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Observability-type considerations and the invariance principle are shown to 
complement each other in the study of the asymptotic behavior and stability of 
differential equations. Applications to stabilization and identification follow. 

It was my privilege to receive the guidance and encouragement of Joe 
LaSalle since I began working in differential equations. He has my respect 
and admiration for both his mathematical achievements and his personality. 
This paper is, in particular, influenced by LaSalle’s ideas, and it is with great 
pleasure that I dedicate it to him. 

1. INTRODUCTION 

Stability in the sense of Liapunov and boundedness of solutions can effec- 
tively be studied with the aid of Liapunov functions, namely, mappings 
which do not increase along solutions. For asymptotic stability and other 
attractivity properties the negative semidefiniteness of the derivative of the 
Liapunov functions is not enough. Negative definite derivatives in the 
appropriate regions would suffice; however, this stronger property is not 
always possessed by the natural candidate for the Liapunov function, 
namely, the energy. The damped harmonic oscillator is the standard 
example. 

An effective tool to overcome the difficulty was developed by LaSalle, and 
is usually referred to as the invariance principle. (We recall a version of it at 
the end of this introduction.) By combining information on level sets of the 
Liapunov function with the topological dynamics of the solution flow, it is 
often possible to detect the w-limit set and thus establish attractivity or 
stability properties. The technique is applicable to a variety of dynamical 
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systems, and is well documented in the literature. A nonexhaustive list of 
surveys, extensions and applications is Ball [7, 81, Ball and Peletier [9], 
Dafermos [13-171, Hale [20, 211, Kushner [26], LaSalle [29-321, Rouche 
et al. [41], Slemrod [46,47], Slemrod and Infante [48], Wakeman [SO]. 

A different approach emerged mainly in control and system theory. By 
using observability-type arguments, or exciteness considerations, it is often 
possible to show that the Liapunov function strictly decreases if enough time 
has passed, although locally it might only nonincrease. A list of references 
where such a technique was used, sometimes implicitly, is Anderson [I], 
Anderson and Moore [2,3], Kalman [24], Kwon and Pearson [28], Morgan 
and Narendra [38,39], Narendra and Kudva [40], Yuan and Wonham [52]. 

In this work we intend to piece together the two approaches, and show 
how they complement each other. Observability-type considerations help to 
detect the maximal invariant sets needed in the invariance principle, and add 
quantitative information, namely, rates of convergence to the w-limit sets. On 
the other hand, the topological considerations in the invariance principle 
clarify, and enable us to detect, the asymptotic behavior when only partial 
exciteness holds, e.g., in nonmatchable problems of identification. 

The paper is organized as follows: In Section 2 we analyze in detail the 
simplest equation, namely, linear with constant coefficients. The simplicity 
enables us to illustrate the ideas clearly and show the similarity and relations 
between the invariance principle and observability. An example of an elec- 
trical circuit is provided. 

In Section 3 we set the framework for the analysis of time-varying 
ordinary differential equations. Only one aspect of the observability 
considerations is actually needed, and we term this property as noticeability. 
(For linear systems they are equivalent.) We then phrase the invariance prin- 
ciple in terms of the unnoticeable solutions of the limiting equations. 

In Section 4 we examine the relations between the noticeability of the 
solutions and stability properties of the equations. We get a characterization 
of uniform stability in terms of uniform noticeability. 

In Section 5 we provide a tool for checking uniform noticeability, by 
reducing it to checking mere noticeability of solutions of the limiting 
equations. As a consequence we get conditions for asymptotic stability and 
eventual asymptotic stability in terms of properties of the limiting systems. 

In Section 6 we examine general linear equations. Here the noticeability is 
equivalent to observability, and uniform noticeability follows from the 
uniform observability, a notion introduced by Kalman. Thus the abstract 
conditions for nonlinear systems have a more concrete form. 

Two applications are discussed in Sections 7 and 8. In the first we show 
how the considerations help to construct feedback, bounded, stabilization 
schemes for linear time-varying equations. In the final section we show how 
the considerations of the invariance principle help to complement an 
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adaptive identification process, when exciteness properties are not met, or 
when the plant is not matchable. 

The invariance principle is a way of approaching the analysis of a system. 
For the benefit of those unfamiliar with this mode of thought, we present 
here a typical statement. We refer to it in the discussions throughout the 
paper. (See LaSalle [29-321 for the original, and more complete, 
statements.) 

Consider an ordinary differential equation 1= f(x), for x E R”. Let 
Y: R” + R be smooth, and let e(x) = grad V(x) + f(x). If p4(x) < 0 then Y 
is a Liapunov function. We assume that this is the case. Denote by E the set 
(x: p(x) =0} and by E, the set {xE E: V(x) = c}. Let M be the largest 
invariant set in E. Then any bounded solution x(t) of the equation converges 
to the intersection of M with a set E, for a certain constant c. 

2. LINEAR AUTONOMOUS EQUATIONS 

We demonstrate the basic ideas by addressing the simplest, and well- 
understood, equation-namely, a linear system with constant coefftcients. 
Consider 

i=Ax (2.1) 
with x f R” and A being an n x fl matrix. Much of what we say is available 
elsewhere; see, in particular, Russell [42, p. 1041, and Miller and 
Michel [35]. 

Let us recall the concept of observability of Eq. (2.1). Wonham 1511 is a 
good reference. Let H be a k x n matrix and for each solution x(t) of (2.1) 
consider the output or the observation y(t) = &z(t). The ~~obse~able space 
of the pair o$, H) is the linear space of vetors x0 such that IIeA’x, = 0, 
namely, those initial states which generate a trivial output. The unobservable 
space is invariant with respect to the equation, and can be characterized as 
the kernel of C’C with C’ = [H’, (HA)‘,..., (HA”-‘)‘]. (Here and 
throughout, prime denotes transposition.) The range of C’C is the obse~abZe 
space of (A, H), and since C’C is symmetric the observable and unobser- 
vable spaces are orthogonal to each other. The observable space is also 
invariant with respect to the equation. The pair (A, H) is observable if the 
observable space is the entire space. 

As we note later, the first assertion of the following result is a particular 
case of the invariance principle displayed in the in~oduct~on. The second 
statement follows from Miller and Michel [35]. 

THEOREM 2.1. Suppose that G is symmetric and positive definite and 
that 

A’G + GA = -H’H P-2) 

with H being a k x n matrix. Then every solution x(t) of (2.1) converges to 
the intersection of the a~obse~vab~e space of (A, H) with a set of the form 
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(x: x’Gx = constant}. Equation (2.1) is asymptotically stable if and only if 
(A, H) is observable. 

