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Suppose that G is a finite group, and H is any subgroup of G. In a recent
article [1], Tamaschke defined “(G : H)-classes” and ‘(G : H)-characters.”
He conjectured (in a remark following the proof of Theorem 2.1 in [/]) that
the numbers CUG : H), of (G : H)-classes, and Ch(G : H), of (G: H)-

characters, always coincide:
CI(G:H)= ChG: H). 1)

We construct an infinite family of counterexamples to this conjecture.

The (G : H)-classes form a partition of G, which, in view of Lemma 1.2
of [/}, may be defined as follows: Two elements o, v of G lie in the same
(G : H)-conjugacy class if and only if:

| KNnHeH| (KN HrH |

HoH| | HH| 2

for every ordinary conjugacy class K of G,

From the third paragraph of Section 2 of [I], it is clear that the number
Ch(G : H) of (G : H)-characters is less than or equal to the number of
ordinary irreducible characters of Gj i.e.,

CKG : H) <. CKG), 3)

where CI(G) is the number of ordinary conjugacy classes of G. Since our
groups will all satisfy:

CIG) < CUG : H), @)

we need no further information about CA(G : H) in order to disprove (1).
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Let p, ¢ be any two primes satisfying:

p == 1(mod ¢q) (5)

Since p must be odd, there is a unique non-abelian group P of order p® and
cxponent p. It can be presented as having two generators m, , 7, subject to
the relations:

mP o == 1, [y, m) = wy'm;'mm, centralizes both 7, and m,. (6)
Condition (5) gives us an integer f satisfying:
17 = | (mod p), t = 1 (mod p). )

It follows readily from the presentation (6) that the group P has an auto-
morphism « of order ¢ defined by:

=l (8)
We define H to be the cyclic group (x> of order g and G to be the semi-direct
product HP.

The subgroup Z = ([, m,]» is the centre of P. So it is normal in G,
In fact it is central in G, since (6) and (8) imply:

[yt = [m me] = [l | [y, ml = [mmde (9)

The quotient group P* = PZ is elementary of order p% We write it
additively. Then it is a vector space over the field F, of integers mod p. The
images =), w5 of =, m,, respectively, form a basis for this vector space.
The automorphism « of P induces an automorphism a* of P*. This a* is
a non-singular linear transformation of P*.

Lemma 10, If v* € P* and n¥a™ = w*, then w* — Q.
Proof. In view of (8), we have:

n{ka* == t771*, T

Therefore 77, mf is a basis of eigenvectors of o* with the eigenvalues ¢, t-1.

If w* e P* and n*a* = =*, then either 7* = 0* or #* is an eigenvector

of o* with eigenvalue 1. However, the only eigenvalues of o* are ¢ and 2,

and, by (7), neither of these equals |. Hence 1 is not eigenvalue of «¥, and
we must have 7* == O as stated.

Lemma 11, Let K be an ordinary conjugacy class of G. Then either 1) K C Z,
or (it) KCP—Z, or (i) KCG — P. In case (i), K consists of a



COUNTEREXAMPLES TO A CONJECTURE OF TAMASCHKE 355

single element of Z. In case (ii), K is the inverse image in P of a subset
{m*, w¥o*, w¥(a¥),..., ¥ (a®)1}, where w* is some nontrivial element of P*.
In this case, K has pqg elements. Finally, in case (iii), K has the form {o" | = € P},
where o is any element of K. Here K has p? elements.

Proof. Since ZC PC G is a chain of normal subgroups of G, the first
conclusion of the lemma is obvious.

We have already seen (in (9)), that Z lies in the centre of G. Therefore the
conclusion in case (i) is correct.

Suppose that K lies in case (it) and that = is any element of K. Since
KC P — Z, the image 7* of 7 in P* is nontrivial. Because P* is abelian, the
image K* of K in P* is just the set {r*, n*a*,..., 7*(a*)?"1}. The inverse
image of #* in P is the coset #Z of Z. This, however, is the conjugacy class
of P containing 7. Therefore it lies entirely within K. Similarly K contains
the inverse image of each element of K*. Hence K is the full inverse image
of K*in P.

Since ¢ is a prime, Lemma 10 implies that K* has ¢ elements. The inverse
image in P of any element of K* is a coset of Z, and therefore has p elements.
It follows that K has pq elements. So the conclusions of the lemma in case (ii)
are correct.

Finally, let K be in case (iii). Choose any element o in K. Write ¢ = pr,
where the order of p is a power of g, the order of 7 is a power of p, and pr = 7p.
Since o ¢ P, the element p is nontrivial. The cyclic group (p) has order g,
and therefore is a ¢-Sylow subgroup of G. By passing to a G-conjugate, we
may assume that {(p> = H. Lemma 10 and (9) imply that Z is the centralizer
of p in P. Therefore 7 € Z. Since 7 is central in G the centralizer of ¢ = pr
in G coincides with the centralizer of p in G, which is HZ. Hence K has
(G: HZ) = p* elements. Since G = (HZ) - P, the G-conjugacy class K is
just the P-conjugacy class of = {¢7 | mw € P}. This is true for all elements ¢
of K because it is true for one of them. Therefore the conclusions of the
lemma in case (iii) are correct.

