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ABSTRACT 

Let (E,E+. 11 11) be an ordered normed space with a positive cone E+, let 0 < Q E E”, let N be a 

finite-dimensional subspace of E’ and E > 0. In terms of the notions of half-full injections and half- 

decomposable surjections. sufficient conditions for N to ensure the existence of x t E+ with 

have been found (Theorems 3.5 and 3.6). As an application of Helly’s selection theorem of ordered 

type, the principle of local reflexivity of ordered type is obtained (Theorem 4.7). 

1. INTRODUCTION 

The classical Helly’s selection theorem (see [17] or [14, p.631) says that for a 

normed space E, if $ E E” and N is a finite-dimensional subspace of E ‘, then for 

any E > 0, there exists an x E E with llxl] 5 II+]] + E such that 

(*) $=KEx onN. 

Now if (E, E+) is an ordered normed space with a positive cone E,, and $ E E” 

is positive, it is natural to ask whether there exists an x E E+ with ]]x]] I ]]$]I + E 

such that (*) holds. The answers are, in general, negative. One of the purposes of 

this paper is devoted to give some sufficient conditions for the finite-dimensional 

subspace N of E’ to ensure that the answer is affirmative. To this end, we intro- 

duce the notions of half-full injection modulus and half-decomposable surjection 

modulus which are useful for normal cones and conormal cones (open decom- 

position in the terminology of Jameson [6]) respectively (Propositions 2.9 and 
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2.8) and then establish their duality result (Theorem 2.4). In terms of these two 

notions, sufficient conditions for N to answer the above question have been 

found (Theorems 3.5 and 3.6). On the other hand, the ‘principle of local 

reflexivity’, due to Lindenstrauss and Rosenthal [5], can be derived from the 

equation L(E, F)” = L(E, F”) (where dim E < co), by using Helly’s selection 

theorem (see [2]). As an application of Helly’s selection theorem of ordered type, 

the principle of local reflexivity of ordered type is obtained (Theorem 4.6). Also a 

necessity and sufficient condition for a subspace M of an ordered normed space 

(E, E+, I/ . 11) such that each positive continuous linear functional on M can be 

extended positively and continuously on the whole space is also found (Theorem 

2.5) by means of the notion of half-full injection modulus. 

2. HALF-FULL INJECTIONS AND HALF-DECOMPOSABLE SURJECTIONS 

We shall assume throughout this paper that the scalar field for vector spaces is 

the real field OX, and that all topological vector spaces (abbreviated by TVS) will 

be Hausdorff. 

By an ordered convex space (abbreviated by ordered LCS), denoted by 

(X, X+, P), is meant a locally convex space (X, P) equipped with a cone X+; and 

a normed (resp. Banach) space with a cone is called an ordered normed space 

(resp. ordered B-space), abbreviated by ordered NS (resp. ordered BS) and de- 

noted by (E, E+, 11 11) or (E, E+). In general, we shall not assume that cones are 

closed or proper. 

Let (X, X+, P) and ( Y, Y+, 7) be ordered LCS. Throughout this paper, 

C(X, Y) will denote the vector space of all continuous linear maps (called 

operators) from X into Y, and 

C+(X, Y) = {T E C(X, Y) : T(X+) c Y+} 

(elements in C+(X, Y) are called positive operators); in particular, we write the 

topological dual of X and the dual cone of X+ by: 

X’ = C(X, [w) and Xl = C+(X, [w). 

If (E,E+, II. II) and (F,F+, II. II) are ordered normed spaces. We denote by UE 

(resp. UE’) the closed unit ball in E (resp. in E’); when E and F are isometric or 

metrically isomorphic (resp. isometric and order preserving, called order iso- 

metric), we write E = F (resp. E ‘2 F). 

Let (E,E+, II. II) and F',F+,Il II) b e ordered normed spaces and T E 

C+(E, F). For a given r > 0, we say that T is a (or an): 

(a) r-half-full injection (resp. almost r-half-full injection) if 

‘T-l(UF-F+)c CJ-E, (resp. TT-~(UF - F+) c UE - E+); 

(b) r-half-decomposable surjection (resp. almost r-half-decomposable surjec- 

tion) if 

‘(u~nF+) c T(UEnE+) resp. T(UFnF+) c T(UE~IE+)). 
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A T E C+(E, F) IS called a half-full injection (resp. almost half-full injection, half- 

decomposable surjection, almost half-decomposable surjection) if it is a X-half-full 

injection (resp. almost X-half-full injection, X-half-decomposable surjection, 

almost X-half-decomposable surjection) for some X > 0. 

Let T E C+(E, F). It is easily seen that: 

(a) T is an almost T-half-full injection if and only if T is a (7/l + &)-half-full 

injection for any E > 0; 

(b) T’ E C+(F’, E’) is an almost T-half-full injection if and only if T’ is also a 

T-half-full injection (since U,I is weakly compact). 

Denote bypE (resp. qF) the guage of UE - E+ (resp. U, - F+). It is easily seen 

that 

pi = inf{ llu]l : u > x} 

= inf{l]x + ~11 : ‘u E E+} (5 ~~x~~) (for any x E E), 

hence a T E C+(E, F) is an almost r-half-full injection if and only if 

rpE(x) 5 qF(Tx) (for any x E E). 

This observation enables us to induce the following notions analogues to that of 

injection modulus and surjection modulus, introduced by Pietsch in [8, (B.3)]. 

Definition. Let (E, E+, II 11) and (F, F+, II 11) be ordered normed spaces. For 

any T E C+(E, F), we write: 

jh, (T) = sup{7 > 0 : rT-l( U, - F+) c U, - E,}; 

j$‘(T) = sup{7 > 0 : rT-‘( U, - F+) c U, - E+}; 

qhj(T)=sup{QO:r(UFC7F+)cT(UEnE+)}; 

q$)( T) = SUP{T 2 0 : T( UF n F+) c T( UE n E+)}. 

j&T) (resp.j$‘(T)) is called the half-full injection modulus (resp. almost half-full 

injection modulus) of T; while qt,f( T) (resp. g$‘( T)) is called the half-decompos- 

able surjection modulus (resp. almost half-decomposable surjection modulus) of T. 

It is clear that T E C+(E, F) is a half-full injection (resp. almost half-full 

injection) if and only if jhf( T) > 0 (resp. j$)( T) > 0). Similar conclusions hold 

for half-decomposable surjections or almost half-decomposable surjections. It is 

also clear that 

.&CT) =.&T)(T) and qhf(T) I q$)(T). 

In order to study the duality relationship between half-full injections and half- 

decomposable surjections, we require the following result: 

Lemma 2.1. Let (X, X+, P) be an ordered LCS with the topological dual X’ and 

dualconeX:,letOE VcXandO~DcX’.Then: 
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(a) van 

c-x:,. 
(b) Zf, in addition, V is a convex r(X, X’)-neighbourhood of 0, then: 

(vnx+)O= vO+X,O= V”-Xl. 

(c) (D-x~)“=Don(-(x~)o)=Donx~o=~On~+. 

Proof. The proofs of (a) and (b) can be found in [12, (1.1.5)]; while (c) follows 

directly from the definition of polars. q 

As a consequence of Lemma 2.1 and the bipolar theorem, we get the following: 

Corollary 2.2. Let (X,X+, P) be an ordered LCS. For any convex r(X, X’)- 

neighbourhood V of 0, one has: 
- 

vnx, =Fnx+. 