Proof. Define V(x) = x’Gx. Then (2.2) amounts to e(x) = -x’H’Hx; 
hence (2.1) is stable. The general solution of a stable linear system is a sum 
of periodic solutions and solutions which converge to zero. The observable 
space does not contain a periodic solution, since if x(t) is periodic and 
v(x) < 0 it follows that @x(t)) s 0; hence x(t) is contained in the unobser- 
vable space. Therefore observability implies asymptotic stability. Nonobser- 
vability implies existence of a nontrivial solution x(t) with 23x(t) = 0, i.e., 
v(x(t)) E 0, i.e., V(x(t)) E constant. In particular this x(t) does not converge 
to zero. This completes the proof of the second statement. If x,,(t) is a 
solution it has a representation x,(t) =x1(t) +x2(t) with xl(t) a solution 
contained in the observable space of (A, H) and x2(t) contained in the unob- 
servable space of (A, H). this follows from the invariance of the two spaces, 
and since they span the entire space. We showed already that x,(t) --) 0 and 
V(x,(t)) 5 constant. This completes the proof. 

Discussion. We mentioned already that the previous result is a particular 
case of the invariance principle. Indeed, as can easily be verified, the unob- 
servable space of the pair (A, H) is exactly the largest invariant set in 
(x: p(x) = 0) needed in the invariance principle. What we gain by phrasing 
the theorem in terms of observability is an operational tool for detecting this 
largest invariant set. Indeed, the unobservable space is the kernel of the 
matrix C’C mentioned previously. In this simple linear situation we can use 
the algebra and find explicitly the asymptotic behavior of a solution through 
an initial state, say, x,,. Indeed, eA’x, converges to eAfxZ, where x2 is the 
projection of x,, on the unobservable space. There are formulas for this 
projection, e.g., 

x2 = (I - D#D) x0 

with D = C’C and D# being the Moore-Penrose generalized inverse of D. 
We note that H in the previous result and discussion can be replaced, 

whenever convenient, by another observation provided the unobservable 
space is maintained. See the discussion and examples in Miller and 
Michel [35]. 

Another byproduct of the technique is a rate of convergence to the o-limit 
set. It is well known that a bounded solution of (2.1) converges exponentially 
to its o-limit set, with a rate estimated by -Re 1, where L is the eigenvalue 
of A having largest, yet negative, real part. The observability technique yields 
an estimate of the rate of decreasing of V(x(t)) = x’(t) Gx(t). Indeed, let 

W= .’ eA’GGfeA’f dt. 
J 0 
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Then W is symmetric. Let a be the smallest, yet positive, eigenvalue of W. It 
is easy to see that V(x(t)) decreases exponentially to a constant, with a rate 
equal at least to a. 

Another concept, borrowed from systems theory, is of relevance. The pair 
(A, H) is detectable if eAfx,, converges to zero as t + co whenever x,, belongs 
to the unobservable space of (A, H). For a more algebraic definition, and 
characterizations, see Wonham [51, Chap. 31. Here, and throughout, 
inequalities between matrices are meant in the positive semidefiniteness 
sense. 

THEOREM 2.2. Suppose G is symmetric and G > 0. Suppose 

A’G + GA < -H’H. (2.3) 

Then each solution converges to the intersection of the unobservable space of 
(A, H) with a set of the form {x:x’Gx = constant}. The equation is 
asymptotically stable if and only if (A, H) is detectable. 

Proof: Let Q = A’G + GA, and Q”” be such that Q”2Q”2 = Q. The 
unobservable space of (A, Q”‘) is contained in that of (A, H). Thus the first 
statement follows from Theorem 2.1. Asymptotic stability implies detec- 
tability in a trivial manner. Detectability implies that every solution in the 
unobservable space converges to 0. Every solution in the observable space 
tends to 0 by the invariance principle. Hence detectability implies asymptotic 
stability, and this completes the proof. 

The previous considerations apply if a Liapunov function is available. 
This is the case with many conservative and dissipative systems. We provide 
here an example, concerning an electrical circuit, which is an extension of 
the example in Russell [42, p. 1041 and Miller and Michel [35]. 

EXAMPLE 2.3. Consider the electrical circuit given in Fig. 1. There are k 
LRC loops, with the same resistor sharing all the loops. (An exercise: Find 
the mechanical analog of this system.) If Zj(t) denotes the current in thejth 
loop and Z,,(t) the current through the resistor, then by Kirchoffs law applied 
to each loop we get the differential equation 

Lj $ Zj(t) + R $Zo(t) + & Zj(t) = 0, 
J 

(2.4) 

for j = l,..., k. The currents are related by Z,(t) 3 II(t) + s.. + Zk(t). If we 
denote by x the transpose of (I,, Z, ,..., Zk, Z,), i.e., a vector with 2k 
dimensions, then x(t) solves a linear equation of the type (2.1) with 
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Consider now the natural energy function V(X), which is the quadratic form 
X’GX generated by the diagonal matrix G whose diagonal is 
(c;‘, 4, c;‘, L*,..., C;‘, LJ. A straightforward calculation shows that 

A’G+GA=- 

R IO 

. . * * 

. . * * 

. . . . 

1~ 
‘k Lk 

FIGURE 1 FIGURE 1 
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In an equivalent way, A’G + GA = -H’H with 

H = (0, R ‘j2, 0, R ‘I2 ,..., 0, R “2). 

Now suppose that (A, H) is not observable. Then a solution x(t) exists with 
Hx(t) z 0; in particular, if R > 0, we have (d/df) Z,,(t) E 0, or 
lo(t) = constant. With these conditions each Zi(t) actually solves the equation 

L, d2Zj(t> - + $ Zj(l) = 0. 
‘dt2 J 

The solutions of these equations are given in a complex notation (and i = 
fll by 

Zj(t) = ajexp(i(LjCj)-1’2t). 

This together with Z,,(t) = constant implies Z,,(t) = 0. Therefore, nonobser- 
vability implies the equality 

2 cfj exp(i(LjCj)-“2t) = 0 
i=l 

with coefficients (xi not all 0. Conversely, if such an equality holds, it 
determines a solution in the unobservable space of (A, Z-Z). The known 
conditions for linear independence of exponents yields the following. 

PROPOSITION. The system in Fig. 1 is asymptotically stable if and only if 
L,C,# L,C, whenever j# m. 

