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O B J E C T I V E S The aim of this studywas to iteratively develop and validate an 18F-labeled small vascular cell

adhesion molecule (VCAM)-1 affinity ligand and demonstrate the feasibility of imaging VCAM-1 expression by

positron emission tomography–computed tomography (PET-CT) in murine atherosclerotic arteries.

B A C K G R O U N D Hybrid PET-CT imaging allows simultaneous assessment of atherosclerotic lesion

morphology (CT) and may facilitate early risk assessment in individual patients. The early induction,

confinement of expression to atherosclerotic lesions, and accessible position in proximity to the blood

pool render the adhesion molecule VCAM-1 an attractive imaging biomarker for inflamed atheroma

prone to complication.

M E T H O D S A cyclic, a linear, and an oligomer affinity peptide, internalized into endothelial cells by

VCAM-1–mediated binding, were initially derivatized with DOTA to determine their binding profiles and

pharmacokinetics. The lead compound was then 18F-labeled and tested in atherosclerotic apoE�/� mice

receiving a high-cholesterol diet as well as wild type murine models of myocardial infarction and heart

transplant rejection.

R E S U L T S The tetrameric peptide had the highest affinity and specificity for VCAM-1 (97% inhibition with

soluble VCAM-1 in vitro). In vivo PET-CT imaging using 18F-4V showed 0.31 � 0.02 SUV in murine atheroma

(ex vivo %IDGT 5.9 � 1.5). 18F-4V uptake colocalized with atherosclerotic plaques on Oil Red O staining and

correlated to mRNA levels of VCAM-1 measured by quantitative reverse transcription polymerase chain

reaction (R � 0.79, p � 0.03). Atherosclerotic mice receiving an atorvastatin-enriched diet had significantly

lower lesional uptake (p � 0.05). Furthermore, 18F-4V imaging in myocardial ischemia after coronary ligation

and in transplanted cardiac allografts undergoing rejection showed high in vivo PET signal in inflamed

myocardium and good correlation with ex vivo measurement of VCAM-1 mRNA by quantitative polymerase

chain reaction.

C O N C L U S I O N S 18F-4V allows noninvasive PET-CT imaging of VCAM-1 in inflammatory atherosclero-

sis, has the dynamic range to quantify treatment effects, and correlates with inflammatory gene

expression. (J Am Coll Cardiol Img 2009;2:1213–22) © 2009 by the American College of Cardiology Foundation
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reliable noninvasive diagnostic strategy for
detecting inflamed arterial lesions at risk for
complications could help target and evalu-

ate therapies to prevent myocardial in-
arction (MI) and stroke. Current clinical imaging
echnologies largely provide structural information
1); however, the anatomical severity of stenosis
oes not sufficiently gauge the risk of vascular
vents (2). Molecular imaging approaches now in
evelopment aim to interrogate biological pro-
esses rather than morphology (1,3,4).

See page 1223

Vascular cell adhesion molecule (VCAM)-
1 plays a cardinal role in atherosclerotic
plaque progression (5–7). Activated endo-
thelial cells that line the tissue-blood inter-
face express VCAM-1, as can lesional mac-
rophages and smooth muscle cells (5–7).
VCAM-1 mediates inflammatory cell adhe-
sion through interaction with the integrin
very late antigen-4 (8). The early induction,
confinement of expression to atherosclerotic
lesions, and accessible position in proximity
to the blood pool render VCAM-1 an at-
tractive imaging biomarker.

