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Results of autism linkage studies have been difficult to interpret across research groups, prompting the use of ever-
increasing sample sizes to increase power. However, increasing sample size by pooling disparate collections for a
single analysis may, in fact, not increase power in the face of genetic heterogeneity. Here, we applied the posterior
probability of linkage (PPL), a method designed specifically to analyze multiple heterogeneous data sets, to the
Autism Genetic Resource Exchange collection of families by analyzing six clinically defined subsets of the data and
updating the PPL sequentially over the subsets. Our results indicate a substantial probability of linkage to chro-
mosome 1, which had been previously overlooked; our findings also provide a further characterization of the
possible parent-of-origin effects at the 17q11 locus that were previously described in this sample. This analysis
illustrates that the way in which heterogeneity is addressed in linkage analysis can dramatically affect the overall
conclusions of a linkage study.

Autism spectrum disorder (ASD [MIM 209850]) is a rel-
atively rare pervasive developmental disorder that pres-
ents with abnormal development of language and social
responses/initiation and is also characterized by stereo-
typic behavioral repertoires (Fombonne 1999; Folstein
and Rosen-Sheidley 2001). Autism is presumed to have
a genetic basis—as suggested, for example, by twin stud-
ies—and numerous groups have undertaken the search
for susceptibility genes (International Molecular Genetic
Study of Autism Consortium 1998; Paris Autism Research
International Sibpair Study 1999; Risch et al. 1999; Col-
laborative Linkage Study of Autism 2001; International
Molecular Genetic Study of Autism Consortium 2001;
Liu et al. 2001; Alarcón et al. 2002; Shao et al. 2002b;
Yonan et al. 2003). However, the results of these genome
scans have not yielded consistent locations for autism sus-
ceptibility loci, with results typically shifting and becom-
ing less clear as more families are added to each individual
collection (Wassink et al. 2004). Across family collections,
there has been some concordance for findings on 2q and
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7q, but there is still no clear and convincing evidence of
any specific linkage location.

Locus heterogeneity may play a substantial role in the
problems encountered in autism linkage studies. Strategies
for mitigating the effects of locus heterogeneity include
the use of phenotypic characteristics to define more ho-
mogeneous subsets of the data and the use of statistical
techniques that specifically allow for subgroup differ-
ences. Many groups have tried subsetting their family col-
lections on the basis of phenotypic characteristics derived
from the Autism Diagnostic Interview–Revised (ADI-R)
(Lord et al. 1994), such as delay in acquisition of phrase
speech (Bradford et al. 2001; Buxbaum et al. 2001; Shao
et al. 2002a) or other traits (Nurmi et al. 2003; Shao et
al. 2003), as well as, more recently, sex of the affected
pairs (Stone et al. 2004).

Here, we reanalyze the data presented by Yonan et al.
(2003), which are in the public domain as part of the
Autism Genetic Resource Exchange (AGRE) (Geschwind
et al. 2001). We compare the original results of Yonan et
al. (2003) with what we obtain using an alternative data-
analysis method that has been specifically designed to al-
low for heterogeneity within the sample, and we find that
the results of a genome screen can be highly dependent
upon the choice of data-analysis method in the (presumed)
presence of locus heterogeneity.

The data used in our analyses comprise a subset of the
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Table 1

Number of Families, by Subset

CLASS

NO. OF FAMILIES IN SUBSET
TOTAL NO.
OF FAMILIESPSD Positive PSD Negative

I 133 65 198
II 51 45 96
III 5 4 9

Total 189 114 303

Figure 1 Summary of PPL analysis across the genome. Chromosomes are listed along the top border of the graph. PPL results shown
here have been updated across the six data subsets. This graph illustrates the low signal-to-noise ratio for the peak finding.