Proof. As 0 E V n X+ and X+ is convex, it follows from the bipolar Theorem, 

2.1(b) and (c) that 

vnx+=(Vnx+)oo=(vo+x~)o=(Vo-x~)o 

= voonX=vnF + +. 0 

As an immediate consequence of Corollary 2.2, we obtain: 

Corollary 2.3. Let (E, E+) and (F, F+) be ordered normed spaces, let T E 

C+(E, F) and r > 0. Then T : (E,E+) --f (F,F+) is an almost r-half-decom- 

posable surjection if and only if T : (E, E+) + (F,F+) is an almost r-half- 

decomposable surjection. 

We now describe the duality relationship between almost half-full injections 

(resp. almost half-decomposable surjections) and half-decomposable surjections 

(resp. half-full injections). 

Theorem 2.4. Let (E.E+) and (F, F+) be ordered normed spaces and T E 

L+(E, F). Then 

.$)(T) = w(T’) and q$)(T) = jhf(T’) 

In particular, T is an almost r-half-full injection (resp. almost r-half-decomposable 

surjection) tfand only tf (its dual operator) T’ is a r-half-decomposable surjection 

(resp. r-halfTful1 injection) for some r > 0. 

Proof. The equality j$‘( T) = qhf( T’) follows from 

(1) ~T~‘(UF-F+)C UE-E+ H T(UEI n E:) c T’(UFI n F:) 

Thus, we are going to verify (1). 
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Infact,letr>ObesuchthatrT-l(U~-E’+)~U~-E+.A~ UF-F+is 

convex and contains UF, it follows that 

(2) r(m+)’ c (T-‘(UF - F+))‘= T’((UF - F,)‘). 

By Lemma 2.1(a), we obtain 

(3) (U, - E+)’ = Uj n (-E,o) = U,l n E; 

and 

(4) T’( (U, - F+)‘) = T’( UF” n (-F,o)) = T’( UFl n F;); 

it then follows from (2) that 

Conversely, let r > 0 be such that T( UEc n E:) c T’( Up n Fi). As 

~(UEfnE~)=~(UE-E+)oc T’((UF-F+)‘)=(Tpl(U~-F+))’ 

(by Lemma 2.1(a) or (3) and (4)), it follows that 

7Tp1(UF - F+) c ‘(T-‘(L$ - F+))” c (UE -E+)” = UE -E+. 

Therefore (1) holds. 

The equality q$)( T) =&-( T’) follows from 

(5) T(UFnF+)cT(UEnE+) H r(T’)p’(UE,-E;)~UF,-F;. 

Therefore, we are going to verify (5). 

In fact, we first notice from Lemma 2.1(b) that 

(6) (T(U~nE+))“=(T’)-‘((U~nE+)o)=(T’)pl(U~f-E~) 

and 

(7) (UFnF+)’ = U,/ -F;. 

Formula (5) now follows from (6) and (7) and the polar calculations. q 

It is amusing to compare the preceding result with classical well-known results 

[X, (B.3.8) p. 271. 

The preceding result enables us to give a criteria for vector subspaces of 

ordered normed spaces such that positive continuous linear functionals can be 

extended positively to the whole spaces. 

Theorem 2.5. Let (E, E,, 11 . 11) be an ordered normed space, let M be a vector 

subspace of E and r > 0. Then the canonical injection JM : M + E is an almost 

r-half-full injection if and only iffor any g E Mi there exists an f E E: such that 

(1) g =fJM and Ilf 11 5 + llgl1M. 

In particular, $JM is an almost half-full injection, then any positive continuous 

linear functional on M has a positive, continuous extension. 
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Proof. The result follows from the following equivalent statements: 

JM : M ---t E is an almost r-half-full injection 

H J;:E’ --f (M’, M:) is a T-half-decomposable surjection 

H r(UMl “Ml) c J;(& nE;) 

H (1) holds. q 

Remarks. (i) It is clear that if f E E: is an extension of g E Ml then 

II& I Ilf II. Thus JM : ~4 + E is an almost l-half-full injection if and only if 

each positive continuous linear functional on M has a norm preserving, positive 

extension on E. 

(ii) The preceding result is still true for an arbitrary ordered normed space A4 

that is not a subspace of E. 

(iii) It is not hard to verify the dual result for quotient maps; more general, 

one can show that if T E C+(E, F) and r > 0, then T is a r-half-decomposable 

surjection if and only if for any SO E C+ (R, F) there exists an S E C+(R, E) such 

that 

TS = SO and llS[l 5 + II&II. 

Because of the preceding result, we call a vector subspace M of an ordered 

normed space (E, E+) to be a (resp. an almost) r-half-full subspace of E if JM 

is a (resp. an almost) T-half-full injection. Dually a closed subspace N of 

(E, E+, II 11) is called a (resp. an almost) T-half co-subspace of E if the quotient 

map QN : E + E/N is an (almost) r-half-decomposable surjection. A subspace 

(resp. closed subspace) M of (E, E+) is called a halffuull subspace (resp. (almost) 

half co-subspace) if JM : M -+ E is a r-half-full injection (resp. Q,u : E --+ E/M 

is an (almost) r-half-decomposable surjection) for some IT > 0. 

As another application of Theorem 2.4, we are going to verify that &(il) 

(resp. 11 (A)) has some sort of positive extension property (resp. positive lifting 

property) as follows: 

Proposition 2.6. Let (E, E+), (F, F+) and (G, G+) be ordered B-spaces, let A be a 

non-empty index set and I- > 0. 

(a) Let J E C+(G, E) be an almost r-half-full injection. Then for any 

TO E C+(G, &(A)), there exists apositive T E C+(E, &(A)) such that 

(1) TJ = TO and llTl[ 5 + lIToIl. 

(b) Dually let Q E C+(F, G) be a r-half-decomposable surjection. Then for any 

SO E C+(ll(A), G), there exists apositive S E C+(ll(A), F) such that 

(2) QS = SO and IlSll 5 b IlSoll. 
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Proof. (a) For any i E A, let Pi : 1, (A) ---f R be the i-th projection and f; = P,To. 

Thenh E G: is such that 

(3) 
i 

If;(x)] = IfV0(4l 5 llT0-4~ 5 IIToII llxll and 

TOX = [P,(Tox), i E A] (x E G), 

hence 

(4) ;i; Il”fll I lIToIl. 

As J E C+(G, E) . IS an almost r-half-full injection, it follows from Theorem 2.4 

that J’ E C+(E’, G’) is a r-half-decomposable surjection, i.e., 

r( UC! n G;) c J’( U,f n E;). 

For any i E A, there exists a g; E U,t n E: such that 

(5) &J;: = J'gi, 

hence the map i; : E + lm(A), defined by 

T(z) = lIToIl 7 g@), i E 24 1 (for any z E E), 

is a positive operator such that 

IITII = SUP llToll l/gill 5 ’ I/Toll 
iEA 7 r 

and 

T(Jx) = II fill 7 gi(JX), i E A 1 = [J;:(x), i E A] = TOX (for any XE G) 

(by (3) and (5)). 
(b) As SO : II (A) -+ G is an operator, it follows from a well-known result (see 

[7, p. 2801 or [14, (3.j)(i)‘]) that there exists a bounded family [ yi, i E A] in G such 

that 

(6) &([C> i E A]) = C <i.Yi (for any [(i, i E A] E II(A)) 
A 

and 

(7) s:z IlYiII = Ilsoll. 