We (9,10) and others (11,12) have im-
aged VCAM-1 as a proof-of-principle in
inflammatory disease, for instance with tar-
geted nanoparticles for magnetic resonance
imaging (MRI). Although providing early
efficacy data, these agents face practical reg-
ulatory hurdles that prevent rapid clinical
development. Despite the specific advan-
tages of positron emission tomography
(PET), the increasing clinical availability of
PET-computed tomography (CT) scanners,
and the unmet need for noninvasive identi-
fication of high-risk vascular lesions, rela-
tively few targeted PET agents exist for plaque
imaging (13,14). [18F]-2-fluorodeoxyglucose

18FDG) can accumulate in atherosclerotic lesions (15–
7) and is clinically approved for cancer imaging. 18FDG
ptake presumably indicates glucose transport, and up-
ake associates with macrophage (18) and neovessel
ontent (19). Studies in patients undergoing endarterec-
omy (17) showed increased 18FDG signal in
acrophage-rich carotid arteries. However, there re-
ains a need for development of agents that selectively

arget inflammation in plaques and that have lower
ackground uptake in metabolically highly active myo-

eric

r

111-

leic

ose/

ion

ide

ion
ardial tissue than 18FDG to facilitate coronary imaging. t
Here we describe the design, synthesis, evaluation,
nd use of a new PET imaging agent with optimized
harmacokinetics and specificity for VCAM-1. The
verall design of this peptide-based agent hinged on:
) preference of PET-CT as a hybrid clinical imaging
odality with high-sensitivity (PET) combined with

etailed anatomical information (CT); 2) choice of
8F as a clinical PET tracer with a short half-life; 3)
arnessing powerful signal amplification strategies
multivalency of affinity ligand and VCAM-1–
ediated cell internalization); and 4) choice of a probe

esign that would ultimately allow for rapid clinical
ranslation.

E T H O D S

gent synthesis. A number of VCAM-1 specific
eptide sequences have been identified by phage
isplay technology (9,10) containing linear and
yclic heptapeptides (Table 1). To facilitate com-
arative testing of agents in the current work, we
rst derivatized 3 lead peptides with the chelator
,4,7,10-tetraazadodecane-1,4,7,10-tetraacetic acid
DOTA) and labeled them with 111Indium. Pep-
ides were synthesized with standard N�-9-
uorenylmethoxycarbonyl chemistry, followed by
igh-performance liquid chromatographic analysis,
hich demonstrated �98% purity. The labeling
ields of 111In-DOTA derivatives were �99% at
pecific activities of 30.8 GBq/�mol. On the basis
f initial comparative results, we then redesigned
he best peptide (sequence VHPKQHR, linker
GSYKKK, tetramer) and labeled it with 18Fluo-

ine with a benzaldehyde method (20). The synthe-
is of the lead compound, named 18F-4V, was
utomated with a PETsynthRN synthesizer (Ne-
eling GmbH, Drolshagen, Germany) followed by
igh-performance liquid chromatographic purifica-
ion. We also synthesized a fluorescent version of
8F-4V by conjugating Cy5 maleimide to enable
uorescence microscopy detection of the probe in
istological sections.
ompetition assays. We evaluated the affinity of pep-
ides in competition assays with murine VCAM-1
mmobilized on agarose beads. Tetrameric linear pep-
ide (TLP)-DOTA-111In (37 GBq/�mol, 0.5
mol/l) was added to VCAM-1/agarose beads, and
ompeted off with increasing concentrations of unla-
eled monomeric cyclic peptide (MCP)-DOTA, mo-
omeric linear peptide (MLP)-DOTA, and TLP-
OTA, respectively. After washing, the amount of

abeled TLP-DOTA-111In bound to beads was quan-
B B R E V I A T I O N S

N D A C R O N YM S

8F-4V � 18F-labeled tetram

eptide-PET imaging reporte

argeted to VCAM-1

8FDG � [18F]-

uorodeoxyglucose

poE � apolipoprotein E

OTA � 1,4,7,10-

etraazadodecane-1,4,7,10-

etraacetic acid, chelator for

ndium labeling

CP � monomeric cyclic

eptide (DOTA-labeled)

HEC � murine heart

ndothelial cells

LP � monomeric linear

eptide (DOTA-labeled)

I � myocardial infarction

RNA � messenger ribonuc

cid

IDGT � percent injected d

ram tissue

ET-CT � positron emission

omography-computed

omography

T-PCR � reverse transcript

olymerase chain reaction

LP � tetrameric linear pept

DOTA-labeled)

