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Suppose that G is a finite group, and H is any subgroup of G. In a recent 
article [I], Tamaschke defined “(G : H)-classes” and “(G : H)-characters.” 

He conjectured (in a remark following the proof of Theorem 2.1 in [I]) that 
the numbers CZ(G : H), of (G : H)-classes, and Ch(G : H), of (G : H)- 
characters, always coincide: 

CZ(G : H) = Ch(G : H). (1) 

We construct an infinite family of counterexamples to this conjecture. 
The (G : H)-classes form a partition of G, which, in view of Lemma 1.2 

of [I], may be defined as follows: Two elements u, 7 of G lie in the same 
(G : H)-conjugacy class if and only if: 

IKnHoHj_ iKnHTH/ 

I HUH I !HTH~ ’ (2) 

for every ordinary conjugacy class K of G. 

From the third paragraph of Section 2 of [I], it is clear that the number 
Ch(G : H) of (G : H)- c h aracters is less than or equal to the number of 
ordinary irreducible characters of G; i.e., 

Ch(G : H) :-. U(G), (3) 

where CZ(G) is th e number of ordinary conjugacy classes of G. Since our 

groups will all satisfy: 

U(G) < CZ(G : H), (4) 

we need no further information about C’h(G : H) in order to disprove (1). 
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I,et p, Q be any two primes satisfying: 

p :~ 1 (mod q) (5) 

Since p must be odd, there is a unique non-abelian group P of order p3 and 
exponent p. It can be presented as having two generators rt , x2 subject to 
the relations: 

x1 
IJ TrgJ’ == 1, CT1 9 n,] = Tr;1%~1%pr2 centralizes both r1 and r2 . (6) 

Condition (5) gives us an integer f  satisfying: 

t’l I 1 (mod p)) t + 1 (mod p). (7) 

It follows readily from the presentation (6) that the group P has an auto- 

morphism a: of order q defined by: 

7rlU ~~ 7rlf, t-l 
TTZ” %, . (8) 

We define H to be the cyclic group ( CY> of order q and G to be the semi-direct 
product HP. 

The subgroup Z = ([n, , x2]) is the centre of P. So it is normal in G. 
In fact it is central in G, since (6) and (8) imply: 

/7r1 ) 7ia]” = [7rlR, %,‘I = [,‘, T;-‘] -~ [7il ) n,J-’ = [q ) Z-J. (9) 

The quotient group P* = P/Z is elementary of order pa. LVe write it 
additively. Then it is a vector space over the field I;, of integers mod p. The 
images n;, n.$ of 71, , 7r2, respectively, form a basis for this vector space. 
The automorphism a: of P induces an automorphism N* of P*. This oi* is 

a non-singular linear transformation of P*. 

LEMMA 10. If  r* E P* and map* r*, then r* - 0. 

Proqf. In view of (S), we have: 

r*a+ r: tn* * * 
1 1, 7T? a t- G-r.:. 

Therefore x;, rz is a basis of eigenvectors of o(* with the eigenvalues t, t-l. 
I f  71* E P* and r*o1* == n*, then either rr* = 0* or x* is an eigenvector 

of LY* with eigenvalue 1. However, the only eigenvalues of LX* are t and t-l, 
and, by (7), neither of these equals 1. Hence 1 is not eigenvalue of (Y*, and 
we must have n* = 0 as stated. 

LERIMA 11. Let K be an ordinary conjugacy class of G. Then either (i) KC Z, 
or (ii) K L P - Z, or (iii) KC G - P. In case (i), K consists of a 
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single element of 2. In case (ii), K is the inverse image in P of a subset 
{n*, ~*a*, v*(cY*)~,..., ~*(a*)@}, where r* is some nontrivial element of P*. 

In this case, K has pq elements. Finally, in case (iii), K has the form {on / x E P), 
where o is any element of K. Here K has p2 elements. 

Proof. Since Z C PC G is a chain of normal subgroups of G, the first 

conclusion of the lemma is obvious. 
We have already seen (in (9)) that Z lies in the centre of G. Therefore the 

conclusion in case (i) is correct. 
Suppose that K lies in case (ii) and that r is any element of K. Since 

KC P ~ Z, the image rr* of rr in P* is nontrivial. Because P* is abelian, the 
image K* of K in P* is just the set {n*, ~*a*,..., ~*(a*)“-‘>. The inverse 

image of x* in P is the coset rrZ of Z. This, however, is the conjugacy class 
of P containing rr. Therefore it lies entirely within K. Similarly K contains 
the inverse image of each element of K*. Hence K is the full inverse image 
of K* in P. 

Since q is a prime, Lemma 10 implies that I<* has q elements. The inverse 
image in P of any element of K* is a coset of Z, and therefore hasp elements. 
It follows that K has pq elements. So the conclusions of the lemma in case (ii) 
are correct. 

Finally, let K be in case (iii). Choose any element u in K. Write o = pr, 
where the order of p is a power of q, the order of 7 is a power of p, and p7 = 7~. 