The invariance principle enables us to analyze the circuit even if 
asymptotic stability fails. Suppose, for instance, that L, C, = L, C, but 
L, C, # L,Cj if j > 2. Then part of the initial energy might not be dissipated, 
and an asymptotic oscillating current would be maintained in the first two 
loops, avoiding the resistor. The technique explained in the previous 
discussion helps to find this asymptotic current. The unobservable space in 
this example, it is easy to see, consists of all the 2k-vectors of the form 

(a, P, --a, -P, o,..., 0). 

We conclude, for instance, that if at the initial time there is no energy in the 
first two loops then all the energy is dissipated. Another example is that if, 
for instance, the initial conditions are (2, 3, -4, -l,...) then the asymptotics 
are determined by the projection on the unobservable space, namely, by 
(2, 1, -2, -1,O ,..., 0); i.e., asymptotically Z,(t) = sin(L, C,)-“‘t + 
2 cos(L, C,)-“2t, Z2(f) = -Ii(t) and ZJt) = 0 for j > 2. 
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3. UNNOTICEABLE SOLUTIONS AND THE INVARIANCE PRINCIPLE 

The purpose of this section is to set the framework for the coming sections 
and to phrase the invariance principle for time-varying equations in terms of 
observability-type conditions. We deal, throughout the paper, with ordinary 
differential equations. The ideas extend to other systems, and we 
occasionally comment on this possibility. However, in order to cover a large 
class of ordinary differential equations we allow unordinary limiting 
equations. We follow but extend the details in LaSalle [32] and Artstein [4] . 
The geometrical structure is essentially that of Dafermos [ 13, 161. The 
analysis of Ball [8] addresses a considerably relaxed situation. 

We examine the differential equation 

1 = f(x, t) (3.1) 

with xER”. We assume throughout that f satisfies the Caratheodory 
conditions (see, e.g., Hale [ 19, p. 281). Occasionally we might refer to the 
following. 

ASSUMPTION (A). For every compact Kc R” there is a nondecreasing 
function ,u,: [0, co) -+ [0, co), continuous at 0, with ~~(0) = 0 and such that 
whenever o: [a, b] + K is continuous then 1 Ii J@(s), s) ds 1 G&b - a). 

Notice that under Assumption (A), solutions with values in K have a 
common modulus of continuity. 

Equation (3.1) is a particular case of the ordinary integral-like operator 
equation 

u=Hu (3.2) 

with H being an operator associating with each R”-valued mapping v, and a 
number t in the domain of cp, a continuous function (H,q)(.) satisfying (i) 
H, : C[t, b] -+ C[r, b] is continuous in the sup norm, and (ii) (H,(p)(t) = 
(H,(p)(s) + (H,cp)(t). A solution of (3.2) is a function u( . ) satisfying u(t) = 
u(r) + (H,u)(t). It should be clear how (3.1) is a particular case of (3.2). We 
say that H is consistent with Assumption (A) if whenever q has values in K 
then (H,p)(.) admits pK as a modulus of continuity. 

A Liapunov function for Eq. (3.2) is a mapping V(x, t): R” x R -+ R such 
that V(x(t), t) is nonincreasing whenever x(t) is a solution of (3.2). We shall 
always demand here that V be continuous in x, but might not require 
continuity in t. (If V is smooth and the equation is (3.1) then the Liapunov 
property is checked by the condition p(x, t) Q 0; see LaSalle [ 3 11.) 

DEFINITION 3.1. Let V be a Liapunov function for (3.2). A solution x(.) 
is unnoticeable by V on the interval [to, t,] if V(x(t), t) is constant on 
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t E [to, t,]. A maximally defined solution x(-) is unnoticeable if it is 
unnoticeable by V on any interval in its domain. 

We wish to provide a physical interpretation for the previous definition. If 
the Liapunov function is the energy, then a loss of energy can sometimes be 
observed physically. For instance, in Example 2.3 a loss of energy is 
reflected in heating the resistor. An unnoticeable solution in this example is 
such that no current passes through the resistor. 

DEFINITION 3.2. Let V be a Liapunov function for Eq. (3.2). The family 
of maximally defined and unnoticeable solutions will be denoted by UN, or 
UN(H) if there is more than one equation. We denote by UN, the set of 
solutions x(.) E UN for which V(x(t), t) = c. The set of pairs (x0, to), such 
that x(t,) =x,, for a certain x(e) E UN, will be denoted by M, or M(H) if 
there is more than one equation. 

The set M plays the role of the maximal invariant set in the LaSalle 
invariance principle. It is convenient, however, to phrase the invariance prin- 
ciple in terms of the functions x(.) in UN. To this end we need to consider 
the family of all continuous noncontinuable functions y: (a(y), w(y)) -+ R” so 
that y(O) is defined and such that y admits ~1~ as a modulus of continuity on 
each interval for which the values of y are in K. We denote this collection by 
r and consider a metric d(., .) on r such that yk + y0 in the metric d if yk(t) 
converges uniformly to ye(t) on compact intervals of (c&J, w(y,)). For 
details see Artstein [4, Definition 4.1, Proposition 4.21. 

We now need the concept of a limiting equation of (3.1). Limiting 
equations were developed and applied by R. Miller and G. Sell in a series of 
papers; see Sell [44] and the survey by Miller and Sell [36] and references 
therein. We denote by f * the translation off by t; i.e.,S’(x, t) =f(x, r + t). 
Similarly, x’(t) = x(t + z). 

DEFINITION 3.3. Let 1 tjl --, co. We say that {tj} generates Eq. (3.2) as a 
limiting equation of (3.1) if whenever (pi: [a, b] + R” is a sequence of 
continuous functions converging uniformly, say, to (pO, then 

! 

.b 

f(Pj(s>, t j  + ~1 ds + (HtzP)(b)* ~ 

We say then that (3.2) is a positive (negative) limiting equation if tj-+ co 
(respectively tj + -co). 

It is clear that iffsatisties Assumption (A) and (3.2) is a limiting equation 
then H is consistent with Assumption (A). Then all its solutions are in the 
family r described previously. A continuous dependence argument would 
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show (see Artstein [4]) that if x’j(-) are solutions of 1 =f’j(x, t), and x’](e) 
converge in r, say, to u(.), then the latter is a solution of (3.2). If stronger 
conditions than Assumption (A) are satisfied, then the limiting equations are 
actually ordinary differential equations; see Sell [43]. 

The following definition arose in a joint work of LaSalle and the author. 

