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Let q be a power of a prime number p. Let k = Fq(t) be the
rational function field with constant field Fq . Let K = k(α) be an
Artin–Schreier extension of k. In this paper, we explicitly describe
the ambiguous ideal classes and the genus field of K . Using these
results, we study the p-part of the ideal class group of the integral
closure of Fq[t] in K . We also give an analogue of the Rédei–
Reichardt formula for K .

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In 1951, Hasse [7] introduced genus theory for quadratic number fields which is very important for
studying the ideal class groups of quadratic number fields. Later, Fröhlich [4] generalized this theory
to arbitrary number fields. In 1996, S. Bae and J.K. Koo [3] defined the genus field for global function
fields and developed the analogue of the classical genus theory. In 2000, Guohua Peng [8] explicitly
described the genus theory for Kummer function fields.

The genus theory for function fields is also very important for studying the ideal class groups of
function fields. Let l be a prime number and K be a cyclic extension of degree l of the rational function
field Fq(t) over a finite field of characteristic �= l. In 2004, Wittmann [13] generalized Guohua Peng’s
results to the case l � q − 1 and used it to study the l-part of the ideal class group of the integral
closure of Fq[t] in K following an idea of Gras [5].

Let q be a power of a prime number p. Let k = Fq(t) be the rational function field with constant
field Fq . Assume that the polynomial T p − T − D ∈ k[T ] is irreducible. Let K = k(α) with αp −α = D .

* Corresponding author.
E-mail addresses: hus04@mails.tsinghua.edu.cn (S. Hu), liyan_00@mails.tsinghua.edu.cn (Y. Li).
1071-5797/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.ffa.2010.03.004

https://core.ac.uk/display/82105715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ffa
mailto:hus04@mails.tsinghua.edu.cn
mailto:liyan_00@mails.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ffa.2010.03.004


256 S. Hu, Y. Li / Finite Fields and Their Applications 16 (2010) 255–264
Then K is called an Artin–Schreier extension of k (see [6]). It is well known that every cyclic extension
of Fq(t) of degree p is an Artin–Schreier extension. In this paper, we explicitly describe the genus field
of K . Using this result we also study the p-part of the ideal class group of the integral closure of Fq[t]
in K . Our results combined with Peng’s and Wittmann’s results [8,13] give the complete results for
genus theory of cyclic extensions of prime degree over rational function fields.

Let O K be the integral closure of Fq[t] in K . Let Cl(K ) be the ideal class group of the Dedekind
domain O K . Let G(K ) be the genus field of K . Our paper is organized as follows. In Section 2, we
recall the arithmetic of Artin–Schreier extensions. In Section 3, we recall the definition of G(K ) and
compute the ambiguous ideal classes of Cl(K ) using cohomological methods. As a corollary, we obtain
the order of Gal(G(K )/K ). In Section 4, we describe explicitly G(K ). In Section 5, we study the p-part
of Cl(K ). We also give an analogue of the Rédei–Reichardt formula [11] for K .

2. The arithmetic of Artin–Schreier extensions

Let q be a power of a prime number p. Let k = Fq(t) be the rational function field. Let K/k be
a cyclic extension of degree p. Then K/k is an Artin–Schreier extension, that is, K = k(α), where
αp − α = D, D ∈ Fq(t) and that D cannot be written as xp − x for any x ∈ k. Conversely, for any D ∈
Fq(t) and D cannot be written as xp − x for any x ∈ k, k(α)/k is a cyclic extension of degree p, where
αp − α = D . Two Artin–Schreier extensions k(α) and k(β) such that αp − α = D and β p − β = D ′ are
equal if and only if they satisfy the following relations,

α −→ xα + B0 = β,

D −→ xD + (
B p

0 − B0
) = D ′,

x ∈ F∗
p, B0 ∈ k.

(See [6] or Artin [2, pp. 180–181 and pp. 203–206].) Thus we can normalize D to satisfy the following
conditions,

D =
m∑

i=1

Q i

P ei
i

+ f (t),

(Pi, Q i) = 1, and p � ei, for 1 � i � m,

p � deg
(

f (t)
)
, if f (t) /∈ Fq,

where Pi (1 � i � m) are monic irreducible polynomials in Fq[t] and Q i (1 � i � m) are polynomials
in Fq[t] such that deg(Q i) < deg(P ei

i ). In the rest of this paper, we always assume D has the above

normalized forms and denote Q i

P
ei
i

= Di , for 1 � i � m. The infinite place (1/t) is split, inert, or ramified

in K respectively when f (t) = 0; f (t) is a constant and the equation xp − x = f (t) has no solutions
in Fq; f (t) is not a constant. Then the field K is called real, inert imaginary, or ramified imaginary,
respectively. The finite places of k which are ramified in K are P1, . . . , Pm (see [6, p. 39]). Let Pi be
the place of K lying above Pi (1 � i � m).

Let P be a finite place of k which is unramified in K . Let (P , K/k) be the Artin symbol at P . Then

(P , K/k)α = α +
{

D

P

}

and the Hasse symbol { D
P } is determined by the following equalities:
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{
D

P

}
≡ D + D p + · · · + DN(P )/p mod P

≡ (
D + Dq + · · · + DN(P )/q)
+ (

D + Dq + · · · + DN(P )/q)p

+ · · ·
+ (

D + Dq + · · · + DN(P )/q)q/p
mod P ,{

D

P

}
= trFq/Fp tr(O K /P )/Fq (D mod P )

(see [6, p. 40]).

