OBJECTIVES: Influenza is a disease that occurs every year for a few months in winter season. Predictions on vaccination strategies require a deep understanding of its epidemiology. The objective of this work was to develop an influenza season through a model, its examination and to make its dynamics transparent. METHODS: We used an agent based epidemic model to simulate the spread of influenza. It belongs to the class of dynamic transmission models and simulates individual behavioral persons in discrete time. The model was evaluated for the perception and spread of the virus. Contacts are based on statistical data and social studies; epidemiological parameters are found in clinical studies and through calibration. RESULTS: Estimates say that about 5% of the population falls sick with influenza every year. The model shows clearly that this number is highly implausible under naive assumptions because the epidemic would not behave like this; instead it would be much stronger or die out – depending on the parameters. This reveals that our knowledge on influenza is insufficient. These additional assumptions might solve the problem: First, that the influenza season highly depends on the seasonal climate, second, that many people are generally resistant for the whole season and third, that many people undergo infections without symptoms. Simulation of these assumptions reveals three different possible propations of the influenza that all result in 5% sick people. CONCLUSIONS: The model cannot answer all questions about influenza. But it is able to show clearly where we need more information and it provides the possibility to test different assumptions and evaluate them. In other words, the model can lead to a deeper understanding of the real world by examining assumptions that could not be observed directly so far.

VA4

FOUND THE MISSING LINK? HOW TO RELATE COHORT MODELS TO OBSERVED POPULATION DATA

Standardt B1, Ethgen O2, Emerson RA2

GlaxoSmithKline Vaccines, Weavre, Belgium; University of Liege, Liege, Belgium; Emerson Consulting, Terruren, Belgium

OBJECTIVES: Pre-launch economic models are constructed to simulate long-term epidemiological data and effects. These models are used to evaluate the cost-effectiveness and health-care setting. Performing a diagnostic PCR assay reduced to a threshold value that differentiates between protected and susceptible. Antigens, called surrogates or correlates of protection (COP). Often the COP is observed directly and relies on an immunological response that predicts protection as predictive COP. Our aims were to review proposed levels of evidence based on single or multiple randomized trials. To estimate the input often available to parameterize the model is obtained from cross-sectional, annual, population data. The question is how to make the link and reconcile results from long-term cohort models with annual observed population data? An illustra- tion is given with modelled and observed hospitalisations due to rotavirus related acute gastroenteritis. METHODS: The spread of hospitalisations of children up to the age of 5 years, observed over a one -year period follows a normal distribution (seasonality of the infection) with a peak around February March each year. The assessment is done by 1-year age-groups (0 to 1y; 1 to 2y; 2 to 3y; 3 to 4y; 4 to 5y). The parameters of this normal distribution are used to compare modelled and observed population density curve with the same annual spread. Within this construction the weekly spread of hospitalisations by age follows the density curve of the cohort model with an age-specific Weibull distribution. To compare the model results with the observation we analyze the age-group spread of hospitalisations but also the results following the introduction of a specific intervention such as vaccina- tion. RESULTS: Pre-vaccination, the fit of the age-related spread of hospitalisations modelled using the population model to the observed data was compelling (regression-scale model fit < 0.05). Post-vaccination the modelled and observed reduction in hospitalisations matched, however in the unvaccinated older children the model predicted a lower reduction than observed which could be explained by a herd protection effect in the observed population (indirect vaccine effect). Herd protection was estimated to be significant. CONCLUSIONS: It is possible to make the link between cohort models and observed population data provided the underlying model characteristics reflect reality.

RESEARCH POSTER PRESENTATIONS – SESSION I

HEALTH CARE USE & POLICY STUDIES

HEALTH CARE USE & POLICY STUDIES - Consumer Role In Health Care

PHP

INCORPORATING THE PATIENT’S VOICE INTO THE ASSESSMENT OF MEDICAL DEVICES: A COMPARISON OF THE UNITED STATES AND EUROPE

Doward L1, Whalley D2, Houghton K2, DeMuro C1, Evans E3, Gnanasakthy A1

1St Consultant, Massachusetts General Hospital, Boston, MA, UK; 2FIT Health Strategies, Manchester, UK; 3Eti Health Solutions, Manchester, UK, 4Eti Health Solutions, Research Triangle Park, NC, USA; 5Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA

OBJECTIVES: Medical devices (MDs) play a major role in many aspects of health care. In the United States (US) and Europe (EU) categories of MDs into different classes, with greater regulatory control imposed on the highest risk Class III devices. In the US, the Food and Drug Administration (FDA) approves Class-III MDs. In EU, the European Commission sets the regulatory framework through which ‘notified bod- ies’ work. The objective of this work was to evaluate the extent to which patient-reported outcomes (PROs) are considered in the assessment of Class-III MDs in the US and EU METHODS: The Drug Approval Packages of MDs granted approval by the FDA from 2006-2011 were reviewed to identify MDs presenting PRO endpoints for the ophthalmology MDs as well as other medical devices. The purpose of this study was to find what criteria were used to evaluate the extent to which patient-reported outcomes (PROs) are considered in the assessment of Class-III MDs in the US and EU METHODS: The Drug Approval Packages of MDs granted approval by the FDA from 2006-2011 were reviewed to identify MDs presenting PRO endpoints for the ophthalmology MDs identified from the US FDA review. RESULTS: The FDA approved 197 MDs from 2006-2011, of which 52(26.4%) presented PRO data. PRO-claims were lowest in 2008

VA3

HOW AGENT-BASED MODELS REVEAL THE DYNAMIC OF EPIDEMICS – A CASE STUDY ON INFLUENZA

Miklich F1, Urach C2, Zauner G2, Schiller-Friewirth F4, Endel G2, Einzinger F2, Popper N2