DEFINITION 3.4. Equation (3.2) is an exhaustive limiting equation of 
(3.1), if it is a limiting equation, generated, say, by {tj}, and such that 
whenever u(u) is a solution of (3.2), there is a subsequence { tk} of {tj}, and 
solutions x’k(-) of x = ftk(x, t), which converge in r to u(e). 

If the limiting equation has unique solutions for the initial value problem it 
is automatically exhaustive. Sell [43] introduced the term “regular” to denote 
equations whose limiting equations have the uniqueness property. Many of 
the results which employ the regularity can be proved with the weaker notion 
of exhaustiveness (see results in Artstein [5], Bondi et al. [lo], D’Anna and 
Maio [ 181, Sell [43]). 

The following notion is due to Dafermos [ 13, 161. We denote by V the 
function V(x, t + t). 

DEFINITION 3.5. Suppose that V(x, t) is a Liapunov function for (3.1). 
The function V,(x, t) is a limiting Liapunov function of (3.1), generated by 
{ tj}, if V’j(x, t) converges to V, (x, t) uniformly on compact sets. 

LEMMA 3.6. Suppose that Assumption (A) holds and V is a Liapunov 
function. Let {tj) generate both the limiting equation (3.2) and the limiting 
Liapunov function V,. Then V, is a weak Liapunov function of (3.2), 
meaning that for every (x0, to) there is a solution u(.) of (3.2) with u(t,) =x,, 
and such that V,(u(t), t) is not increasing. If (3.2) is an exhaustive limiting 
equation then V, is a Liapunov function. 

Proof. If x’j(.) are solutions of x = f ‘j(x, t), converging to u(.), then 
V,(u(.), -) is a pointwise limit of V(x’j(.), a), and hence nonincreasing. The 
second statement follows therefore from the definition (Definition 3.4) of an 
exhaustive limiting equation. Assumption (A) implies that if x’j(.) is such a 
solution with x’j(x,) = t, then a subsequence of it converges in r, hence to a 
solution of (3.2). This completes the first claim. 

We say that (3.1) is precompact (respectively, positive precompact) if any 
unbounded sequence {tj} (respectively fj + cg) has a subsequence which 
generates a limiting equation. (See Artstein [4] for conditions concerning 
precompactness.) We say that (3.1) is exhaustively precompact if any 
unbounded sequence has a subsequence generating an exhaustive limiting 
equation. We say that the Liapunov function V(x, t) is precompact if any 
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unbounded sequence has a subsequence which generated a limiting Liapunov 
function. (If V(x, t) is bounded and uniformly continuous on K x R for K 
compact then it is precompact.) 

The following results are a combination of the invariance principles of 
LaSalle 132, Chap.4, Appendix A] and that of Dafermos [13,16]. We 
denote by .0(x(,)) the o-limit set of the function x(e), namely, the set 
{z: z = lim x(tj) for a certain sequence tj -+ co). 

THEOREM 3.7. Suppose that (3.1) satisfies Assumption (A) and it is 
positively precompact, and let V be a precompact Liapunov function. Let x(-) 
be a solution and x0 E 0(x(-)). Then there is a positive limiting system, say, 
(3.2) and a corresponding limiting Liapunov function, such that an 
unnoticeable solution u of it satisfies u(O) = x0 and u(t) E a(x(.)) for all t in 
its domain, 

Proof. Let ( tj} be such that x(tj) -+x0 and such that (. tj) generates both 
(3.2) and a limiting Liapunov function, say, Yl. The sequence x’j(*) has a 
limit point, say, u(a) in P, this by Assumption (A). Clearly u(e) has values in 
Q(x(.)) and u(0) = xols *a-somriorf or-\j:‘i~; s&e’~e%ma~~.‘b. 3mc * fl “* e 
V(x(t), t) is nonincrea since V,(u(t), t) = lim V(x(tj + t), tj + t) i it 
follows that V,(u(t), t)nt. This comoletes the,oroof..--. , --. 

THEOREM 3.8. Suppose that Assumption (A) hoods, and let (3.2) be a 
positive limiting equation and V, a limiting Liapunov function both 
generated by the same sequence. Let x(.) be a bounded solution of (3.1). 
Then the family UN(H) of unnoticeable solutions includes one which is 
contained in .G(x(~)>. 

ProojI Let x0 E Q(x(.)) be a limit point of x(t,), where (tj) generates the 
limiting equation. Such a point exists by the boundedness. Assumption (A) 
implies that x9(.) has a limit point in r, say, u(.). Clearly u(a) is the desired 
unnoticeable solution. 

The proof of the preceding two results actually established existence of 
translations of the solution x(.) which converge to the unnoticeable 
solutions. The following is the general result, and it is the extension of the 
invariance principle. 

THEOREM 3.9. Suppose that (3.1) satisfies Assumption (A), is positively 
precompact, and has a precompact Liapunov function V(x, t). Let x(‘) be a 
bounded solution. Then there is a constant c such that x’(e) converges in r, 
as t -+ 00, to the union of the sets UN=(H) for the positive limiting systems 
u = Her and the corresponding limiting Liapunov functions. 

ProoJ The result follows by a simple compactness argument from 
Theorem 3.7. 
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Here is a simple illustration, which will be elaborated upon in later 
sections. Consider the system in Example 2.3, but with a time-varying 
resistance R = R(f). Assume R(t) ) E > 0 for a certain E. The quadratic 
function V(x) = X’GX is still a Liapunov function. Hence all solutions are 
bounded. Suppose L, C, = L,C, but L, C, # LjCj if j > 2. If R(t) is such 
that Assumption (A) holds, say, bounded, then the conditions of 
Theorem 3.9 hold. The unnoticeable solutions of any of the limiting systems 
are of the form II(t) = a sin((L, CI)-“‘t + /3), I,(t) = -II(t) and lj(t) = 0 for 
j > 2. Here a and /I are parameters, and the subset of this family, with 
solutions of fixed energy identified by fixing a. We conclude therefore that 
any bounded solution converges to such an oscillating solution. (The 
linearity enables us to derive more, namely, that the limiting behavior is 
maintained with /3 fixed as well.) 

4. NOTICEABILITY AND STABILITY 

In this section we examine the relations between noticeability properties of 
the Liapunov function, and stability. The unnoticeable solutions were defined 
in the previous section. Here we shall add quantifiers to describe the degree 
to which the other solutions are noticeable. Implication to rates of 
asymptotic stability follow. To a great extent what is done is a translation of 
the stability, as expressed in the euclidean distance, to properties of the 
Liapunov function. This is how we manage to get characterizations, namely, 
necessary and sufficient condition, for stability. It would mean very little if 
the new conditions were not shown to be more checkable. A step toward this 
is done in the next section. 