Since u $ P, the element p is nontrivial. The cyclic group (p) has order q, 
and therefore is a q-Syloxv subgroup of G. By passing to a G-conjugate, we 
may assume that (p) = H. Lemma 10 and (9) imply that 2 is the centralizer 
of p in P. Therefore 7 E Z. Since 7 is central in G the centralizer of u =~ pi 
in G coincides with the centralizer of p in G, which is liZ. Hence K has 

(G : HZ) = p2 elements. Since G -= (IfZ) . P, the G-conjugacy class K is 
just the P-conjugacy class up = (UT j rr E P}. This is true for all elements (r 
of K because it is true for one of them. Therefore the conclusions of the 
lemma in case (iii) are correct. 

COROLLARY 12. The number of ordinary conjugacy classes of G is given by: 

Cl(G)=pq+(p+l)p-. 
P 

Proof. The number of classes K in case (i) of Lemma 11 is clearly 
/ Z 1 = p. The number in case (ii) is 1 P - Z l/pq = (p” - 1)/q. The number 
in case (iii) is j G - P l/p” = p(q - 1). Adding these three numbers gives 
the above formula. 

Now we come to the heart of the matter. 



356 I)AIW 

h24MA 13. Two elements (5, T of G lie in the same (G : II)-conjugacy class 
if and only if they satisfy: 

Half = 111.H. (14) 

Proof. It is clear from (2) that any two elements 0, T satisfying (14) lie in 
the same (G : H)-conjugacy class. ‘I’hc problem is to prove the converse. 

Since G -- IIP, we may multiply (T by an appropriate element of IJ and 
assume: 

u E P. (15) 

This changes neither the hypothesis nor the conclusion of the lemma. 
If o E %, then K {a) is an ordinary conjugacy class of G by Lemma 11, 

case (i). For this choice of K, the left side of (2) is nonzero. Hence so is the 
right side; i.e., K n 11~11 is non-empty. Since a is the only element of K, 
we conclude that o E 127H. This implies (14). IIence the lemma is true if 
u E z. 

?;ow assume that o $ %. let K be the ordinary conjugacy class of G 

containing u. As above, (2) implies that K n 1171-l is non-empty. Case (ii) 
of Lemma 11 tells us that K is the union of the li-conjugates of OZ. Hence 
a% n ZZTH is non-empty. We may therefore replace T by another element of 
the double coset HTZZ so that: 

7 = a{, 5 E%. (16) 

‘The element WT evidently lies in Ilull. Now let K be the ordinary con- 
jugacy class of G containing 310. As before, IrT n 11~11 is non-empty. 1,et 
&$a be any element of K n WITH, where /3i , & c Il. Then K n 1frH also 

contains /3&3,~ == P&?,T&) &‘. iVe write /3 for /3&i . I;rom case (iii) of 
Iemma 11, we know that some element TT of 1’ exists so that: 

‘I’his can be written as: 

cx’i7 ‘.u.7J P . 0 . r, (17) 

using (16). 
We first consider (17) module the subgroup I-‘. Since TT, CT and 5 lie in I’, 

and P is normal in G, the factors n- n . 0 . 77 and (T . < all lie in P. We are left 
with: 

Y p (mod P). 
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But (Y and /3 both lie in H and H n P = (1). Hence 01 = ,l3. Cancelling c1 on 

the left in (17) we obtain: 

n-oL . u’rr=u * 5. (18) 

We now consider (18) modulo Z. Since 5 E Z we obtain the equation in P*: 

(-7r*) a* + u* + Tr* = u*, 

where, of course, o*, r* are the images of (r, 7r, respectively. This gives us: 

By Lemma 10, n* must be 0; i.e., rr lies in Z. But 2 is the center of G. Hence 
n-” E r-1 and rr-‘an = (J. So (18) becomes: 

u = u .{. 

Or: 
5 = 1. 

This and (16) prove the lemma. 

LEMMA 19. The number of (G : H)-conjugacy classes is given by: 

CJ(G:H)=P+p(p+l)p+. 

Proof. By Lemma 13, CZ(G : H) is just the number of (H, H)-double 
cosets of G. Each such double coset HUH has either p or $ elements, since 
1 H I = p is a prime. Furthermore, 1 HUH 1 = q if and only if HUH = UH 

is contained in the normalizer No(H) of H in G. From (9) and Lemma 10 
it is clear that NG(H) is just HZ. Hence there are 1 HZ //q = p double cosets 
with q elements and / G - HZ l/q2 = (p” - p)/q double cosets with q2 
elements. Adding these two numbers gives the above formula. 

Finally we reach: 

THEOREM 20. Each of our groups G satisfies (4) and therefore provides a 
counterexample to Tamaschke’s conjectured equality (1). 

Proof. In view of Corollary 12 and Lemma 19, the inequality (4) is: 

Pq+(p+l)p+<P+P(P+l)p~. 
4 
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Subtracting p + (p + l)(p - 1)/s f  rom both sides, we obtain the logically 
equivalent inequality: 

p(q - 1) < (p” -- 1+2. 
4 

(21) 

Condition (5) implies that Q - 1 .: p - 2 and that (p - 1)/g > 1. 
Hence (21) is implied by the stronger inequality: 

p(p - 2) < p” - 1. (221 

Subtracting p2 from both sides, we obtain the logically equivalent inequality 

-2p < -1. 

This is certainly true, since p 3 2. Hence (22) is true. This implies (21), and 
(21) is logically equivalent to (4). I n view of (3), the inequality (4) contradicts 
(1). That proves the theorem. 
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