Since SO is positive, it is easily seen from (6) that yi E G+ (i E A). On the other 

hand, since r( UC n G+) c Q( U, n F+), it follows from (7) that there exists a 

Zi E UF n F+ such that 

(8) & yi = Q(zi) (for all i E A), 
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and hence that [(ll&ll/r)zi, i E A] is a bounded family in F+. Now the map 

3 : 11 (A) --+ F, defined by 

S([<j, i E A]) = T cj !!S$ zi (for any [C, i E A] E II(A)), 

satisfies all requirements. 0 

In order to give some examples of half-full injections and half-decomposable 

surjections, let us recall the following terminology: Let (E, E+, I] ]I) be an 

ordered normed space. A vector subspace M of E is a positive complemented 

subspace of E if there exists a positive projector P E L+(E, E) such that 

M = P(E). 

Proposition 2.7. Let E be an ordered normed space. 

(a) Suppose that M is a positive complemented subspace of E. Then the canonical 

injection JM : M + E is a half-full injection, and thepositiveprojector P : E + M 

is a l-half-decomposable surjection. 

(b) The canonical embedding KE : (E, E+) --+ E”, EJ) is an almost l-half-full 

injection. 

Proof. (a) We have 

J~‘(UE-E+)=(UE-E+)flMcP(u~-E+) 

C p(uE) - M+ C lif’il UM - M+ = llpll (UIM - M,), 

hence J,vr is a (l/IIPII)-half-full injection. 

As U, n M+ c U, n E+ and P2 = P, we conclude that 

UMnM+ = P(UIUnM+) c P(UEnE+), 

and hence that P is a l-half-decomposable surjection. 

(b) In view of Theorem 2.4, it is required to show that KL : E”’ + E’ is a l- 

half-decomposable surjection, or, equivalently 

(1) U,I n E: c K;( UEIII n Ey). 

In fact, let f E UE/ n Ei and let us define 

g = KE’(f 1 

where KEI: El--+ E “’ is the canonical embedding. Then g E UE”~ n Ep is such 

thatf = K;(g) [since ZEN = (KE)‘KE~]. q 

Examples. (a) Let E be a normed vector lattice. Any sublattice of E is a l-half- 

full subspace, and any closed lattice ideal in E is a l/( 1 + &)-half co-subspace 

(for any E > 0). 

(b) Any ordered and topological isomorphism between ordered normed 

spaces must be a half-full injection as well as a half-decomposed surjection. 

(c) Metric injections are, in general, not half-full injections, and dually open 

maps are, in general, not almost half-decomposable surjections. 
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Proof. Parts (a) and (b) are obvious. To prove (c), consider the ordered B-space 

E = I, and define 

(*) M={[~Ln]EIm:~2n=-n~2n-1 (foralln=1,2,...)}. 

Then M+ = (loo)+ n M = (0) [since pzn- 1 2 0 and -npzn_ 1 > 0 will imply that 

~LZ,, _ i = 01. Moreover, we claim that ( UE - E,) n A4 is not a subset of n UM (for 

all n > l), thus the canonical embedding J M : A4 + E is a metric injection which 

is not a half-full injection. 

In fact, let us take C = [&I E U,s with & = 1 (for all k 2 1). For a fixed n > 1, 

let us define ~(~1 = [$‘I E E+ by 

0, if k is odd and k < 2n-t 1; 

@) = 
uk 

( 

(k/2) + 1, if k is even and k 5 2n + 2; 

I, if k > 2n + 3. 

Then the k-th coordinate of < - w@), denoted by of), is 

1, ifkisoddandk<2n+l; 
(n) = 

[yk 

( 

-(k/2), if k is even and k 5 2n + 2; 

0, ifk>2n+3. 

hencec-v(“)EMand]]<-- v@]],=n+l >n,thisshowsthat<-v(“)@nUE. 

Dually, let G = Ii. Then G’ ‘0’ 1, = E. Observe that the subspace M, defined 

by (*), is a(E, G)-closed [since, if C(‘) = [&(^‘I, c = [&I are in E such that 

C = a(E, G) - limx Cc’), then limx C, (‘) = CR (for all n > l)]. Let N = MT (C G) 

and Q,v : G -+ G/N the quotient map. Then Qh = JM and QN is not an almost 

half-decomposable surjection (by Theorem 2.4). q 

Because of Example (b), it is natural to ask that under what conditions on 

(E, E+) or (F, F+), half-full injections (resp. half-decomposable surjections) 

must be injections (resp. open). 

Proposition 2.8. Let (E, E+) and (F,F+) be ordered normed spaces, and let 

T E ,C+(E, 1”) be a r-half-decomposable surjection for some r > 0. Then 

(4 T(E+) = F+. 
(b) If F = F+ - F+ , then T is on to. 

(c) Zf F+ is a conormal cone (i.e., F+ is X-generating [6, p. 1121 or [16]), then T is 

an order topological surjection (i.e., T is open and T(E+) = F+). 

Proof. (a) For any 0 # ‘u E F+, T(v/]]~]]) E ~(UF n F+), it then follows from 

r( UF n F+) c T(UE n E+) that there exists an x E U, n E+ such that 

~(u/]]u]]) = TX, thus v = T((]]v]l/~) x) E T(E+). 

(b) Follows from (a). 

(c) As F+ is conormal, there exists a X > 0 such that AUF c D( UF) (where 

D( UF) = r( U,c n F+), (the disked hull)), it then follows that 

X~UFCTD(UF)CT(UF~F+-UF~F+)CT(U~~E+)-T(U~~E+) 

= T(UEnE+ - UEnE+) c 2T(UE), 
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and hence that T is open. Consequently, T is an ordered topological surjection 

by part (a). q 

Remark. By a similar argument given in the proof of part (c), one can show that 

if T E C+(E, F) is an almost T-half-decomposable surjection and if F+ is conor- 

ma1 then T is almost open. (Hence T is open provided that E is complete). 

As another application of Theorem 2.4, we are able to verify the dual result of 

Proposition 2.8 as follows: 

Proposition 2.9. Let (E, E+) and (F, F+) b e ordered normed spaces, and let 

T E L+ (E, F) be a r-half-full injection for some r > 0. 

(a) If E+ is closed then T is orderpreserving, i.e., T(E+) = F+ n T(E). 

(b) If E+ is proper and closed then T is one-one. 

(c) Zf E+ is a closed normal cone (i.e., E+ is X-normal [6, p. 112]), then T is an 

order topological injection (i.e., order preserving and ,LLT-‘( UF) c U, (for some 

p > 0)). 

Proof. (a) Let x E E be such that TX E F+. It is required to show by the closed- 

ness of E+ that f (x) > 0 (for all f E E:). 

In fact, it is clear that T is an almost r-half-full injection, it then follows 

from Theorem 2.4 that T’ E C+(F’, E’) is a T-half-decomposable surjection, i.e., 

r( U,f n E$) c T’( UF, n Fi). Now for any 0 #f E E& there exists a g E 

U,V I-F: such that T’g = T(f/llf 11); it then follows from T E ,C+(E, F) and 

g E F: that 

f(x) =llfil (T’g)x=llfllg(Tx) 20, 
7 7 

which obtains our requirement. 

(b) Suppose that TX = 0. Then &TX 2 0, hence x E E+ and -x E E+ (by part 

(a)), thus x = 0. 

(c) We first show that T is a topological injection or, equivalently, there exists 

a p > 0 such that pLT_‘(UF) c UE. 

In fact, as E, is a normal cone, there exists a X > 0 such that F( UE) c XUE 

(where F( UE) = ( UE + E+) n ( UE - E+)). On the other hand, the symmetry and 

TT-*(UF - F+) c UE - E+ imply that rT-‘( U,Q + F+) c U, + E+. It then fol- 

lows that 

(1) 

1 

T-~(UF) c T-‘((UF -F+) n (UF + F+)) 

= (T-‘(UF -F+)) n (T-l(UF + F+)) 

c;(U-E+)n(UE+E+) C; UE, 

which proves our assertion by taking IL = r/X. 