The equation we analyze is again (3.1) with the assumption 

j-(0, t) = 0 for all t. 

Then x(t) = 0 is a solution, whose stability properties we wish to examine. 
Our terminology is standard, yet we list it here due to the lack of agreement 
in the literature. 

The equation is uniformly stable if for every E > 0, a 6 > 0 exists such that 
whenever x(t) is a solution, and jx(t,)J < 6 for a certain t, then (x(t)\ < E for 
all t > t,. The equation is asymptotically stable if it is uniformly stable and a 
6, > 0 exists such that x(t, + r) -+ 0 as r + 00 whenever x(e) is a solution 
and jx(t,J < 6, for a certain t,. The equation is uniformly asymptotically 
stable if it is asymptotically stable and the rate at which x(t, + t) converges 
to 0 in the definition of asymptotic stability does not depend on t,. Finally, 
the equation is exponentially stable if it is uniformly asymptotically stable 
and the uniform rate in the definition of the latter is exponential. 
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Along with (3.1) a Liapunov function V(x, t) is provided. We shall assume 
that V(0, t) = 0 for all t and that V(x, t) > u(x) with K R” -+ R continuous, 
v(O) = 0 and V(X) > 0 if x # 0. Then it follows, in a standard way, that the 
equation is uniformly stable. 

The following definitions are concerned with Eq. (3.1) and the given 
Liapunov function V. 

The system is globally noticeable if the only unnoticeable solution is 
x(t) = 0. The system is locally noticeable if a 6, > 0 exists such that 
whenever x(a) is a solution with 0 < Ix(t,)[ < 6, for a certain t, then x(s) is 
not unnoticeable. The system is uniformly (locally) noticeable if there are 
6, > 0, u > 0 and a function v/: R --) R monotonic, with v(r) > 0 if r > 0, 
such that whenever x(.) is a solution with Jx(t,,)j < 6, then V(x(t,), to) - 
V(x(t, + u), t, + a) > W((x(t,)l). The system is uniformly (locally) exponen- 
tially noticeable if it is uniformly noticeable and the function w  in the 
definition of the latter can be chosen linear. 

THEOREM 4.1. Suppose V(x, t) > v(x), with v(x) > 0 for x # 0, and that 
V(0, t) = 0. If the system is uniformly noticeable then it is asymptotically 
stable. If in addition V(x, t) < b(x), with b: R” -+ R continuous, then uniform 
noticeability is equivalent to uniform asymptotic stability, and if 
V(x) = E llxlj2 th en exponential noticeability is equivalent to exponential 
stability. 

ProoJ Uniform stability is implied by the properties of V, and let 6, > 0 
be such that any solution x(t) with [x(&J < 6, exists for all t > t,. If such a 
solution does not converge to zero as t -+ co then for a sequence tj + co and 
a certain q > 0 all Ix(tj)[ > q. By uniform noticeability 

v(x(tj + a>, tj + a)) - v(x(tj)T tj) < - y/(V)* 

This, and the fact that V is nonincreasing, implies that V(x(t), t) is negative 
for large 1, a contradiction. Hence x(t) + 0 as t + co and asymptotic stability 
is established. If the additional boundedness of V holds, then the convergence 
V(x(& + t), t) to 0 as t -+ co, with a rate which does not depend on t,, is 
equivalent to uniform asymptotic stability, and this convergence is with 
exponential rate (when V(x) = E llxll’) if and only if the system is exponen- 
tially stable. Uniform and exponential noticeability clearly characterize the 
uniform and exponential convergence of V(x(t, + t), t) to 0 as t -+ co. This 
completes the proof. 

The scalar equation ,? = --t-lx (say, for t > 1) with V(x, t) = (t + 1)x 
shows that for unbounded Liapunov functions uniform noticeability might 
not imply uniform asymptotic stability. 
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5. NOTICEABILITY AND THE LIMITING SYSTEMS 

In order to make the result of previous sections effective one ought to 
develop techniques for checking uniform noticeability. For linear systems the 
problem is checking uniform observability; some techniques are available 
and we refer to them in the next section. The observability analysis of 
nonlinear equations, e.g., in Hermann and Krener [22], might be used for 
noticeability, but this was not done yet. The techniques of Morgan [37] are 
concerned with estimations of the derivatives of the Liapunov function and 
growth estimates on the equation; these are also relevant. 

In this section we show how to reduce the problem of checking uniform 
noticeability to that of checking mere noticeability, however, for the family 
of all limiting equations. This should help, since noticeability might be 
checked by local techniques, while uniform noticeability has more of a 
global character. The analogous reduction of uniform asymptotic stability to 
asymptotic stability of the limiting systems was established in Artstein 151. 
See also the related work of Bondi et al. [lo] and the papers by Ianiro,and 
Maffei [23], Visentin [49] and D’Anna and Maio [ 181. (The latter contains 
a correction to Theorem A of Artstein [5]. A different way to correct the 
result is to assume that W is bounded and invariant.) Stability properties via 
the limiting equations appear already in Sell [43]. 

In the sequel we consider Eq. (3.1), assuming that f(0, t) = 0 and that 
Assumption (A) holds. 

THEOREM 5.1. Suppose that (3.1) is uniformly stable, is precompact and 
that it has a precompact Liapunov function V(x, t). If a 6, > 0 exists such 
that no limiting equation and the corresponding limiting Liapunov function 
have an unnoticeable solution u with lu(O)l < 6,, then (3.1) is uniformly 
noticeable. The condition is also necessary if the equation is exhaustively 
precompact. 

Proof: If (3.1) with V is not uniformly noticeable, then a sequence of 
solutions xi(.), with 0 < E < Ixj(tj)l Q 6,) for a certain E > 0, and a sequence 
rj -+ 03 such that V(xj(tj - t), tj - t) - V(xj(tj + z), tj + t) converge to zero 
as j -+ 03. Here 6, is given by the conditions of the theorem. The uniform 
stability implies that without loss of generality ] tjl + co. If a subsequence {ti} 
generates a limiting equation and a limiting Liapunov function then a limit in 
r, say, u(.), of x’i(-) would clearly be unnoticeable and ]u(O)] < 6, a 
contradiction to the sufficient condition; hence it indeed implies that (3.1) is 
uniformly noticeable. If exhaustive precompactness holds and u(e) is an 
unnoticeable solution of a limiting system then u(m) is a limit in r of a 
sequence x’j(.) of solutions of x = f’j(x, t) and ] tjl -+ co. The definition of the 
limiting Liapunov function implies that v(x(tj - o), tj - a) - 
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V(x(tj + a), fj + a) converge to 0, for any fixed u. If u(0) can be chosen 
arbitrarily close to 0 this would contradict the uniform noticeability. Hence 
the condition is necessary if the equation is exhaustively precompact. 