AGRE families included by Yonan et al. (2003); some of
these families have been included in additional publica-
tions as well (Liu et al. 2001; Alarcón et al. 2002; Yonan
et al. 2003; Stone et al. 2004). Briefly, the sample consists
of 303 multiplex families—primarily, affected sib pairs
with genotyped parents—in which the children were as-
certained for ASDs, including autism, Asperger syndrome,
and pervasive developmental disorder (PDD). Yonan et
al. (2003) used 345 families. Of these, 11 families tested
positive for fragile X syndrome in March 2004, subse-
quent to the publication of the study by Yonan et al.
(2003), and are omitted from our analyses; in addition,
31 families were trios with no linkage information and
have also been omitted here. (Thus, the actual difference
between the sample used by Yonan et al. [2003] and the
one used in our study should be just the 11 families with
fragile X syndrome that were included in their study but
omitted in ours.) ADI-R data were available for all af-
fected subjects (Lord et al. 1994).

We used all of the genotypes from AGRE that were
publicly available at the time of analysis: the 408 mi-
crosatellites reported by Yonan et al. (2003), including

markers at ∼10-cM resolution from the Marshfield ge-
nome screening set, version 8 (see the Center for Medical
Genetics Web site), as well as 73 additional markers that
were used to follow up on results from previous analyses
of these data (Liu et al. 2001; Alarcón et al. 2002; Yonan
et al. 2003). Genotypic data were read into our Oracle
database from J. A. Badner’s “hypercleaned” data file,
which is available on the AGRE Web site. Any discrep-
ancies between the diagnosis in Badner’s file and the
AGRE diagnosis were resolved by substituting the AGRE
diagnosis. Allele frequencies were estimated by allele
counting in all founders.

Yonan et al. (2003) analyzed these data as a single
group—that is, without explicitly considering possible
group differences. They used the multipoint maximum
LOD score (MLS) (Risch 1990) to analyze the data and
an approximate “model-free” LOD (Göring and Terwil-
liger 2000) for two-point analysis. They found their max-
imum MLS at position 17q11 ( ) and iden-MLS p 2.83
tified other “suggestive” MLSs on chromosomes 5, 11,
4, and 8 (MLSs of 2.54, 2.24, 1.72, and 1.60, respec-
tively). (Although there may be other small discrepancies
between Badner’s files and the data used in the original
report by Yonan et al. [2003], we have verified that Bad-
ner’s files produce essentially the same MLS results, with
a maximum MLS of 2.7 on 17q11; in addition, the rank
order of these other signals was unchanged, with the ex-
ception that the chromosome 5 MLS is only 1.7 and drops
in rank from number 2 to number 4.)

For our reanalysis of these data, we divided the sample
into six subsets, which are defined a priori as follows:
if at least two siblings met the International Classifi-



690 Am. J. Hum. Genet. 76:688–695, 2005

Table 2

Results of Present Analysis, Compared with Those of Yonan et al. (2003)

CHROMOSOME

MULTIPOINT ANALYSIS TWO-POINT ANALYSIS

PPL
Yonan et
al. 2003 PPL

Yonan et
al. 2003

%
Position

(cM) MLS
Position

(cM) %
Position

(cM) LOD
Position

(cM)

1 55 183 !.5a 180a 34 170 NA NA
17 15 45 2.8 52 8 48 1.2 48
11 13 63 2.2 45 5 54 .5 54
8 12 72 1.6 131 6 78 .8 135
5 9 53 2.5 58 12 57 1.4 57
4 4 114 1.7 94 4 107 1.7 101

NOTE.—Only regions with PPLs 110%—and those specifically listed in the article by Yonan
et al. (2003)—are shown. By convention, PPLs 13% are rounded to the nearest whole number,
whereas PPLs !3% are rounded to two significant digits. NA p data not available.

a MLS and position for this location were estimated from the graphs in the article by
Yonan et al. (2003).