CoROLLARY 12.  The number of ordinary conjugacy classes of G is given by:

—1
Cl(G)zpq+(p+1>3~q——.

Proof. 'The number of classes K in case (i) of Lemma 11 is clearly
| Z| = p. The number in case (ii)is | P — Z [/ pg = (p* — 1)/g. The number
in case (iii) is | G — P |/p? = p(g — 1). Adding these three numbers gives
the above formula.

Now we come to the heart of the matter.
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Lemma 13, Two elements o, v of G lie in the same (G : H)~conjugacy class
if and only if they satisfy:

Holl = H~rH. (14)

Proof. Itis clear from (2) that any two elements o, 7 satisfying (14) lie in
the same (G : H)-conjugacy class. I'he problem is to prove the converse.
Since G :-: HIP, we may multiply ¢ by an appropriate element of I and
assume:
ce P, (15)

'This changes neither the hypothesis nor the conclusion of the lemma.

If e Z, then K - {0} is an ordinary conjugacy class of ¢ by Lemma 11,
case (i). For this choice of K, the left side of (2) is nonzero. Hence so is the
right side; i.e., K N H7II is non-empty. Since o is the only element of K,
we conclude that ¢ € [i7J1. This implics (14). Ilence the lemma is true if
cgeZ.

Now assume that o ¢ Z. Let K be the ordinary conjugacy class of G
containing o. As above, (2) implies that K N IH+H is non-empty. Case (ii)
of Lemma 11 tells us that K is the union of the f{-conjugates of oZ. Hence
oZ N II7H is non-empty. We may thercfore replace T by another element of
the double coset H7Il so that:

T = al, lelZ. (16)

The element oo evidently lies in flofi. Now let K be the ordinary con-
jugacy class of GG containing as. As before, K N HzII is non-empty. Let
B1785 be any element of K N HrH, where B, , B, ¢ M. Then K N HrH also
contains P87 = Bo(By7B,) Bzt We write B for By8,. From case (iii) of
I.emma 11, we know that some element 7 of P exists so that:

(xo)” = Br.
‘T'his can be written as:
arT o B-o-L, (17)

using (16).

We fust consider (17) modulo the subgroup P. Since 7, ¢ and { lie in P,
and P is normal in G, the factors 7~ - ¢ - 7 and o - { all lie in P. We are left
with:

y - B8 (mod P).
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But « and B both lie in H and H N P = {1}. Hence a = 8. Cancelling « on
the left in (17), we obtain:

mom=0"{ (18)
We now consider (18) modulo Z. Since { € Z we obtain the equation in P*:
(—77'*) a¥ - o* 4 #w* = o¥,

where, of course, o*, 7* are the images of o, =, respectively. This gives us:

By Lemma 10, 7* must be 0; i.e., 7 lies in Z. But Z is the center of G. Hence
7% = 7~ land 7o = o. So (18) becomes:

c=o0o"C

Or:
{ = 1.

This and (16) prove the lemma.

LemMa 19.  The number of (G : H)-conjugacy classes is given by:
p—1
CUG: H)=p +p(p + D= —.

Proof. By Lemma 13, CI(G : H) is just the number of (H, H)-double
cosets of G. Each such double coset HoH has either g or g% elements, since
| H| = ¢ is a prime. Furthermore, | HoH | = ¢ if and only if HoH = ¢H
is contained in the normalizer Ng(H) of H in G. From (9) and Lemma 10
it is clear that Ng(H) is just HZ. Hence there are | HZ |/q = p double cosets
with g clements and | G — HZ |/¢*> = (p® — p)/q double cosets with g2
elements. Adding these two numbers gives the above formula.

Finally we reach:

TrEOREM 20. Each of our groups G satisfies (4) and therefore provides a
counterexample to Tamaschke’s conjectured equality (1).

Proof. 1In view of Corollary 12 and Lemma 19, the inequality (4) is:

—1 —1
pq+(p+1)3—q—<p+p(p+1)1’7-
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Subtracting p + (p + 1)(p — 1)/g from both sides, we obtain the logically
equivalent inequality:

o) < (p* — 1)’)—;-—‘. @1)

Condition (5) implies that ¢ — 1 < p —2 and that (p — 1)/g = 1.
Hence (21) is implied by the stronger inequality:

np—-2)<p*—-L (22)
Subtracting p* from both sides, we obtain the logically equivalent inequality
—2p < —1L.

This is certainly true, since p == 2. Hence (22) is true. This implies (21), and
(21) is logically equivalent to (4). In view of (3), the inequality (4) contradicts
(1). That proves the theorem.
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