CAM � vascular cell adhes
itated via gamma well counter. Next, we assessed
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inding of candidate peptides to VCAM-1–
xpressing endothelial cells. The 111In-labeled pep-
ides were added to murine heart endothelial cells
MHEC) (21) and incubated at 37°C for 1 h. Cells
ere harvested from the plates, and the radioactivity
as measured via gamma well counter. To evaluate

pecificity for VCAM-1, 18F-4V (0.20 �g) was pre-
ncubated with 5� murine VCAM-1 or saline and
hen added to MHEC.
ouse models. Apolipoprotein E (ApoE)�/� mice
ad an average age of 45 weeks and were on a
igh-cholesterol diet (Harlan Teklad, Madison,
isconsin), which produces reliable VCAM-1 ex-

ression in atherosclerotic plaques located in the
ortic root (10). To test imaging in the setting of
herapy, we treated a cohort of apoE�/� mice with
torvastatin (enriched in diet, 0.01% wt/wt) (10).
wo additional disease entities known to increase
CAM-1 expression were imaged: MI was induced
y coronary ligation (22), and heterotopic allograft
eart transplantation from BALB/C into C57/B6
ice was performed (23). Mice were anesthetized

or all procedures (isoflurane 2% to 3% v/v, Baxter).
he institutional subcommittee on research animal

are approved all animal studies.

IODISTRIBUTION STUDIES. The blood half-life of
andidate probes was determined with serial retro-
rbital bleeds after injection of 150 �Ci of a given
gent into the tail vein of 6 wild-type mice. After
acrifice (4 h), mice were perfused with 10 ml of
aline. Organs were harvested, and their activity was
ecorded with a gamma counter (1480 Wizard
-inch, PerkinElmer, Waltham, Massachusetts).
iodistribution data were corrected for decay and

esidual activity at the injection site. Oil Red O
taining depicted the distribution of plaques in
poE�/� aortas, which were subsequently analyzed
y digital autoradiography. To evaluate the in vivo
pecificity of 18F-4V, cohorts of mice were pre-
njected with an antibody targeted to VCAM-1
BD Pharmingen, San Diego, California), followed

Table 1. Summary of Specific VCAM-1 Targeted Peptide Sequen

Name Peptide Sequence

MCP CVHSPNKKCGGSYK(DOTA)

MLP VHPKQHRGGSYK(DOTA)

TLP ([VHPKQHRGGSY]2K)2KK(DOTA)
18F-4V ([VHPKQHRGGSY]2K)2KK(AOE)

DOTA � 1,4,7,10-tetraazadodecane-1,4,7,10-tetraacetic acid; MCP � monomeric cy
tetrameric linear peptide (DOTA-labeled); VCAM � vascular cell adhesion molecule
y 18F-4V 60 min later. t
LUORESCENCE AND IMMUNOHISTOLOGY. One
our after injection of Cy5-labeled 125-�g pep-
ide, aortas were harvested for fluorescence micros-
opy and immunohistochemical detection of
CAM-1 (CD106), endothelial cells (CD31),
acrophages (MAC-3) (all BD Pharmingen), and

mooth muscle cells (�-actin, Lab Vision, Fremont,
alifornia).
ET-CT imaging. PET imaging was initiated 1 h
fter injection of 18F-4V (325 � 167 �Ci in
00 � 65 �l) in conjunction with high-resolution
ascular CT (Inveon, Siemens, Munich, Germany).
he PET data were reconstructed with ordered