Application. Consider Example 2.3 with a time-varying resistance R(t). 
Suppose R(t) > 0 and bounded. Suppose also that LiCi # LjCj if i # j. We 
claim: The equation is uniformly asymptotically stable if and only if 

l,$ iif 1’ R(s) ds > 0. 
o+ to t+al 

(5.1) 

Indeed, (5.1) holds if and only if no sequence of the form R ‘j(.) (here R’(t) = 
R(t + t)) converges to 0 in the local weak convergence of, say, the Hilbert 
space L,. Hence (5.1) holds if and only if for no limiting equation the 
(limiting) resistance is identically zero. If the resistance is not identically 
zero then L,C, # L,C, implies that there are no unnoticeable solutions, and if 
the resistance is zero all solutions are unnoticeable for the energy function. 
This completes the argument. 

A similar condition was obtained in Artstein [5] for the damped harmonic 
oscillator; however, the arguments there used some ad hoc considerations, 
eliminated now by the noticeability technique. The same is true for the 
examples in Artstein [5, Sect. 61. 

6. LINEAR TIME-VARYING SYSTEMS 

For linear equations with quadratic Liapunov functions one has simple 
expressions for the derivatives of the Liapunov function. In this section we 
see that the well-known notion of observability applied to the derivative of 
the Liapunov function plays the role of the noticeability of the Liapunov 
function. This was used many times in system theory. See, e.g., Anderson 
and Moore [2,3], Kalman [24]. In this section we review and modify this 
technique in light of the preceding sections. 

Consider the linear equation 

i=A(t)x (6.1) 

with x E.R” and A(t) being measurable and locally integrable n x n matrix 
valued mapping. Denote by @(t, s) the fundamental matrix solution; i.e., 
x(t) = @(t, t,,) x0 is the solution satisfying x(tJ = x0. Along with (6.1) we 
consider the observations 

v(t) = w 40 (6.2) 
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with H(1) being a k x n matrix valued measurable mapping. The pair 
(A(t), H(t)) is observable on [to, ti] if H(t) @(t, to) x0 = 0 implies x, = 0. 

A quadratic Liapunov function V(x, t) = x’G(t)x, with G(t) symmetric 
and differentiable, has a quadratic derivative p(x, t) = x’Q(t)x given by 

Q(t) = A ‘(t) G(t) + G(t) A(t) + @>. 

Then V Liapunov means that Q(t) is negative semidefinite. Let us write 
Q(t) = --H(t)‘H(t) with H(t) being k x n, and measurable. (The decom- 
position is, in general, not unique.) 

LEMMA 6.1. There are no unnoticeable solutions by Y on [to, f, ] if and 
only if (A (Q, fw)) is observable on [to, t,]. 

ProoJ Immediate from the equality 

V(@(t,, to) x0, 4) - V(xo, to) = xi j” @(s, fo)'Q(~) @(s, to) ds x0. 
80 

We provide in the next section an application of noticeability when G is 
not differentiable. However, differentiability enables us to get the information 
by the analysis of Q(t) = --H(t)‘H(t). The observability matrix of 
(A(t), H(t)) is given by 

~(t, , to) = j” @(S, t,)‘~(S)‘ff(S) @(S, to) ds. (6.3) 
to 

See Brockett [ 111, Russel (421. Then (A(t), H(t)) is observable on [t,, t, ] if 
and only if M(t,, to) > 0, i.e., positive definite. Consider the following con- 
ditions: 

Condition 6(i). There are (T > 0 and k > 0 such that kl< M(t + u, f) for 
all t. 

Condition 6(ii), There are CT > 0 and h > 0 such that M(t + 6, t) < hl for 
all t. 

Condition 6(iii). There are c > 0 and 01 > 0 such that ]( @(t, r)]] <(r if 
It-rl<(T. 

If a system (A(t), H(t)) satisfies the preceding three conditions it is 
uni$mnly observable. This notion was introduced by Kalman [24, p. 1 lo] 
and plays a central role in time-varying systems. See, e.g., Anderson ]l ], 
Anderson and Moore [2,3]. Conditions 6(ii) and (iii) are implied by 
boundedness-type properties. For instance, Assumption (A) implies 
Condition 6(iii), and if in addition (i” ]/H(s)]]’ ds is bounded in t, then 
Condition 6(ii) is satisfied. At any rate, the following holds. 
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LEMMA 6.2. Let V(x, t) = x’G(t)x be a Liapunov function of (6.1) with 
G(t) differentiable, and let p(x, t) = -x’H(t)‘H(t)x. Then the system is 
untformly noticeable if and only tf Condition 6(i) holds. 

Proof. This is implied by the definitions and the estimate in the proof of 
Lemma 6.1. 

The preceding lemma enables us to state the stability statements of 
Theorem 4.1 in terms of the function Q(t) = -H(t)‘H(t). This would overlap, 
and sometimes extend, results in Anderson [ 11, Anderson and Moore [2,3], 
Conti [ 121, Morgan and Narendra [38,39]. We leave out the details. 

We wish to make a note about the possible extension of the method of 
Section 5. Employing the limiting systems for the detection of uniform obser- 
vability was done in Artstein [6]. Within the framework of the present paper, 
namely, when Q(t) = -H(t)‘H(t) is generated by a Liapunov function, we 
have the following. (The boundedness assumption is for simplicity, and can 
be relaxed.) We maintain the preceding notations, and in particular assume 
that V(x, t) = x’G(t)x is a Liapunov function. 

THEOREM 6.3. Suppose that A(t) and G(t) are bounded. Then 
(A(t), H(t)) is uniformly observable if and only zf whenever (A,(t), Q,(t)) is 
obtained as a limit of (A*](t), Q’](t)) = (A(tj + t), Q(tj + t)) (in the weak-l, 
sense on bounded intervals), and Q,(t) = -H,(t)‘H,(t) then (A,(t), H,(t)) is 
observable on some interval. 