Table 3

Permutation Results at Linked and Unlinked Loci

LOCUS

PPL (%) FOR

Random Subsets [SD] Pooled Data

1q23-24 2.1 [2.8] 1.7
Unlinked .3 [.4] 1.2

NOTE.—Families were randomly permuted into
six subsets, corresponding to the observed clinical
subset sizes, and the PPL was sequentially updated
across these random subsets. One thousand per-
mutations were performed at each locus, and the
average (SD) was calculated across permutations.
PPLs for pooled data, shown for comparison, were
computed by treating all six subsets as a single
data set (i.e., without sequential updating across
subgroups).

cation of Disease 10 (ICD-10) algorithm for autism,
we assigned the family to class I; if only one child met
criteria for ICD-10 autism (and at least one additional
child met criteria for Asperger syndrome or PDD), we
assigned the family to class II. The remaining families,
which contained no cases of ICD-10 autism (but at least
two cases of Asperger syndrome or PDD), were assigned
to class III. The rationale for this division was to achieve
greater clinical homogeneity within subgroups. Each of
these classes was further broken down on the basis of
whether or not at least two affected siblings (with au-
tism, Asperger syndrome, or PDD) presented with a
phrase speech delay (PSD) of 136 mo (groups with at
least two affected siblings with a PSD of 136 mo are
referred to as “PSD positive”; groups without at least
two affected siblings with a PSD of 136 mo are referred
to as “PSD negative”). This division was based on pre-
vious findings from independent groups supporting
likely genetic differences between families with and with-

out multiplex PSD (Bradford et al. 2001; Buxbaum et
al. 2001; Shao et al. 2002a; Vieland et al. 2003). Note
that all of the families we included were also included
in the Yonan et al. (2003) analysis. We did not add or
drop families on the basis of clinical status; we merely
classified them with respect to clinical status in the anal-
yses. Table 1 shows the sample-size breakdown of the
AGRE families by subset. A complete list (by subset)
of the families used in our analysis is available in ap-
pendix A (online only).

We then analyzed the data by use of the posterior
probability of linkage (PPL), which is specifically de-
signed to allow for differences between subgroups (Vie-
land 1998). The PPL is parameterized in terms of an
approximating single-locus model, allowing for hetero-
geneity under the admixture model (Smith 1963). All
parameters of this model (gene frequency, three pene-
trances, and the admixture parameter) are integrated out
of the likelihood, independently for each subset, and the
resulting marginal posterior density in the recombina-
tion fraction (two-point) or genomic location (multi-
point) is sequentially updated across the subsets (Vieland
et al. 2001; Vieland and Logue 2002; Logue et al. 2003;
Logue and Vieland 2004). In this way, the PPL allows
for heterogeneity within subsets, as well as for differ-
ences across subsets, while accumulating the total evi-
dence for and against linkage based on all families in a
mathematically rigorous way. Because the PPL does not
involve maximum-likelihood estimation or maximiza-
tion of linkage statistics across subsets, there is no in-
flation of the PPL inherent in either updating across data
subsets or subsetting on the basis of genetically irrelevant
factors (see table 3 for an illustration). However, we have
shown that, in the presence of heterogeneity within and
across subsets, sequential updating across relevant clin-
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Table 4

PPLs, by Subset, for 1q23-24 and 17q11

CLASS AND SUBSET

PPL (%)
FOR LOCUS

1q23-24 17q11

I:
PSD Positive 1.1 2.5
PSD Negative 2.2 1.8

II:
PSD Positive 1.8 2.1
PSD Negative 76 13

III:
PSD Positive 2.0 2.0
PSD Negative 2.0 2.1

All subgroups (sequentially updated) 55 15

Table 5

Sequentially Updated PPL Results over Different Subsets for 17q11

LOCUS (POSITION)

SEQUENTIALLY UPDATED PPL (%) FOR

Pooled Data MO-FC Pairs
MO-FC Pairs, Classes,

and PSD Subsets

17q11 (44 cM) 4.2 4.9 7.4

ical features can improve ability to find linkage (Wang
et al. 1999; Huang and Vieland 2001; Vieland et al.
2001; Bartlett et al. 2002, 2004; Logue et al. 2003). The
PPL is on the probability scale, with values 12% (the
prior probability of linkage) indicating evidence in favor
of linkage and values !2% indicating evidence against
linkage.