ubsets expectation maximization and filtered back
rojection algorithms (24), with a spatial resolution
pproaching approximately 1 mm. For quantitation
f PET signal, regions of interest were placed in the
ortic root on the basis of anatomical CT imaging.
he CT X-ray source was used with a power of 80
Vp and 500 �A, an exposure time of 370 to 400
s, and an isotropic resolution of 90 �m. During
T acquisition, Isovue-370 (Bracco Diagnostics,
rinceton, New Jersey) was infused intravenously.
uantitative reverse transcription polymerase chain
eaction. To validate in vivo PET data, we correlated
8F-4V uptake to expression of VCAM-1 and CD68
uantified by multiplex quantitative polymerase chain
eaction (PCR) (TaqMan, Applied Biosystems, Fos-
er City, California) with glyceraldehyde-3-phosphate
ehydrogenase as an endogenous control.
tatistics. Results are expressed as mean � SEM.
npaired data were compared with the unpaired
-sided t test, and paired data were compared with
he paired 2-sided t test. The significance level in all
ests was 0.05. Due to space limitations of the
ormat, the Methods section has been abbreviated.

E S U L T S

n vitro and in vivo screening of candidate pep-
ides. To determine the affinity of candidate com-
ound, we measured displacement of radioactively

Linear/Cyclic Monomer/Tetramer

Cyclic Monomer

Linear Monomer

Linear Tetramer

Linear Tetramer

eptide (DOTA labeled); MLP � monomeric linear peptide (DOTA-labeled); TLP �
-4V � 18F-labeled tetrameric peptide-PET imaging reporter targeted to VCAM-1.
ces

clic p
agged TLP bound to purified VCAM-1 by cold
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LP, MCP, or TLP. Sigmoidal concentration-
ependence curves were observed with an R2 of
.984 (TLP), 0.9880 (MLP), and 0.9934 (MCP)
Fig. 1A). The tetrameric, linear peptide formula-
ion TLP had a half-maximal inhibitory concentra-
ion for VCAM-1 of 86.6 nmol/l, 232- and 349-
old better than MCP or MLP, respectively.

We then screened candidates against MHEC,
hich constitutively express high levels of VCAM-1

21), and observed a significantly higher accumulation
f TLP than MLP or MCP (Fig 1B). Finally,
andidate peptides injected into apoE�/� mice facil-
tated evaluation of uptake into atheroma. TLP
howed the highest percent injected dose/gram tissue
%IDGT) in excised aortas 60 min after injection
4.8-fold higher than MLP and 2.4-fold higher than

CP), corroborated by highest signal on autoradiog-
aphy exposure (Figs. 1C and 1D).
pecificity, biodistribution, and half-life of 18F-4V. We
ext proceeded to synthesize the PET tracer
8F-4V by labeling the lead peptide TLP with 18F
ia 4-[18F]-fluorobenzaldehyde (Fig. 2). Cell up-
ake experiments involving inhibition with soluble

Figure 1. Screening of Affinity Peptides

(A) Affinity curves for ligands assessed by competition after binding
linear peptide (TLP) has the highest affinity: counts/min (CPM) and
murine heart endothelial cells (MHEC) show highest uptake for TLP
labeled TLP, monomeric cyclic peptide (MCP), and monomeric linea
observed in the root of excised aortas from mice injected with TLP.

MCP, and MLP. Highest %IDGT was observed for TLP. Data are displaye
CAM-1 resulted in a 97% activity decrease, dem-
nstrating a specificity of 18F-4V (Fig. 3A).
We injected 18F-4V into 6 wild-type mice to

stablished the blood half-life and biodistribution.
8F-4V had a blood half-life of 16 � 0.6 min (R2 of
t � 0.96). The biodistribution at 4 h transpired as
ollows: (%IDGT): kidney, 13.2 � 2.8; liver, 3.7 �
.1; lymph node, 3.7 � 0.3; spleen, 2.1 � 0.6; lung,
.2 � 0.8; small intestine 1.9 � 0.4; fat, 1.7 � 0.1;
kin, 1.7 � 0.6; stomach, 1.7 � 1.1; esophagus, 1.5