The closedness of E+ ensures that T(E+) = F+ n T(E) (by part (a)), thus T is 

an ordered topological injection. q 
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Remark. By a similar argument given in the proof of part (c), one can show that 

if T E C+(E, F) is an almost r-half-full injection and if E+ is a normal cone then 

T is still a topological injection. [Observe that UE - E+ and UE + E+ contain 

UE, hence ( UE - E+) n ( UE + E+) = F( UE) (see [12, (1.1.4)])]. 

Proposition 2.10. Let (G, G+, 11 . 11) be an ordered B-space, let 

Ua, = UonG, and Uo: = UolnG:. 

(a) If G+ is l-generating (i.e., Uo = T( Uo n G+) = D( UC)), then the map 

QG : h(Uc+) -+ (G, G+, II II), definedby 

Qc([G : x E UC,]) = xe%G Cx.x (for any [G :x E UC_] E ~(UG,)), 

+ 

is an order metric surjection (i.e., order preserving and metric surjection), und also 

an almost l-half-decomposable surjection. 

(b) If G+ is l-normal (i.e., Uo = (Uo - G+) n (Uo + G+) = F( UC)) and 

closed, then the map Jo : (G, G+, 11 11) --+ I%( UC;), defined by 

Jc(X) = [(X, u’) : U’ E UG;] (.fOr any X E G), 

is an order metric injection (i.e., order preserving, isometry into), and also an 

almost I-half-full injection. Moreover, of, in addition, KG is a l-half-full injection 

(and surely G is a normed vector lattice), then Jo is a l-half-full injection. 

Proof. (a) As G+ is l-generating, it is not hard to show that Uo c Qo( Ut,(,+,); 

consequently QG is a metric surjection (since QG( Ut,(uG+)) c Uo is always true). 

By a routine argument, it is easily seen that QG is order preserving and also 

l-half-decomposable surjection. 

(b) As G+ is l-normal, it follows that 

llxll = sup{I(X,u’)I : U’ E UC:} = IIJG(x)II, (for any x E G) 

(see [12, (1.2.1)(a)]). The closedness of G+ implies that Jo is order preserving. 

To prove that Jo is also an almost l-half-full injection, we first notice from 

Grosberg-Krein’s theorem (see [16, (5.15)]) that G: is l-generating, hence part (a) 

of this result shows that the mapping 

QG~ : II(~G:) + (G’, G:, 11 11) : [&I : U’ E UC:] + & Cd u’ 
G’ 

is a l-half-decomposable surjection, hence its dual mapping (QG~)’ : 

(G”, G;, II Ii) ----) (b(uGi)) ’ is a l-half-full injection (by Theorem 2.4) thus 

Jo = (Qof )’ KG is an almost l-half-full injection (by Proposition 2.7(b)). 

Finally, if KG is a l-half-full injection, then so does Jo. q 

Remarks. (i) If G+ is T-normal and closed, then Jo is one-one, order preserving 

with 

7-I i I and IlJ~ll I 1, 
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and also a (l/T)-half-full injection (where j(Jo) is the injection modulus (see [8, 

(B.3.1) p. 261). 

(ii) If G+ is T-generating, then Qo is onto, order preserving with 

7-l I q(Qc) and IIQGII I 1, 

and also an (1 /r)-half-decomposable surjection (where q( QG) is the surjection 

modulus of QG (see [8, (B.3.4) p. 261)). 

3. HELLY’S SELECTION THEOREM OF ORDERED TYPE 

The classical Helly’s selection theorem (see [17] or [14, p. 631) says that for a 

normed space E, if $ E E” and N is a finite-dimensional subspace of E’, then for 

any E > 0, there exists an x E E with l]xl] I ll$l] + E such that 

(*I $=KEx onN. 

This section is devoted to a study of this theorem with the consideration of an 

ordering in E (see Theorems 3.5 and 3.6). Before doing this, let us first recall 

some well-known facts about the duality between subspaces and quotients of 

ordered normed spaces. 

Let (E, E+) be an ordered vector space, let A4 be a vector subspace of E, let 

QM : E + E/M be the quotient map and 

Q&E+) = (E/W+ = i+ 

(the quotient cone of E (by A4)). It is clear that 

QM(x) E ,!?+ if and only if (x + M) r? E+ # 4. 

QM(E+) is proper if and only if A4 = (A4 + E+) n (A4 - E+) (i.e., order-convex). 

Lemma 3.1. Let (E, E+, II 11) b e an ordered normed space, let M be a closed 

vector subspace, let QM : E + E/M be the quotient map, and M+’ = M’ n El. 

Then Qh : (E/M, _k+)’ + (Ml, M:) is an order isometry. 

Proof. It is well-known that Qh is a metric isomorphism. It is also clear that 

Qb is positive. To prove that Qh is order preserving, let g E M+’ and let 

cp E (E/M)’ be such that g = Qt((p) = (pQM. We claim that cp is positive. 

In fact, let QM(x) E h+. Then there exists a u E E+ such that QM(x) = QM(u), 

hence 

cp(Qd-4) = cp(Qdu)) = g(u) 2 0. 0 

Let (E, E+, 11 II) be ordered normed space, let M be a vector subspace of E, 

let JM : M + E be the canonical injection, and letzh : E//Ml + M’ be the 

injection associated with Jb. It is well-known that J,& is a metric isomorphism. 

It is easily seen that 

J~(QM~(E;)) c M; (= M’ n E;), 
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i.e., Th is positive. It is clear that Jz is order preserving (i.e., 

@‘/Ml, Q,,,&?Z;)) $ (M’, M;) ( or d er isometric) under Jz) if and only if 

M: c .Jh(El) (and surely A4: = Jh(E$) since JM is positive). Hence we obtain 

the following: 

Lemma 3.2. Let (E, E+, 11 11) be an ordered normed space, let M be a vector 

subspace of E, let JM : M + E be the canonical injection, and let J-h : El/M’ + 

M’ be the injection associated with Jh. Then Jz is an order isometry ifand only if 

M; c J;(E;). 

In particular, if JM is an almost r-halfTful1 injection (and surely r-half-full injec- 

tion) for some r > 0, then JT is order preserving. 

Lemma 3.3. Let (E, E+) and (F, F+) be orderednormedspaces, let Q E L+(E, F) 

be an open (positive) operator and r > 0. Then Q is an almost r-half-decomposable 

subjection if and only ifSor any u E F+ and E > 0, there exist u E E+ and z E E UE 

such that 

(1) Ilull I L 11~11 and 
7 

Q(u + z) = 21. 

Proof. We first notice from the openness of Q that 

(2) Q(UE~E+)CQ(U~~E+)+EQ(UE) (foranyE>O). 

Necessity. For any 0 # v E F+, since T( UF n F+) c Q( UE n E+). it follows from 

(2) that there exist x0 E U, n E+ and w E (r~/llw11) 17, such that (~/11z.l[) v = 

Q(XO + w), so that ‘u = Q((llwll/~)(xo + w)). Now let 

uJ!xo and z =k! w 

r r . 

Then u and z have the required property (1). 

SufJiciency. By (2), it is required to show that 

(3) r( U, n F+) c Q( UE n E+) + EQ( UE) (for any E > 0). 