Proof Conditions 6(ii), and 6(iii) are implied by the boundedness. 
Condition 6(i) fails exactly when there are sequences rj with ]rj( --t co, 
uj -+ 03 and xj with ]xj] = 1 such that 

xp4(rj + uj, Sj) xj + 0 as j-00. (6.4) 

If Ql(t, s) denotes the fundamental matrix of 1= A,(t)x then it is easy to see 
that @,(t, s) is the uniform limit on bounded intervals of @(t + tj, s + sj). 
Then the observability matrix M,(t, s) generated by (A,(t), H,(t)) is the limit 
of M(tj + t, tj + s). If (6.4) holds, then it is easy to see that M,(t, s) cannot 
be regular on any interval; hence the “if’ part is proved. Conversely, if 
M,(t, s) is not regular on any interval, say, on [O,cj] with uj+ co then 
taking tj = rj in (6.4) would show that the latter is satisfied. This completes 
the proof. 

Applying the previous considerations to stability requires computing Q(t). 
For the cases when only an estimate is available we introduce the following 
definition and results, motivated by Theorem 2.2. The definition is in the 
spirit of system theory. 
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DEFINITION 6.4. The pair (A, t), H(t)) is uniformly detectable if there are 
u > 0, 6 > 0 and 0 < a < 1 such that for every x and t either 
x’M(t + u, t)x > 6 llxl12 or 11 @(t + 0, t)xl12 < a llxl12. 

THEOREM 6.5. Let G(t) > EI > 0 be bounded symmetric and differen- 
tiable and suppose that 

A’(t) G(t) + G(t) A(t) + d(t) < -H(t)‘H(t). 

Suppose (6.1) satisfies Assumption (A). Then (6.1) is exponentially stable if 
and only if (A(t), H(t)) is uniformly detectable. 

Proof. The “only if’ is trivial since exponential stability implies the 
validity of the second estimate in Definition 6.4. The “if’ part is obtained by 
noticing that the Liapunov norm x’G(t)x and the euclidean norm ]]x]]’ are 
equivalent. Definition 6.4 implies that they decrease exponentially along 
solutions. 

7. ON STABILIZATION 

Consider the linear control system 

i = A(t)x + B(t)u (7.1) 

with xER”, uERm, and where A(t) and B(t) are n x n and n X m 
measurable matrix-valued mappings. The goal is to stabilize the system by a 
linear feedback, namely, to find a matrix K(t) such that u(x, t) = K(t)x 
would produce an exponentially stable equation 

i = (A(t) + B(t) K(t))x. (7.2) 

An additional requirement is that K(t) not blow up in finite time. (Driving 
the state to 0 in finite time can be done via feedback, but with a singular 
feedback.) In this section we use the previous considerations to provide, 
under a uniform controllability condition, two feedback schemes. They 
generalize the scheme of Lukes and Kleinman (see Lukes [34], 
Kleinman [25] or Russell [42, p. 1041) for time-invariant systems. A 
generalization of this scheme for infinite dimensional systems is provided in 
Slemrod [47]. 

The controllability matrix of (7.1) is 

WI 9 to) = !‘I’ w, 3 s) B(s) B(s)‘@@,, s)’ ds (7.3) 
to 
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(see, e.g., Brockett [ 111, Conti [ 121 or Russell 1421). System (7.1) is 
uniformly controllable if the matrix W satisfies the conditions for A4 in 
6(i)-6(iii), (Indeed, it is easy to see that (A(t), B(t)) is uniformly controllable 
if and only if (A(t)‘, B(t)‘) is uniformly observable.) See, e.g., Anderson and 
Moore [Z, 3], Kalman [24]. 

The first scheme that we mention is included in the family of schemes 
proposed by Kwon and Pearson [28] (the explicit formula, however, is not 
mentioned in this reference). We therefore only outline the proof. 

THEOREM 7.1. Suppose that (7.1) is ~n~r~~ controllable with (I > 0 
given from condition 6(i) for W. Then 

i=@(t)-B(t)B(t)‘W(t+a,t)-‘)x (7.4) 

is ex~ne~t~aliy stable; namely, u = -B(t)’ W(t + o, t)- ‘x is a stabilizing 
feedback, 

Proof: One shows that W(t + o, t)-’ generates a quadratic uniformly 
noticeable Liapunov function for (7.4). .It is, however, technically easier to 
address the adjoint of (7.4) and prove that W(t + u, t) is an anti-Liapunov 
function for it. Indeed, the derivative of x’ W(t + o, t)x along solutions is a 
quadratic function generated by B(t) B(t)’ + @(t, t + Q) B(t + G) B(t + 0)’ 
@(t, t + 0)‘. This implies that 0 is anti-stable for the adjoint equation. If the 
adjoint equation together with the observation y = B(t)‘x is uniformly obser- 
vable then the exponential anti-stability of the adjoint follows (from 
Lemma 6.1 and Theorem 5.1). By the duality of uniform observability and 
uniform ~on~ollability, it suffices to show that (A($) -B(t) B(t)’ 
W(t + a, t) - ‘, B(t)) is uniformly controllable. This is equivalent (it is easy to 
see) to the uniform controllability of (.4(t), B(t)), which is provided as a 
condition of the theorem. 

A possible interpretation of the preceding feedback rule is the following, 
At each point t, one acts as one wishes to steer the state x to 0 at time t + CT 
with minimum control energy I:+” u(s)‘u(s) ds. This is the receding horizon 
scheme; see Kwon and Pearon [28]. Another receding horizon scheme is the 
following. Consider the sequence of times (km k = f 1, &2,...} with u given 
by the uniform controllability. Then, at each point t E [kcr, (k + I)u] one 
acts as one wishes to steer x to 0, with minimal control energy, at the time 
(k + 2)~. This control rule is 

u(x, t) = --B(t)’ W((k + 2)u, r)-‘x for ku < t < (k + 1)~. (7.5) 

(See Conti [ 12, Sect. 7.111.) 
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THEOREM 7.2. Suppose that (7.1) is uniformly controllable, with u > 0 
given by Condition 6(i) for W. Then 

i = A(t)x + B(t) u(x, t), 

with u(x, t) given in (79, is exponentially stable. 

Proof: Consider the function 

(7.6) 

qx, t) = x’ W( (k + 2)a, t) - ‘x for t E [ku, (k + 1)~). 