0.5; blood, 1.5 � 0.4; large intestine, 1.4 � 0.5;
orta, 1.3 � 0.4; bone, 1.3 � 0.4; thymus 0.9 � 0.3;
keletal muscle, 0.7 � 0.3; heart, 0.6 � 0.2; and
eces, 0.2 � 0.1.
8F-4V accumulates in atherosclerotic plaques. We
ssessed uptake of 18F-4V into atherosclerotic
laques in excised aortas of wild-type mice,
poE�/� mice, and apoE�/� mice treated with
torvastatin. Uptake in the aortic root was 312%
igher in apoE�/� mice (p � 0.05) (Fig. 3B), when
ompared with wild type. Autoradiography and en
ace Oil Red O staining confirmed that activity
oncentrated in atherosclerotic plaques (Fig. 3C).

immobilized vascular cell adhesion molecule (VCAM)-1. Tetrameric
n � 95% confidence interval. (B) Cell assay after incubation of
Apolipoprotein E (ApoE)�/� mice received injection with 111In-
ptide (MLP). Highest autoradiography (Autorad) signal was
Percent injected dose/gram tissue (%IDGT) in apoE�/� for TLP,
to
mea
. (C)
r pe
(D)
d as mean � SEM, *p � 0.05.
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reatment with atorvastatin significantly reduced
ptake of 18F-4V (Fig. 3B).
To assess the selectivity of in vivo uptake of

8F-4V for VCAM-1, we pre-injected 250 �g of
onoclonal VCAM-1 antibody into apoE�/�

ice. This procedure reduced the uptake of the
gent to levels seen in wild-type mice (Fig. 3B).

The cellular and microscopic distribution of the
gent was assessed with a fluorescently labeled
ersion of the tetrameric peptide and showed good
orrelation with immunoreactive VCAM-1 expres-
ion (Fig. 4). The probe distributed mainly to
ndothelial and subendothelial layers and colocal-
zed primarily with endothelial cells.
n vivo PET-CT imaging of 18F-4V detects VCAM-1
xpression in atherosclerotic plaques. Dynamic PET
maging identified 60 to 120 min after injection as
he optimal time period for acquisition (Fig. 5). At
hat time, we found a strong focal PET signal in the
ortic root of apoE�/� mice (Fig. 6). Hybrid
maging facilitated unambiguous allocation of the
ET signal to the vascular bed of interest identified
y contrast-enhanced vascular CT. Absolute quan-
ification of PET signal (standard uptake value)
howed significantly higher values in the root of
poE�/� compared with atorvastatin-treated
poE�/� or wild-type mice (Fig. 6).
ptake of 18F-4V closely correlates with inflammatory
ene expression. After imaging, we determined the
x vivo activity of aortic sections and assessed gene
xpression by reverse transcription (RT)-PCR (Fig.
). 18F-4V–derived activity correlated with VCAM-1
RNA levels (R � 0.79, p � 0.03) (Fig. 7). We also

xplored gene expression of CD68, a macrophage
iomarker of inflammatory atherosclerosis (R2 �
.50, p � 0.05).
CAM-1 imaging in other cardiovascular disorders.
iven the aforementioned results, we reasoned that

8F-4V PET imaging could apply to a variety of other
ardiovascular conditions (e.g., ischemic myocardial
njury or transplant rejection), situations that might
nvolve widespread VCAM-1–mediated monocyte
ecruitment. We assayed VCAM-1 transcript levels in
ice 5 days after MI and on day 7 after heart

ransplantation. The VCAM-1 mRNA levels in-
reased 20- and 3-fold, respectively. As in atheroscle-
osis, inflamed myocardium had considerable uptake
f 18F-4V (Fig. 8). The specificity of this uptake was
nvestigated in vivo with blocking of uptake by pre-
njection with a VCAM-1 targeted antibody, which
educed the infarct activity/background ratio from 3.1
o 1.4 and, in the transplant model, the graft/

ackground ratio from 2.4 to 1.4. t
I S C U S S I O N

he central role of VCAM-1 in the evolution of
nflammatory vascular lesions and its exposed acces-
ible position on the endothelial surface render this
dhesion molecule an attractive imaging target for
therosclerosis, MI, and transplant rejection. Here
e show that PET-CT can image VCAM-1 and
escribe the design, synthesis, and validation of the
ovel PET imaging agent 18F-4V. The technique
etects VCAM-1 expression in murine aortas, ves-
els with a diameter considerably smaller than
picardial human coronary arteries. We also show
hat targeting VCAM-1 is useful for imaging of
ther cardiovascular diseases.
The initial design of 3 candidate probes derived

rom peptides identified by phage display (9,10).
lthough all of these peptides did target VCAM-1,