Indeed, let 0 # v E r( UF n F+) and E > 0. There exist u E E+ and z E EUE such 

that (1) holds, hence u E UE n E+ (since llull < (l/r) llvll 5 l), and thus 

w=Q(u+z)EQ(UE~E+)+EQ(UE). 0 

Lemma 3.4. Let (E, E+) be an ordered normed space, let M be a closed subspace 

of E, let QM : E --+ E/M be the quotient map and T > 0. Then QM 

half-decomposable surjection (for any E > 0) if and only ij 

QM(x) E QdE+), one has 

(1) inf{[lx+zll :zcMandx+z~ E+} 5: ~~~_1~. 

is a T/( 1 + E)- 

for any 2 = 
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Proof. Necessity. For any 6 # i E QM(E+), since (7/l f E)( ~E/M n E+) C 
QM( UE n E,), there exists a u E UE n E+ such that 

(1 +:, ,,i,, Qdx) = Qdu); 

it then follows that there exists a z E A4 such that x - ((1 + e)/r) 112_1/ u = -z, 

and hence that 

x+z= (’ +‘I ““’ u E E+ and 11x + z/I ^ 7 IIXII, 
thus (1) holds. 

Suficiency. For any 6 # i E r(UE~M I- &+) and E > 0, there exists a z E M such 

that 

(2) X+ZE E+ and IIx+zll <+ llill +E 5 1 +E. 

Itthenfollowsthat(l/l+&)%~(r/l+E)(UE,Mn&+)and 

l+Ex= & Qdx) = j& Q&-x + z) E QM(UE n E+) 

(by (2)); thus (7/l + E)( UE/M n h+) c QM( UE n E+). 0 

Remark. For any ,? = QM(x) E QM(E+), we always have 

Il.%_11 < inf{ I/x + z/l : z E A4 and x + z E E+}, 

thus (1) becomes equality when 7 = 1. 

By means of the previous lemmas, we are able to verify the following inter- 

esting result which can be regarded as Helly’s selection theorem of ordered type. 

Theorem 3.5. Let (E, E+, 11 . 11) b e an ordered normed space, let N he a finite- 

dimensional subspace of E’, let $ E E_lr and r > 0. Suppose that the annihilator NT 

of N (in E> is a r/(1 + @-half co-subspace of E (i.e., QNT : E -+ E/NT is a 

r/( 1 + @-half-decomposable surjection) for any 6 > 0, and that the quotient cone 

QM~(E+) is closed in E/NT. Th en or any E > 0, there exists a u E E+ with f 

llull < (l/r) ll$ll + E such that 

(1) f(u) = $(f) (for all f E N). 

Proof. Let A4 = N ‘. Then A4 is closed in E such that M’ = (NT)’ = N (since 

dim N < co). Let A4 M = N 1 be the annihilator of N taken in E “. Then Lemma 

3.1 shows that 

(2) (E/M, QM(E+))’ ‘0’ (N, N n Ei) (order isometric) 

and 

(3) N’ E E”/M” (isometric). 

240 



As dim N < 00, it follows from (2) that dim E/M < 00, and hence from (2) and 

(3) that 

(4) E/M s E”/M’-’ under KEIM. 

Thus it is easily seen that the following diagram commutes: 

(Et E+) 
KE 

) (E”,E:‘) 

(5) QM 1 1 Q,,, 1 L 

(E/M, &(E+)) 2 (E”/M”, QMLL (E:‘)) 

where KEiM is an order isometry (see (4)). while KE is a positive and metric 

injection (for definition, see [8, (B.3.2)]). As 1c, E EJ, it follows that there is an 

x E E such that 

(6) &J(X) E QM(E+) and KE/M(QM(x)) = QM~~(~CI). 

Suppose now that M = NT is a r/(1 + &)-half co-subspace of E such that 

QM(E+) is closed in E/M. For this QM(x) E QM(E+) = QM(E+), Lemma 3.4 

ensures that there exists a z E M such that 

x + z E E+ and ]Ix + ~11 < i ]]QM(x)II + E. 

Now let u = x + Z. Then u E E+ is such that 

1 
II4 = Ilx + =I1 < - IlQ&)II + E r 

= i IIKE/M(QM(x))II + E 5 b llvf41 + E 

(by (6)) and QM(u) = QM(X + z) = QM(x) (since z E M), hence 

QM~~($) = &/dQ&)) = KE/M(QMW = QML~KE(u), 

in other words, 

f(u) = (f, KE u) = (f, ti) (for all f E N). 0 

Remark. It is interesting to apply Theorem 3.5 to the case when E is a B-lattice 

and N is a finite-dimensional sublattice of E’ such that the canonical injection is 

almost interval preserving (i.e., for any u E N+, [0, ~1 (w.r.t. (N, N+)) is dense in 

[0, ~1 (w.r.t. (E, E+))). In this case, N’ is an ideal of E” (by [ll, (11.2.20) p. 741) 

and so is M, thus, QM (E+) is closed and QM is a surjective Reisz homomorphism 

(which implies that it is a l-half-decomposable surjection). 

Using a result of V.A. Geiler and 1.1. Chuchaev [3], one can easily find another 

version of Helly’s selection theorem of ordered type with slightly weaker con- 

clusion provided by a simpler assumption. Here, we would like to thank the 

referee for suggesting us to compare the original results of Theorem 3.5 to the 

results in [l] and [3]. 
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Theorem 3.6. Let (E, E+) be an ordered normed space and N be afinite dimen- 

sional subspace of E’. Then for any E > 0 and I/J E Et, there exist w E E+ and 

z E &UE with llwll < 11$~1/ such that 

(w + z, f) = (f ,$) (for all f E N) 

Proof. Let C = ]]$]] U, n E+ and H be the l-dimensional subspace of E” 

spanned by $. Then C is a convex subset of E containing 0 and the bipolar, Coo, 

of C equal to ]]$J]] U~lf n EJ . By Theorem 1.2 (more precisely, parts (i) and (ii) of 

Theorem 1.2) of [3], for any n > 0, there exist u E (1 + 7) C and w E (c/2) UE 

such that 

(u + vu, f) = (f, $1) (for all f E F); 

in particular, for this q= e/(2 ]]$,1]), one can take w = u/(1 + 7) and z = 

v + u - w, then the result follows. q 

4. THE PRINCIPLE OF LOCAL REFLEXIVITY OF ORDERED TYPE 

The famous principle of local reflexivity, (found by Lindenstrauss, J. and H.P. 

Rotsenthal [5] and strengthened by Johnson, W.B., H.P. Rosenthal and M. 

Zipping, [4]) says that if E, F and D are Banach spaces such that E is finite 

dimensional and D is a finite dimensional subspace of F’, then for any 

T E C(E, F”) and any E > 0, there exists an S E C(E, F) with ]]S]] 5 llT[l + E 

such that 

(y’,Tx)=(y’,K~Sx) (forallxEEandy’ED). 

Moreover, 

K.GSX = TX (for all x E E with TX E KF(F)). 

It is well-known that this principle has many important applications (see [8, 

(28.1) p. 3831) and that the simple proof is given by Dean, D.W. [2] who observes 

that local reflexivity theorem (for Banach spaces) can be derived from one- 

dimensional ones. In this section, we will borrow Dean’s idea to deduce this 

famous theorem for ordered type (Theorem 4.7). Our proof of Theorem 4.7 rests 

on the following lemmas which examine the order structure of 3(E, F) and its 

dual and bidual, and are also interesting themselves (in particular, Lemmas 4.4 

and 4.6). 

