*]|- O
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Remark. The above proof actually gives the following fact: if Q is an order and
topological surjection from E to G such that G’ is order and metric isomorphic
to (E/Ker Q)', then Gg—) E/Ker Q (metric and order isomorphic) under the in-
duced map Q from E/Ker Q to G.

Lemma 4.6. Let E be an n-dimensional B-lattice, let (F,F,) be an ordered B-
space with closed cone Fy, let D be a finite-dimensional subspace of F' and let

J:DRE — (F'®E,C,(FQE),| |
be the canonical injection. If N = D' (in F) is a T-half co-subspace of F (i.e.,
Oy : F — F/N is a 7-half-decomposable surjection) for some 7 > 0, then the
annihilator (J(D & E))' in L(E,F) (i.e., with respect to (E' @ F,F' Q E)) is a
7/((d(E) + €))-half co-subspace of (L(E,F), Ly (E,F)) (for any £ > 0).

Proof. By Lemma 4.3, the map Q) : L(E,F) — L(E, F/N), defined by
Quy(T)=QnT (forany T € L(E,F)),

is a 7/(d(E) + ¢)-half-decomposable surjection for any ¢ > 0. A similar argu-
ment given in the proof of (12) in Lemma 4.4 shows that J = Q(’,). Now if g(n
denotes the finite nuclear norm on (F/N) ® E, then Lemmas 4.2 and 4.1 show
that
0 -
(F(E.F/N), F(E.F/N), |- |} € (F(F/N,E), C:((F/N) @ E). qn)
22 EC, p)

(where C = C, (F'® E) N (D® E) and p is the restriction of | - |](7r> (defined
on F"®F)on D® E), so that Q) is also a metric surjection (see [8, (B.3.8)]).
Thus the injection Q(;, associated with Q) is an order and metric isomor-
phism from (L (E,F)/KerQyy, Ly (E,F)) onto (L(E,F/N),L, (E,F/N))
by Lemma 4.5, consequently the quotient map Q,: (L(E,F),L(E,F)) —
(L(E,F)/Ker Q), L.(E,F))is a7/((d(E) + ¢))-half-decomposable surjection.
The result then follows from

(J(D®E) =(Q),(DeE)’ =07 (D®E") =07 ({0})
(on account of (E' @ F/N,(F/N)' ® E)). O

Now we are able to verify a very interesting result, regarded as the principle of
local reflexivity of ordered type, as follows:

Theorem 4.7. Let E be an n-dimensional B-lattice, let (F, F.) be an ordered B-
space with closed cone F,, let D be a finite-dimensional subspace of F' and
Te L. (EF").

(a) (The 1st version) Suppose that D is a T-half-full subspace (i.e.,Jp : D — F’'
is a 7-half-full injection) for some v > 0. Then for any ¢ >0, there exist
Se L (E ,F)and R € LIE,F) with

d(E)

+¢€
(1 IS = ———IITll and R <e¢
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such that

Tx = (Kr(S+R))x onD (forall xecE),
Le.,

(2) (d',Tx) = ((S+ R)x,d"y (foralld' € Dand x € E).

(b) (The 2nd version) Suppose that the annihilator N = D" (in F) is a T-half
co-subspace of F for some T > 0, and that the quotient cone Qn(Fy) = F. isclosed
in F/N. Then for any ¢ >0, there exists an S € L,(E,F) with ||S|| <
(d(EY/T) T + € such that

(3) Tx=(KrS)x onD (forall x<cE),
Le.,
(4) (d',Tx) = (Sx,d"y (foralld' € Dand x € E).

Proof. We employ Theorems 3.5 and 3.6 to verify this result. For this, we first
notice from Lemma 4.2 (on account of dim £ < o) that

(5) (L(E,F), L+(E.F),|| - ) £ (F(F,E), C,(F'®E), || - | )

(order isometric) under the map Ry — (-, Ry),, (Where Ry € F(F, E)), defined by
(6) (L, Ro),, = trace(RoL) (for all L € L(E,F) = F(E,F)),

and that

{<£<E,F">,£+(E,F”>, - 1)L (LB, F), Lo(EF), | - 1)
QL E),CFQE), | Nl

under the map Ty — (-, To),, (Where Ty € L(E,F")), defined by
(8) (R, Ty),, = trace(Ty R) (for all R € L(F,E) = F(F.E)).

It then follows from (7) that T € (£, (E, F))" (the bidual cone of L, (E, F)).

(a) Suppose now that D is a T-half-full subspace of F’ and ¢ > 0. Then Lemma
4.4 shows that D ® E is a finite-dimensional 7/(d(E) + €)-half-full subspace of
(F(F,E),Cx(F'® E), || - l(x))- By Theorem 3.6 there exist S € L (E,F) and
R e L(E,F) with

d(E)+¢
HEVXE 7 and 1RY <

ISIF <
such that
T=Krern(S+R) onD®E.
As D® E C F(F,E), it follows from (8) and (6) that
(d'Tx)=(d'®@x,T), = (d'®x,Keer)(S+R))y = (S+ R, d'®x),

= ((S+ R)x,d') (foralld’ € Dandx€E).
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(b) It is clear that the closedness of Qn(Fy) in F/N implies that £, (E, F/N)
is closed, and hence the quotient cone £, (E,F) is closed in E(E,F)/(J(D®E))o
(where J: D® E — F'® E is the canonical injection). By Lemma 4.6 and
Theorem 3.5, there exists an S € £, (E, F) such that it satisfies the requirements
in the theorem. O

It is interesting to apply Theorem 4.7(a) to the case that when F is a B-lattice
and D is a finite-dimensional sublattice of F’.

Remarks. (i) If F is assumed to be a Banach lattice and D is a closed lattice
ideal in F' (D" is an 1/(1 + ¢)-half-full co-subspace of F (see Example (a) in §2)
such that F/D" is a Banach lattice), then for any e > 0, there exists an
S e L,(E, F)with |S|| < d(E)||T)| + ¢ such that (3) hold.

(i1) Using Theorem 3.6 one can improve part (a) as follows: Let F be an n-di-
mensional B-lattice, let (F, F. ) be an ordered B-space and D a finite-dimensional
subspace of F/. Then forany T € L, (E,F")and € > 0, there exist S € L (E, F)
and R € L(E, F) with ||S|| < ||T]| and ||R]| < ¢ such that

Tx=(Kr{(S+R))x onD (forall xe€E).

In fact, by (5) and (7) (in Theorem 4.7) and the fact that D ® E is finite-dimen-
sional subspace of F(E, F), the result follows.

In [1], Behrends gives a version of local reflexivity theorem (for Banach spaces)
which is, in a sense, the most general one. It is well known that the classical local
reflexivity theorem (also Behrends’ version of local reflexivity theorem) is false if
we simply replace Banach space by Banach lattices, finite-dimensional subspace
by finite-dimensional sublattice and linear isomorphism by lattice isomorphism
(resp. as Behrends says [1, p. 110]). Part (a) of Theorem 4.7 is a version of (some
sort of ) local reflexivity theorem for ordered type which can be deduced from
Theorem 1.2 of [3] (see Remark (ii) of Theorem 4.7). While part (b) of Theorem
4.7 is another version of some sort of local reflexivity theorem for ordered type.
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