Figure 2. Structure and Purity of 18F-4V

(A) Three-dimensional model of 18F-labeled tetrameric peptide-post
emission tomography imaging reporter targeted to vascular cell ad
molecule-1 (18F-4V). The tracer 18F is located on the top, and the 4
ing affinity peptides point downward. (B) Original high-performanc
chromatographic trace documents purity of the 18F-4V synthesis pr
itron
hesion
branch-
e liquid
he modified imaging probes differed in their affin-
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Figure 3. Validation of 18F-4V

(A) Pre-incubation of 18F-4V with soluble VCAM-1 reduces uptake into MHEC. (B) Uptake of 18F-4V by scintillation counting. The highest
signal was found in aortas of apoE-deficient mice. Statin treatment significantly reduced uptake. Pre-injection of a monoclonal VCAM-1–
targeted antibody (MAb) inhibited uptake of 18F-4V. Mean � SEM, *p � 0.05. (C) Autoradiography corroborates the highest uptake of
18F-4V in apoE-deficient mice, with little uptake in wild-type aortas. Oil Red O staining shows peak uptake in plaques located in the aor-

tic root, arch, and at the renal artery branch. Abbreviations as in Figures 1 and 2.
Figure 4. Histologic Probe Distribution

A fluorescent version of 18F-4V (Cy5-4V) was used to explore microscopic and cellular agent distribution. In fluorescence micropscopy,
the endothelial and subendothelial layers of an atherosclerotic plaque in the aortic root show strong uptake, whereas autofluorescence
in the FITC channel is negligible. On adjacent sections, VCAM-1 and endothelial staining (CD31) colocalize with the agent, with some

uptake in macrophages (MAC-3) and smooth muscle cells (�-actin). Magnification 400�.
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ty, molecular weight, and pharmacokinetics. TLP,
he lead peptide with the highest affinity and most
avorable pharmacokinetics, had an arborizing, tet-
americ design. The multivalency of TLP resulted
n superior performance, a phenomenon previously
bserved for targeted nanoparticles (25). Conse-
uently, we derivatized TLP with the clinical PET
racer 18F and investigated 18F-4V in a number of
n vitro and in vivo experiments. In vitro, pre-
ncubation of the agent with soluble VCAM-1
lmost completely blocked cellular uptake. In vivo,
re-injection of a VCAM-1–specific antibody
locked 18F-4V uptake, and 18F-4V signal corre-
ated closely with VCAM-1 mRNA levels in re-
pective vascular territories (R � 0.79). Areas of
ighest activity colocalized with Oil Red O–stained
therosclerotic plaques on excised aortas. Statin
reatment, known to reduce VCAM-1 expression
26), diminished the ex vivo and in vivo 18F-4V
ignal. The biodistribution of 18F-4V proved favor-

Figure 5. Dynamic PET-CT Imaging

Dynamic positron emission tomography (PET) imaging identified 60
signal and high activity in the target. The blood activity was measu
pool and the aortic region is plotted (A) and shown over time in sh
tions. Initially, acquisition times were shorter due to high count rate
times in later acquisitions.
ble, with low background uptake in undiseased p
essel walls and a short blood half-life, which will
llow for rapid injection-imaging sequences.

VCAM-1 expression contributes to the pathophys-
ology of a variety of other cardiovascular conditions—
or instance to inflammation after ischemic injury
11,22,27). Myocardial infarction triggers a profound
nflux of neutrophils and monocytes on days 1 to 6
fter ischemia, and the quantity as well as quality of
he myeloid cell influx determine the degree of ensu-
ng heart failure and therefore prognosis (27–29). As
n integral part of the recruiting mechanism for
onocytes, VCAM-1 expression could gauge the

egree of inflammation after MI. We found a sub-
tantial increase of VCAM-1 mRNA levels in mice
n day 5 after coronary ligation, consistent with
8F-4V accumulation.