Let (E,E+, II. II) and (F,F+, II. II) b e ordered B-spaces and let F(E, F) be the 

vector space of all all finite operators from (E, 11 . 11) into (F, II II). We always 

identify .ZF(E, F) with the algebraic tensor product E’@ F. Denote by 

C,(E’ @ F) the projective cone in E’ @ F, i.e., 

C,(E’ @F) = co(E; @I;,) = 5 u( @vi : IA,’ E Ei and Ui E F+ ; 
i=l > 
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and by C;(E’ @ F) the biprojective cone in E’ @ F, i.e., 

C,(E’ 63 F) 

= 5 .x,! 8 yi : 2 (XI, $“)(yi, u’) > 0 ($” E EJ,u’ E Fi) . 
i=l i=l 

It is easily seen that C,(E’ @ F) c Ci(E’ @ F) and that 

Ci(E’ @ F) 

(4.A) 
= C XI@J’Y, : 2 (uIX()(jJirW’) > O (u E E+,V’E F,‘) 

i=l i= 1 

(since EJ is the o(E”, E’)-closure of KE E+). If F+ is closed, then 

(44 C,(E’ 63 F) = F+(E, F). 

Moreover, if E is a finite-dimensional Banach lattice, then we have the fol- 

lowing: 

Lemma 4.1. Let E be an n-dimensional B-lattice. For any ordered normed space 

(G, G,), one has F+(E, G) = C,(E’ @ G) andF+(G, E) = CT(G’ @J E). 

Proof. It is well-known (see [9, Ex. (V.21(a)), p. 2.541) that E is a norm and lattice 

isomorphic to R”, ordered in the usual way and normed so that ]leiJl = 1, where 

pi= [SIJ]l<j<n (i= l,...,n), under $J. Then uI = I,!-‘(ei) E E+ (i = 1,. . . ,n) 

forms a basis in E such that 

(1) ,,$ Qi ui E E+ if andonlyif cx, 20 (i= l,...,n); 

moreover, (1) shows that any dual basis of { ~1, . . , u,} must be positive, hence 

we assume that {ft , . , fn} is a positive dual basis of (~1, . , u,} (i.e., f; E El). 

The result now is clear since any T E .ZF(E, G) can be represented as 

T = 2 J; B (Tui) 
i=l 

and any S E 3(G, E) can be represented as 

Denote by 11 /IcTl the finite nuclear norm (or x-norm) on 3(E, F) (for defini- 

tion, see [8, (6.8.1)]). It is well-known that 

(3) (3’(E,F), WE @FL II IIc,,)‘!! (W’,E”),~+F’,E”), II . II) 
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(order isometric), under the map T + (. , T),, (where T E C(F, E”)), defined by 

(4) 

i 

(R, T),, = trace(TR) = 2 (XI, Tyi) 
i=l 

( 
forany R= 2 XI@yiE3(E,F) 

i=l 1 

, 

so that (F(E, F), C(F, E”)) is a dual pair and 

(5) C+(F, E”) = -(C=(E’ @ F))’ = (&(E’ @ P))’ (the dual cone). 

Denote by Z(E, F) the vector space of all integral operators from E into F (for 

definition, see [8, (6.4.1)]), and by O( .) the integral norm on J(E, F). It is well- 

known (see [lo, (IV.5.9)] or [13, (4.1.3)]) that 

(6) (3(E, F), 11 . II)’ z (J(F, E”), O( .)) (isometric) 

under the trace duality defined by (4). 

Suppose now that E is finite-dimensional (denoted by dim E < cc). Then 

I( 1 = II II(T) on F’(E,F) 

(see [8, (6.8.3)]). It then follows from (6) and (3) that 

i 

(W,F), II II)” = (-W,F), II . II)” = ( JV’,E), U .)I’ 
(7) 

= CW’, E), II IIc,,)’ = (W, F”), II II) 

under the trace duality defined similarly by (4). 

The dual cone and bidual cone of C+ (E, F) can be calculated as follows: 

Lemma 4.2. Let E be a Jinite dimensional B-lattice and (F, F,, II 11) be an 

ordered B-space with closed cone F+. Then 

(8) (C(E) F), C+(E, F), II . II)’ ‘0’ CW’, E), G(F’ @ ~9, II II& 

(order isometric) under the map S + (. , S),, (where S E 3(F, E)), defined by 

(R, TS),, = trace(SR) = 2 (Sy;,xl) 

(9) 
i=l 

( 
for any R = $I xI @ ,I+ E 3(E, F)) , 

(where the ‘bar’is the g(F(F, E),3(E, F))-closure), and 

(10) (W,F),C+(E,F), II II)“~(C(E,F”),~+(E,F”), II . II). 
In other words, 

(11) C,(F’ @E) = -(3+(E, F))’ = 3+(E, F)’ (the dual cone) 

and 

(12) C+(E, F”) = (C+(E, F))” (the bidual cone). 
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Proof. It has been observed (see (6)) that T(F, E) = J(F, E”) can be identified 

with the Banach dual of (F(E,F), 11 11) ( since dim E < DJ); in other words, 

(E’ 18 F, F’ 63 E) is a dual pair (under the trace duality (9)). It then follows that 

Ci(E’ @G F) = -(C,(F’ @ E))’ (with respect to (E’ @F, F’ @E)), and hence 

from the bipolar theorem that 

Cn(F’ BE) = -(Ci(E’ @F))O = -(3?+(E, F))‘, 

thus (11) holds, consequently (8) is true. 

Moreover, by Lemma 4.1 and the fact that F+(F, E) = (C,(E’ @ F))’ is 

o(.ZF(F, E), F(E, F))-closed, we have 

C,(F’ @ E) = C,(F’ @ E) = F+(F, E) = F+(F’, E). 

Finally, we get from (3) and the above that 

(13) (T(F, E), G(F’ @ E), II llc,,)’ ‘0’ (C(E,F”), ,@>F”), 11 II), 

so that (F(F, E), C(E, F”)) is a dual pair and 

(14) C+(E,F”) = -(C,(F’@ E))’ = -(Cr(F’ @ E))’ (the dual cone) 

We then conclude from (ll), (13) and (14) that (10) and (12) hold. q 

Remark. It is easily seen from this proof that C,(F’ @ E) = G(F’ @J E). 

Let E be an n-dimensional B-lattice, let I/(R) = (R”, 11 ljl,), and let us write 

d(E) = inf{Il+lI II$-‘I) : T/J : E + I;(R) is topological 

and lattice isomorphic}. 

Lemma 4.3. Let (F, F+, II 11) b e an ordered normed space, let N he a closed vector 

subspace of F and let QN : F -+ F/N be the quotient map. If QN is an r-half-de- 

composable swjection (for some r > 0), thenfor any n-dimensional B-lattice E, the 

map Q(l) : LC(E, F) --f C(E, F/N), defined by 

Q(/)(T) = QN T (for all T E C(E,F)), 

is an r/(d(E) + &))-half-decomposable surjection for any E > 0. 

Proof. It is required to show that 

(1) d(E; + E ( UL(E,F/N) n ~+(E,FIN)) c Q(/)(&(E,F) n l+(E,F)). 

For any E > 0, there exists a topological and lattice isomorphism $ : E + l/(R) 

such that 

ll+ll ll6’II < d(E) + E. 

245 



Now let SO E r/(d(E) + E) ( UL(E,F/N) n C+(E, F/N)). Then 

So+-’ E L+(q(V,F/W, 

hence there exists (see Proposition 2.6(b)) an S E C+(I;(R), [F), such that 

SO$-~ = QN S and llSl[ < b llSo $~-‘ll. 