Figure 1 shows multipoint PPLs across the genome.
Overall, 83% of the genome yielded PPLs !2%; inter-
estingly, this includes most of chromosome 7 (72%),
with the 7q34-qter interval being the largest contiguous
region with PPLs not !2%. The largest PPL is 55%,
located at 1q23-24. Table 2 compares our results with
the MLS and LOD results of Yonan et al. (2003), in
order of decreasing PPL. We note that the rank order of
scores differs between the PPL and both the MLS and
the LOD analyses.

This difference in rank order is not due to the use of
the PPL, per se, but rather to the manner in which the
PPL uses the clinically defined subsets. For example, if
we pool all families into a single data set, 17q11 provides
the largest PPL (5%) genomewide, just as it produced
the largest MLS genomewide in Yonan et al. (2003).
Additionally, at both the 1q23-24 and 17q11 loci, the
“pooled” results are lower than the sequentially updated
results. Thus, we draw a substantially different overall
conclusion from the genome screen depending on wheth-
er we treat the families as a single homogeneous group
(as the MLS and the “pooled” PPL both implicitly do)

or whether we specifically allow for differences across
subgroups.

As stated above, one feature of the sequential updating
used by the PPL is that subsetting on genetically irrel-
evant characteristics has (on average) no impact on the
final result, as compared with “pooled” analysis, which
is conducted on the data set as a single group (i.e., there
is no inherent inflationary effect of subdividing the sam-
ple). This applies even in the present case, in which the
sizes of the subsets vary appreciably. To illustrate this,
we randomly permuted families into six subsets, of the
same sizes as the observed clinical subsets, and recom-
puted the sequentially updated PPL across the random
subsets. This procedure was repeated 1,000 times at each
of two loci: at the peak location on chromosome 1 (183
cM) and at an apparently unlinked locus (chromosome
12 at 100 cM) that was previously unnoted in the autism
literature and for which the observed sequentially up-
dated PPL was 1.5% (evidence against linkage). Table
3 shows the results. In both cases, randomly subsetting
the data produces, on average, a PPL very close to the
observed PPL obtained by simply pooling all the families
for a single analysis. Thus, random subsetting (even into
unequally sized subsets) has no inflationary impact rel-
ative to the “pooled” PPL, either at the (apparently)
linked locus or at the unlinked locus. By contrast, the
difference between the permutation-based PPL and the
PPL obtained when we sequentially update across the
clinically defined subsets at 1q23-24 ( ) isPPL p 55%
striking, strongly suggesting that the predefined clinical
subsetting criteria have some genetic relevance.

It is also possible to examine the PPLs individually in
the separate subsets. Table 4 shows subset-specific results
for 1q23-24 and 17q11. On chromosome 1, the class II
PSD-negative group contributes virtually the entire link-
age signal ( in this subset), with the class IPPL p 76%
PSD-negative group giving very slight evidence in favor
of linkage ( ) and the remaining subsets con-PPL p 2.2%
tributing either no information ( ) or actuallyPPL p 2%
giving evidence against linkage. This pattern is consistent
with (although hardly proof of) the possibility that this
locus is linked in the PSD-negative, but not the PSD-
positive, groups, regardless of clinical class. On 17q11,
the pattern is not so clear (and, indeed, the overall PPL
is considerably smaller), with multiple subgroups con-
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Figure 2 Plot of Bayes ratios (BRs) at D17S1871 after sequential updating, defined as , where andHLOD(v ,v ,t)m fBR(v ,v ) p 10 p(t)dt v v∫m f m f
tare the male and female recombination fractions, respectively; HLOD is the ordinary heterogeneity LOD score (Smith 1963; Ott 1983); t is

the vector of trait parameters including a; and is the prior on t. Gradations indicate changes in the BR between increments on the Z-axis.p(t)
The posterior mode of the BR occurs at 0 for males and at 0.25 for females.

tributing very slight evidence in favor of linkage and
only one group (class I, PSD negative) showing evidence
against linkage. Of note, however, is the finding that the
class II PSD-negative group also has the single largest
PPL (13%) at this locus.