VCAM-1 also rises during cardiac transplant rejec-
ion and promotes monocyte recruitment into the
raft (30,31). Mononuclear phagocytes constitute up
o 60% of the inflammatory cell population during

120 min after injection as a suitable time window, with low blood
in the left ventricular blood pool. Imaging signal in the blood
(B) and long-axis (C) PET–computed tomography (CT) acquisi-
hereas progressing decay of 18F necessitated longer acquisition
to
red
ort-
s, w
arenchymal rejection (32). Patients after heart trans-
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lantation would greatly benefit from noninvasive
ssessment of rejection, because repetitive endomyo-
ardial biopsies, the current reference standard, involve
nvasion and carry a risk of complication. VCAM-1

RNA levels increased in heterotopically trans-
lanted cardiac allografts, and the 18F-4V signal in-
eed rose in these rejecting allografts.
Compared with previous efforts to visualize

CAM-1 by MRI or ultrasound (9,10,12,33),
8F-4V imaging provides a number of potential ad-
antages. Positron emission tomography affords abso-
ute signal quantification and will allow robust and
oninvasive measurement of VCAM-1 expression,
ritical for assessment of individual patients as well as
atient cohorts in clinical trials. Not only do high
ffinity and specificity for a target essential to lesion

Figure 6. PET-CT in ApoE�/� and Statin-Treated Mice

PET-CT imaging shows uptake of 18F-4V in the aortic root (arrows)
in wild-type mice. (A, C, E) Short-axis views. (B, D, F) Long-axis view
shown in white, vasculature in blue, and 18F-4V PET signal in red. T
the liver, in addition to the strong uptake of 18F-4V PET observed in
standard uptake value (SUV). Mean � SEM, *p � 0.05. Abbreviation
iology support the translatability of 18F-4V, so too c
oes its employment of a clinically established PET
racer and its clinically useful probe design. The
nherent sensitivity of PET allows detection of targets
t concentrations that are several orders of magnitude
ower than are seen with other modalities, for instance

RI. This feature might have particular importance
hen targets are as small as atherosclerotic plaques.
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Figure 7. Correlation of 18F-4V Uptake With VCAM-1 Gene Expression

Correlation of 18F-4V uptake to VCAM-1 mRNA levels in imaged vascular segments. After measuring uptake by scintillation counting,
gene expression was determined by quantitative RT PCR. When compared with VCAM-1 expression in the root of high-cholesterol–fed
apoE-deficient mice, atorvastatin significantly reduced expression, which was very low in wild-type mice. VCAM-1 mRNA levels were nor-
malized to the glyceraldehyde-3-phosphate dehydrogenase housekeeping gene. Data are displayed as mean � SEM, *p � 0.05. The
lower panel depicts a close correlation of VCAM-1 mRNA level with uptake of 18F-4V. AU � arbitrary units; other abbreviations as in

Figures 1 and 2.
Figure 8. 18F-4V Imaging in MI and Transplant Rejection

(A) PET-CT shows strong signal in the infarcted left ventricular wall. (B) Infarcted myocardium shows delayed CT hyperenhancement after
iodine (arrows). (C) Autoradiography of myocardial ring. (D) %IDGT in the infarct. (E) VCAM-1 mRNA in infarct tissue. (F, G) PET-CT of a
heart transplanted heterotopically into the abdominal cavity. The rejected allograft (arrowheads) shows high uptake of 18F-4V. (H, I)
Autoradiography of graft and orthotopic recipient heart. (K) Uptake of 18F-4V in rejected allografts. (L) VCAM-1 mRNA levels in control

heart tissue and rejected cardiac allografts. *p � 0.05. MI � myocardial infarction; other abbreviations as in Figures 1, 2, 5, and 7.
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