Let S = S$. Then S E L+ (E, F) is such that 

(2) QNS=Q,,&=S~~-‘I+~=S~ 

and 

IlSll 5 11~11 114 I ; IlSoll lb-‘II lllclll 5 ; IlSoll(4E) + E) 

thus (1) holds by (2). q 

Lemma 4.4. Let E be an n-dimensional B-lattice, let (F, F+) be an ordered B- 

space with closed cone F+, and let D be afinite-dimensional subspace of F’. If D is a 

r-half-full subspace of F’. (i.e., Jo : D -+ F’ is a r-half-full injection) for some 

I- > 0, then the subspace D &I E, defined by 

(1) D@E= kd/@xi:d/~Dandxi~E , 
i=l > 

is a$nite-dimensional r/(d(E) + e)-halfTf/l subspace of (F(F, E), C,(F’ @G E), 

I( . llc,,), where the ‘bar’ is the o(3(F, E), F(E, F))-closure of the projective 

cone C,(F’, E) (see Lemma 4.2). 

Proof. It is clear that dim(D 8 E) < 00. Let p be the restriction of II IIcTJ on 

D @ E, let 

C = C,(F’ BE) n (D 63 E) (the relative cone), 

and let J : (D 8 E, C, p) + (F(F, E), C,(F’ ~3 E), II . IIc,,) be the canonical 

injection. In order to verify the result, it has to show (by Theorem 2.4 and the fact 

that j,f( T) = j$‘( T)) that the dual operator 

(2) J’ : (F(F, E), GO” 8 E), II I IIC,,)’ ---) CD BE, C, P)’ 

is a T/(d(E) + &)-half-decomposable surjection. To this end, we first calculate 

these two ordered Banach dual spaces. It is well-known that 

(3) V’(F,E), G(F’@ E), /I IIc,,)‘i? (C(E,F”),~+(E,F”), II II) 

(order isometric) under the trace duality 

(4) (L, T),, = trace( TL) F,;‘@x,E_T-(F,E) 
j=l > 
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To calculate the ordered Banach dual (D @ E, C, p)‘, we first observe the fol- 

lowing facts. If N = DT (the annihilator of D taken in F), then D - (F/N)’ 

(isometric), hence we identify the tensor product D @ E with F(F/N, E). Let qcT) 

be the finite nuclear norm on (F/N)’ GJ E, i.e., 

qcl,,(z)=inf 
{ 

$J Il~~llllx,II:z=~d:~x;, d,‘EDandxiEE 
> 

, 
i=l i=l 

and let Cr( (F/N)’ @ E) be the projective cone in (F/N)’ @ E. Then 

(5) 
i 

(3(F/N,E),C,((FIN)‘~E),q(,))’ 

‘0’ (L(E, F”/N”), C+(E, F”/N”), 11 . 11) 

(on account of (F/N)” E (D, I( II)’ = F”/N”), hence 

(6) (D EJ E, P)’ = (.W’IN, E), q(R))’ - WE, F”/@‘), II . 11) 

(since p and qca) are equivalent on D @ E with dim(D @ E) < 00). On the other 

hand, it is clear that C,((F/N)’ 8 E) c C c .F+(F/N, E), it then follows from 

(6) that 

C,(E’ @F/N) 2 -(F+(F/N, E))’ c -Co 

c -(C,((F/N)‘@ E))’ = F+(E,F”/N”), 

and hence from Lemma 4.1 and F/N is finite dimensional that 

(7) Cn(E’ @F/N) = -Co = C+(E, F”/N”) 

(i.e., L+(E, F-“/NIL) h d 1 is t e ua cone of C). Combining (5), (6) and (7), we 

obtain 

(8) 

1 

(D 8 E, C, P)’ ‘0’ G=‘(FIN,E), C#W) @ E), q(r))’ 

$ (L(E, F”/Nil), C+(E, F/‘/NIL), II 11) 

under the trace duality 

(9) (R, S),, = trace(M) 
( 
SEC(E,F”~N”), R=2 d,‘%xiE D@E 

i=l 1 

According to (3) and (8), now we have to show that 

(10) 
i 

J’ : (C(E, F”), C+(E, .“)> II . 11) 

--f (C(E,F”/N”),L+(E, F”/N”)II 11) 

is a r/(d(E) + &)-half-decomposable surjection. 

In fact, as Jo : (D, D n Fi) + (F’, F:) is a T-half-full injection, Jf, : 

(F”, Fy) + (D, D f! Fc)’ is a T-half-decomposable surjection (by Theorem 2.4) 

and (0, D n F:)’ ‘2 (F”/N” , QNll (FJ)) (by Lemma 3.2), thus Jh can be iden- 

tified with the quotient map QNll : F” + F”/N IL, which is a r-half-decom- 

posable surjection. 

defined by 

(11) Q(/)(T) = 

By Lemma 4.3, the map Q(l) : C(E, F”) + &(E, F”/Nl’), 

QNli o T (for all T E C(E, F”)), 
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is a r/(d(E) + &)-half-decomposable surjection for any E > 0. 

By Theorem 2.4, we complete the proof by showing that 

(12) J’ = Q(l) 

(on account of JO : (F/N)’ + F’). Indeed, let T E C(E,F”). Then J’(T) E 

C(E,F”/N~~) = (F(F/N, E), qCx))’ (by (8)), hence we have for any R = 

C’=, di’ B xi E F(P/N, E), that (see (9)) 

(13) 

i 

(R,J’(T)),, = (JR, T),, = ,$, (d,‘, Txi) = 2 (JD~/, Txi) 
i= 1 

= k (d/,JL Txi) = 2 (d/, QNllTxi) 
i= 1 i= 1 

(on account of QNll = Jh). On the other hand, for any T E fZ(E,F”), we have 

Qc/)( T) = QNll T E C(E, F”/l+) = (F(F/N, E), qc71))’ (by (S)), hence we ob- 
tain for any R = Cr= 1 d/ @ xi E .F(F/N, E) that 

so that 

(14) (R, QN~L T),, = 2 (d/, QNu TX;). 
i= 1 

Combining (13) and (14), we obtain the requirement. q 

To verify the dual result of Lemma 4.4, we need the following: 

Lemma 4.5. Let E, G and N be ordered Banach spaces such that G’ ‘2 N (metric 

and order isomorphic). If there is an order and topological surjection Q : E --+ G 

and an order and metric injection J : N -+ E’ such that Q’ = J, then 

G ‘0’ E/ [J( N)IT (metric and order isomorphic). 

Proof. Let QK be the canonical quotient map from E to E/Ker Q, and let @ be 

the induced map from E/Ker Q to G such that Iii o QK = Q. Since Q is an order 

and topological surjection, G is order and topologically isomorphic to E/Ker Q 

under rV. Since Ker Q = [Q’(N)]’ = [J(N)lT, it has to show that 9 is isometric. 

In fact, as J is a metric isomorphism and N is norm complete, it follows that 

(E/Ker Q)’ g J(N) s J(N) g N (metric and order isomorphic). 

For any 2 E E/Ker Q, there exists a x E E such that QK(x) = .k, hence 

]]*(i)]] = suP{]f(p(k))]:f E UN) = s~lf(Q(x))l:f E UN) 

= su~{l[Jfl(x)l:f E UN> = su~{/[JflWl:f E UN> 

(the last equality following from the isometric isomorphism between J(N) and 

(E/Ker Q)‘). Hence, ]]S(i)]] = /]g]]. q 
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Remark. The above proof actually gives the following fact: if Q is an order and 

topological surjection from E to G such that G’ is order and metric isomorphic 

to (E/Ker Q)‘, then G ‘2 E/Ker Q (metric and order isomorphic) under the in- 

duced map Q from E/Ker Q to G. 