We also sought to further characterize the 17q11 lo-
cus. In a subset of these same families, Stone et al. (2004)
found that considering families containing only male
children with ASD resulted in an increase in the MLS
(4.3, compared with 3.2 in all families), despite a sample-
size reduction of 42% ( , compared with 257).n p 148
(Note that these 257 families represent a subset of the
original sample used by Yonan et al. [2003].) This result
now appears to have been replicated in an independent
sample as well (Cantor-Chiu et al. 2004). Table 5 shows
results of sequentially updating across male-only (MO)
pairs and female-containing (FC) pairs. We found that
MO-FC subsetting increased the PPL compared with
“pooled” analysis but actually decreased the PPL com-
pared with the use of both the MO-FC pairs and our

original additional subsetting criteria. However, in all
cases, the PPLs are not very high, making definitive in-
terpretation moot. It is of interest that the MO pairs
were relatively evenly distributed across our clinical sub-
sets (ranging from 50% in the class III PSD-negative
group to 63% in the class II PSD-positive group). (The
class II PSD-negative group, which had the highest PPL,
contained only 51% MO pairs.)

The 17q11 locus has also been noted to have excess
observed paternal, but not maternal, sharing in the AGRE
data (J. Vincent and A. Paterson, personal communica-
tion), which is consistent with observations in another
autism sample (International Molecular Genetic Study of
Autism Consortium 2001). We therefore repeated our
original PPL analyses at this locus by use of a two-point
analysis, allowing for separate male and female recom-
bination fractions (Ott 1976); a multipoint sex-specific
PPL is not yet implemented. Sex-specific differences in
recombination rates can indicate imprinting or other par-
ent-of-origin effects in nuclear families and have been
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shown to be symptomatic of imprinted data even in larger
pedigrees (Smalley 1993; Greenberg et al. 2000; Luding-
ton 2000; Ludington et al. 2000; Feenstra et al. 2004).
The two-point PPLs were small to moderate at both
D17S1824 ( ) and D17S1871 ( ).PPL p 5% PPL p 19%
However, we did find some suggestion of sex differences
(fig. 2). In our experience, the large observed difference
in male and female recombination shown in figure 2
would not be indicative of a sex-specific difference in re-
combination, per se; note that the female-to-male map
ratio at this particular marker is in the range of 1.1 to
9.4 (using the closest flanking markers or flanking mark-
ers 1.4 cM away, respectively) from a combined linkage-
physical map (Kong et al. 2004). Thus, we concur with
the previous conclusions that this could indicate a parent-
of-origin effect such as imprinting.

Although our primary purpose was to illustrate that
differing approaches to handling heterogeneity could lead
to very different genomewide results, we have also un-
covered strong evidence of linkage in the interval 1q23-
24 that has not been reported elsewhere for autism. This
interval contains several plausible candidate genes for au-
tism susceptibility—all highly expressed in the brain—
including aldehyde dehydrogenase 9 family, member A1
(ALDH9A1), and regulator of G-protein signaling 4 and
5 (RGS4 and RGS5). The region also holds an interesting
candidate gene for schizophrenia, the carboxyl-terminal
PDZ ligand of neuronal nitric oxide synthase (CAPON)
(Brzustowicz et al. 2004). Although schizophrenia and
autism are conceptualized as distinct disorders, there is
evidence of increased risk of one disease in individuals
with the other disease (Nylander and Gillberg 2001; Stahl-
berg et al. 2004; see also the study by Kay et al. [1987]).

Overall, our analyses illustrate that the way in which
we allow for potential subgroup differences when ana-
lyzing genome-screen data can have a substantial impact
on our conclusions. Heterogeneity can complicate detec-
tion of linkage within any given data set and can obscure
findings that are based on combined analysis across data
sets. Previous work had demonstrated potential loss of
power—even when sample sizes are increased—if proper
allowances for heterogeneity across subgroups are not
made (Huang and Vieland 2001; Vieland et al. 2001).
The autism analyses shown here suggest that failure to
adequately allow for subgroup differences can result not
only in loss of power but also in substantial changes in
the rank order of findings across the genome. These ob-
servations suggest the need for caution in the analysis of
data from large multisite collaborations when the disease
is suspected to be heterogeneous.
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