1Pamea, University of Technology, Vienna, Austria; 2Dah Simulations Services, Vienna, Austria, 3Main Association of Austrian Social Security Institutions, Vienna, Austria

OBJECTIVES: Influenza is a disease that occurs every year for a few months in winter season. Predictions on vaccination strategies require a deep understanding of its epidemiology. The objective of this work was to develop an influenza season through a model, its examination and to make its dynamics transparent. METHODS: We used an agent based epidemic model to simulate the spread of influenza. It belongs to the class of dynamic transmission models and simulates individual behavioral persons in discrete time. The model was evaluated for the perception and spread of the virus. Contacts are based on statistical data and social studies; epidemiological parameters are found in clinical studies and through calibration. RESULTS: Estimates say that about 5% of the population falls sick with influenza every year. The model shows clearly that this number is highly implausible under naive assumptions because the epidemic would not behave like this; instead it would be much stronger or die out – depending on the parameters. This reveals that our knowledge on influenza is insufficient. These additional assumptions might solve the problem: First, that the influenza season highly depends on the seasonal climate, second, that many people are generally resistant for the whole season and third, that many people undergo infections without symptoms. Simulation of these assumptions reveal three different possible propations of the influenza that all result in 5% sick people. CONCLUSIONS: The model cannot answer all questions about influenza. But it is able to show clearly where we need more information and it provides the possibility to test different assumptions and evaluate them. In other words, the model can lead to a deeper understanding of the real world by examining assumptions that could not be observed directly so far.

VA1

A EUROPEAN-WIDE STUDY ON THE ROLE OF STREPTOCOCCUS PNEUMONIAE IN COMMUNITY-ACQUIRED PNEUMONIA AMONG ADULTS: A META-ANALYSIS

Pechlivanoglou P1, Rozenbaum M1, van der Werf T2, Lo-Ten-Foe P3, Postma M1, Hak E1

1University of Groningen, Groningen, The Netherlands; 2University Medical Center Groningen, Groningen, The Netherlands

OBJECTIVES: Community-acquired pneumococcal pneumonia is an important cause of hospitalization and death among adults, but figures on the prevalence of Streptococcus pneumoniae largely vary. We aimed to identify the prevalence of Streptococcus pneumoniae by systematically reviewing all available etiological studies of adult patients with community-acquired pneumonia (CAP) over the period January 1990- November 2011 across European countries. METHODS: Two reviewers conducted an article search using PubMed and Google Scholar using language articles on the prevalence of adult CAP caused by S. Pneumoniae and manually reviewed the article bibliographies. A mixed-effects meta-regression model was developed and populated with 24,236 patients obtained from 79 articles that met in- and exclusion criteria. RESULTS: The prevalence of S. pneumoniae in CAP significantly differs between European regions even after adjusting for various covariates including patient characteristics, diagnostic tests, antibiotic use and health-care setting. Performing a diagnostic PCR assay increased the probability of detecting S. pneumoniae substantially, compared to all other diagnostic tests included. Furthermore, S. pneumoniae was more likely to be confirmed as a cause of a CAP in cases treated in the ICU as compared to those treated in the hospital or in the community. CONCLUSIONS: This study provides estimates of the prevalence of S. Pneumoniae in CAP, independent of study design, or other risk factors, which could be used for predictions of the health and eco- nomic impact of adult pneumococcal vaccination.

VA2

RELATIVES OF PROTECTION FOR VACCINES: WHEN DOES A CORRELATE EQUAL PROTECTION?

Desai KL1, Chen X2, Bailleux F3, Qin L4, Dunning A5

1United Biocorperation, London, UK; 2Sanofi Pasteur, Beijing, China; 3Sanofi Pasteur, Marcy l’Etoile, France; 4University of Washington, Seattle, WA, USA; 5Sanofi Pasteur, Southbury, PA, USA

OBJECTIVE: A fundamental information needed to conduct economic evaluations of vaccines is effectiveness against disease. However, effectiveness is not always observed directly and relies on an immunological response that predicts protection. Typical immune responses which are predictive of protection are neutralizing antibodies, called surrogates or correlates of protection (COP). Often the COP is reduced to a threshold value that differentiates between protected and susceptible COPs are relied on in place of estimates of effectiveness and for immunization policy, however there are no consistent criteria or statistical methods for establish- ing candidate immune response as predictive COP. Our aims were to review proposed hierarchies of evidence necessary to establish a COP and statistical methods used to assess immune responses to protection. METHODS: The strength of evi- dence for demonstrating a COP based on different frameworks and early and mod- ern statistical methods approaches to establish a COP were reviewed. Findings and Recommendations: Different frameworks define different levels of confidence in COPs. The Prentice framework is significance testing-driven and requires protec- tion to be related to vaccination, the correlate related to the vaccine and correlate related to clinical endpoint. Moreover vaccination should not add additional in- formation on protection over that explained by the correlate. A framework by Qin proposed levels of evidence based on single or multiple randomized trials. To esti- mate thresholds, early vaccine studies relied on inspection of disease rates ob- served in discrete intervals of assay values. Modern examples employed Chang-Kohberger method but this requires an estimate of vaccine efficacy based on occurrence of disease before it can be used. The scaled-likelihood model permits estima- tion of continuous protection curves by antibody titers. In addition to statistical criteria, other considerations include clear endpoint definition, laboratory assays, host and population factors. New statistical methods should be developed and tested within evidence frameworks to better obtain estimates of vaccine effective- ness.