Lemma 4.6. Let E he an n-dimensional B-lattice, let (F, F+) be an ordered B- 

space with closed cone F+, let D be a finite-dimensional subspace of F’ nnd let 

J : D @ E + (F’ 03 E, C,(F’ BE), II 11) 

be the canonical injection. If N = DT (in F) is u r-half co-subspace of F (i.e., 

QN : F -+ F/N is a r-half-decomposable surjection) for some r > 0, then the 

annihilator (J(DRE))~ in C(E,F) (i.e., with respect to (E’@ F,F’ixI E)) is a 

T/((d(E) + E))-h lf - b p a co su s ace of (C(E, F), C+(E, F)) (for any E > 0). 

Proof. By Lemma 4.3, the map Q(l) : C(E, F) + L(E, F/N), defined by 

Q(r)(T) = QN~ (for any T E C(E,F)), 
is a r/(d(E) + &)-half-decomposable surjection for any & > 0. A similar argu- 

ment given in the proof of (12) in Lemma 4.4 shows that J = Q[,,. Now if q(T) 

denotes the finite nuclear norm on (F/N)’ @ E, then Lemmas 4.2 and 4.1 show 

that 

(3(E,FIN),~+(E,FIN),II. II)‘~(~.(FIN,E),C,((FIN)‘~EE),qi,,) 

!i! (D @ E, C, p) 

(where C = C, (F’ @ E) n (D @ E) and p is the restriction of ]I I/tAj (defined 

on F’@E) on D@F), so that Q(l) is also a metric surjection (see [8, (B.3.8)]). 

Thus the injection Q(l) associated with Qc,, is an order and metric isomor- 

phism from (C (E, F)/ Ker Q(l), k+ (E, F)) onto (C (E, F/N), -C+ (E,F/N)) 

by Lemma 4.5, consequently the quotient map Q4 : (C(E,F),C+(E, F)) + 

(&(E,F)/Ker Q(l),l+(E,F)) is a -r/((d(E) + E))-half-decomposable surjection. 

The result then follows from 

(J(D@E))T = (e;,,WW" = Q(r%D@E)") = Q,,'W,, 
(on account of (E’ @ F/N. (F/N)’ @ E)). 0 

Now we are able to verify a very interesting result, regarded as the principle of 

local reflexivity of ordered type, as follows: 

Theorem 4.7. Let E be an n-dimensional B-lattice, let (F, F+) be an ordered B- 

space with closed cone F,, let D be a Jinite-dimensional subspace of F’ and 

T E C+(E, F”). 

(a) (The 1st version) Suppose that D is u r-half-full subspace (i.e., Jo : D + F’ 

is a r-half-full injection) for some r > 0. Then for any E > 0, there exist 

S E C+(E, F) and R E C(E, F) with 

(1) IISII F d’Ei+E [ITll and llR/l 5 E 
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such that 

TX = (KF(S + R)) x onD (forallxE E), 

i.e., 

(2) (d’, TX) = ((S + R) x,d’) (for all d’ E D and x E E). 

(b) (The 2nd version) Suppose that the annihilator N = DT (in F) is a r-half 

co-subspace of Ffor some r > 0, and that the quotient cone Qhr(F+) = k+ is closed 

in F/N. Then for any E > 0, there exists an SE C+(E,F) with llS/l < 

(d(E)/T) llT[i + E such that 

(3) TX = (KFS)X on D (for all x E E), 

i.e., 

(4) (d’,Tx) = (Sx,d’) (foralld’e DandxEE). 

Proof. We employ Theorems 3.5 and 3.6 to verify this result. For this, we first 

notice from Lemma 4.2 (on account of dim E < 00) that 

(5) ME,F),~+(E,F),II. II)‘~(F(F,E),C,(F’~E),II. IIc,,) 

(order isometric) under the map &J + (., Ro),, (where Ro E F(F, E)), defined by 

(6) (L, Ro),, = trace(R&) (for all L E C(E, F) = F(E, F)), 

and that 

(7) 

( 

MEJ”V+(E,F”), II . II) i! (W,F),C+(E,F), II II)” 

‘0’ C-W, ~9, GO” @ ~9, II IIc,,)’ 

under the map TO + (., To)~, (where TO E C(E, F”)), defined by 

(8) (R, To)~, = trace( To R) (for all R E C(F, E) = .F(F.E)). 

It then follows from (7) that T E (C+(E, F))” (the bidual cone of C+(E, F)). 

(a) Suppose now that D is a r-half-full subspace of F’ and E > 0. Then Lemma 

4.4 shows that D @E is a finite-dimensional r/(d(E) + &)-half-full subspace of 

(_Y=(F, E), C,(F’ %I E), II . IIc,,). By Theorem 3.6 there exist S E C+(E, F) and 

R E C(E, F) with 

IISII I d(EifE l\Tll and llR[l 5 E 

such that 

T = KL(E,F)(S + R) on D &?J E. 

As D 8 E c _F(F, E), it follows from (8) and (6) that 

(d’, TX) = (d’@ x, T),, = (d’@ x,K~(E,F)(S+R))~~ = (S + R,d’@ x)~~ 

= ((S+ R)*x,d’) (for all d’ ED and x E E). 
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(b) It is clear that the closedness of QN(F+) in F/N implies that L+(E, F/N) 

is closed, and hence the quotient cone i+(E, F) is closed in C(E, F)/cJcDXE,j~ 

(where J : D @ E + F’ @ E is the canonical injection). By Lemma 4.6 and 

Theorem 3.5, there exists an S E C+(E, F) such that it satisfies the requirements 

in the theorem. q 

It is interesting to apply Theorem 4.7(a) to the case that when F is a B-lattice 

and D is a finite-dimensional sublattice of F’. 

Remarks. (i) If F is assumed to be a Banach lattice and D is a closed lattice 

ideal in F’ (DT is an l/( 1 + &)-half-full co-subspace of F (see Example (a) in 92) 

such that F/D’ is a Banach lattice), then for any E > 0, there exists an 

S E C+(E, F) with ]lSl] 5 d(E) \lTlj + E such that (3) hold. 

(ii) Using Theorem 3.6 one can improve part (a) as follows: Let E be an n-di- 

mensional B-lattice, let (F, F+) be an ordered B-space and D a finite-dimensional 

subspace of F’. Then for any T E C+ (E, F”) and E > 0, there exist S E C+ (E, F) 

and R E L(E, F) with (IS/I I lITI and llR/l 5 E such that 

TX = (KF(S + R)) x on D (for all x E E). 

In fact, by (5) and (7) (in Theorem 4.7) and the fact that D @ E is finite-dimen- 

sional subspace of F(E, F), the result follows. 

In [l], Behrends gives a version of local reflexivity theorem (for Banach spaces) 

which is, in a sense, the most general one. It is well known that the classical local 

reflexivity theorem (also Behrends’ version of local reflexivity theorem) is false if 

we simply replace Banach space by Banach lattices, finite-dimensional subspace 

by finite-dimensional sublattice and linear isomorphism by lattice isomorphism 

(resp. as Behrends says [l, p. IlO]). Part (a) of Theorem 4.7 is a version of (some 

sort of) local reflexivity theorem for ordered type which can be deduced from 

Theorem 1.2 of [3] (see Remark (ii) of Theorem 4.7). While part (b) of Theorem 

4.7 is another version of some sort of local reflexivity theorem for ordered type. 
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