Then V(x, t) is the minimal control energy needed to steer x to 0 along 
[t, (k + %I. (S ee, e.g., Conti [ 12, Sect. 71.) The construction of the control 
law implies that V(x, t) is nonincreasing along solutions, namely, a Liapunov 
function. Uniform stability follows since by Condition 6(ii), for W we have 
V(x, t) > h-‘I. The Liapunov function is discontinuous at the points ku, for 
k an integer. We show now that the jumps at these points are bounded away 
from 0 for x bounded away from 0. The jump in V(x, t) at the time is the 
difference in control energies needed to steer x to 0 along [ku, (k + l)u] and 
[ku, (k + 2)u]. The controls for which the minimum energies are obtained 
are given explicitly as u,(t) = -B(t)‘@((k + l)u, t) W((k + l)u, ku))‘x (for 
t E [ku, [k + l)u]) and z+(t) = -B(t)‘@((k + 2)u, t) W((k + 2)u, ku)-‘x (on 
t E [ku, (k + 2)u]). See, e.g., Conti [ 12, (7.11.4)]. For definiteness we set 
u,(t) = 0 for t E [(k + l)u, (k + 2)u]. The norm of ul(t) -u,(t) is therefore 
at least the norm of u2(t) on [(k + l)u, (k + 2)u], and it is bounded away 
from 0 for x bounded away from 0, as can be easily verified from the 
uniform controllability. Therefore the norms of u,(t) and z+(t) cannot be 
close; otherwise f(u,(t) + u?(t)) would be a control which steers x to 0 on 
[ku, (k + 2)u] with norm strictly less than that of Qt), a contradiction. 
Therefore the difference of the norms of u, and u2, which is the jump of 
V(x, t) at ku, is bounded away from 0. This shows that the Liapunov 
function V (though not continuous in t) is uniformly noticeable. Hence (by 
Theorem 5.1 plus the linearity) Eq. (7.6) is exponentially stable. 

8. ON AN IDENTIFICATION SCHEME 

In this section we analyze an adaptive identification scheme for linear 
constant systems due to Narendra and Kudva [40]. The scheme is based on 
comparing the state output with an output of a reference model whose coef- 
ficients are continuously adapted. Modifications and extensions of this 
scheme were provided by Morgan and Narendra [38,39], Anderson [ 11, 
Yuan and Wonham [52] and Morgan [37]. The conditions used in these 
references (and in previous literature on the subject, e.g., Lion [ 331 and 
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Kushner [27]) imply the uniform asymptotic stability of a certain 
nonautonomous differential equation, thus guaranteeing complete iden- 
tification. The conditions that we examine here do not imply the asymptotic 
stability and the system might be (in Narendra and Kudva 1401 
terminology) nonmatchable. Yet, with the aid of the invariance principle, we 
show that the scheme identifies the portion of the coefficients’ behavior 
relevant to the asymptotic behavior of the plant. 

For simplicity we consider here the identi~~ation of the state equation 
only. (The references cited before also deal with identifying control 
parameters.) Consider the equation 

i=A,x+f(t) (8.1) 

with x E R”, and A, being an unknown matrix. The inhomogeneous termf(f) 
might be generated by noise, or control, but it is assumed to be known. 
Furthermore, it is assumed that the same forcing termf(t), and the state x(t) 
of (8.1) can be used in a model plant 

$=-Yf(NOf ~>x(t)+f(O, f5-Q) 

and that y(t), the state of (8.2), can be measured. Denote the “error” between 
the true and the model states by e(t) = y(t) - x(t), and denote the difference 
between the model parameters and the true, unknown parameters by 
o(t) =A(t) -A,. The adaptive scheme for A(t) is provided by 

A(t) = A (to) -I- f. -e(s) x(s)’ ds. (8.3) 

(Here prime denotes tr~sposition; hence e(s)x(s)’ is, as it should be, a 
matrix.) If A(t) is generated by (8.3) then it is easy to see that x(t) and y(t) 
solve (8.1) and (8.2) if and only if (e(r), o(t)) is a solution of the 
nonautonomous system 

P = -I? + ox(t), 

ri = -ex(t)‘. 
(8.4) 

(Notice that uniform asymptotic stability of the latter equation implies that 
A(t) +A, as t -+ co, uniformly in the initial conditions.) 

Consider the Liapunov function for (8.4) 

V(e, D) = 4 (I] e][’ + trace 0’0). 
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It is easy to see that 

hence (8.4) is uniformly stable. We shall impose a condition on the state 
output x(t), for which we need the following concepts. Let .Q be the u-limit 
set of x(.) and let S = span J? be the linear space spanned by a. For each 
sequence {ti} with ti -+ 00, and each number L > 0 we identify the subset 
Q((t,}, L) of $2 consisting of all the cluster points of x(ti + ri), where 
0 < ri < L. (In general, a( { ti), L) is strictly contained in fz and the linear 
space spanned by it is strictly contained in S.) We say that S is minimal or 
that S is uniformly generated by x(.) if there exists an L > 0 such that S = 
span a( { ti}, t) for every sequence { t,}with t,. -+ 03. 

If x( . ) is asymptotically periodic or almost periodic then S is uniformly 
generated. Similar conditions are used in the study of minimal o-limit sets; 
see Sibirsky ]45, Sect. 51. It is easy to see that the exciteness conditions 
posed by Narendra and Kudva [40], Morgan and Narendra f38] or Yuan 
and Wonham [52] imply that the entire space R” is uniformly generated by 
xc.>* 

THEOREM 8.1. Suppose that x(t) is bounded and ~n~r~~y continuous, 
and that S is ~n~~r~ly gnerated by x(.). Then Aft) converges to the set of 
matrices A, with the property that A,z = A, z whenever z E S. 

Proox (Direct estimates would show that if the conclusion of the 
theorem fails, the values V(e(t), D(t)) tends to -oo. Here we shall use the 
invariance principle.) A limiting equation of (8.4) has the same structure as 
(8.4) except when x(t) is replaced by a function y(t) = lim x(tj + t) for a 
certain tj-+ co. If (e,, D,) belongs to the w-limit set of (e(.), D(e)) then an 
unnoticeable solution (e,(t), D,(t)), of the limiting equation, passes through 
it. See Theorem 3.7. Clearly then cl(t) = 0. Therefore D,(t) = D, and 
D, y(t) z 0. But if D,z = A I z - A,z is not zero for a certain z E S then, in 
view of S being uniformly generated, L), y(r) is not identically zero. 
Therefore the conclusion holds. 

We see from the statement of the previous theorem in what sense the 
scheme identifies the parameters. It is the action of A,, as an operator which 
is identified, and only the action on the space generated by the m-limit set. In 
the general nonmatchable case one can argue that there is no hope that an 
adaptive scheme would identify more than the operator-action of A, on the 
o-limit set. 

505/44;2-7 
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