3. Ambiguous ideal classes

From this point on, we will use the following notations:

q power of a prime number p.

k the rational function field Fq(t).

K a Galois extension of k.

G the Galois group Gal(K/k).

S the set of infinite places of K (i.e, the primes above (1/t)).

O K the integral closure of Fq[t] in K .

I(K ) the group of fractional ideals of O K .

P (K ) the group of principal fractional ideals of O K .

P (k) the subgroup of P (K ) generated by nonzero elements of Fq(t).

Cl(K ) the ideal class group of O K .

H(K ) the Hilbert class field of K .

G(K ) the genus field of K .

U K the unit group of O K .

Definition 3.1. (See Rosen [9].) The Hilbert class field H(K ) of K (relative to S) is the maximal un-
ramified abelian extension of K such that all infinite places (i.e. ∈ S) of K split completely in H(K ).

Definition 3.2. (See Bae and Koo [3].) The genus field G(K ) of K is the maximal abelian extension of
K in H(K ) which is the composite of K and some abelian extension of k.

For any G-module M , let MG be the set of elements of M fixed by the action of G .

Definition 3.3. The ideal classes in Cl(K )G are called ambiguous ideal classes. The ideals in I(K )G are
called ambiguous ideals.

The definition does not a priori imply that an ambiguous ideal class contains an ambiguous ideal.
However, it turns out that in the setting of the paper, i.e. K/k is an Artin–Schreier extension, this is
always the case. See Theorem 3.4 below. On the other hand, in more general situations, for example:
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when K/k is a quadratic extension of odd characteristic, there can be ambiguous ideal classes that do
not contain any ambiguous ideals. See Zhang [14] or Peng [8].

In the rest of this paper, we assume that K/k is an Artin–Schreier extension and σ is a fixed
generator of G . Without loss of generality, we also assume that the extension K/k is geometric, i.e.
the full constant field of K is Fq (see [10, p. 77]).

Theorem 3.4. The ambiguous ideal classes of Cl(K ) form a vector space over Fp generated by [P1], [P2], . . . ,
[Pm] with dimension

dimFp Cl(K )G =
{

m − 1, if K is real,

m, if K is imaginary.

Before the proof of the above theorem, we need some lemmas.

Lemma 3.5. H1(G, P (K )) = 1.

Proof. From the following exact sequence

1 −→ U K −→ K ∗ −→ P (K ) −→ 1,

we have

1 −→ H1(G, P (K )
) −→ H2(G, U K ) −→ H2(G, K ∗) −→ · · · .

This is because H1(G, K ∗) = 1 (Hilbert Theorem 90). Since K/k is a cyclic extension, we have

H2(G, U K ) ∼= Ĥ0(G, U K ) = U G
K

NU K
= F∗

q

(F∗
q)p

= 1. (3.1)

So H1(G, P (K )) = 1. �
Lemma 3.6. If K is imaginary, then H1(G, U K ) = 1.

Proof. Since K is imaginary, from Dirichlet unit theorem (see [10, p. 243]), we have U K = F∗
q . So

H1(G,F∗
q

) = {x ∈ F∗
q | xp = 1}

{xσ−1 | x ∈ F∗
q} = 1. �

Lemma 3.7. If K is real, then H1(G, U K ) ∼= Fp .

Proof. We denote by D the group of divisors of K , by P the subgroup of principal divisors. We
define D(S) to be the subgroup of D generated by the primes in S and D0(S) to be the degree zero
divisors of D(S). From Proposition 14.1 of [10], we have the following exact sequence

1 −→ F∗
q −→ U K −→ D0(S) −→ Reg −→ 1,

where the map from U K to D0(S) is given by taking an element of U K to its divisor and Reg is a finite
group (see Proposition 14.1 and Lemma 14.3 of [10]). By Propositions 7 and 8 of [12, p. 134], we have
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h(U K ) = h(D0(S)), where h(∗) is the Herbrand Quotient of ∗. By Eq. (3.1), we have H2(G, U K ) = 1.
Thus, we can prove this lemma by showing h(D0(S)) = 1/p.

Let ∞1 be any infinite place in S . Thus D0(S) is the free abelian group generated by
(σ − 1)∞1, (σ

2 − σ)∞1, . . . , (σ
p−1 − σ p−2)∞1. And we have

D0(S) = Z[G](σ − 1)∞1 ∼= Z[G]
(1 + σ + · · · + σ p−1)

. (3.2)

Let ζp be a p-th primitive root of unity. We have

Z[G]
(1 + σ + · · · + σ p−1)

∼= Z[ζp], (3.3)

and the above map is given by taking σ to ζp . From (3.2) and (3.3), we have

H1(G,D0(S)
) = ker ND0(S)

(σ − 1)D0(S)
= D0(S)

(σ − 1)D0(S)

∼=
Z[G]

(1+σ+···+σ p−1)

(σ − 1) Z[G]
(1+σ+···+σ p−1)

∼= Z[ζp]
(ζp − 1)

∼= Fp

and

H2(G,D0(S)
) = D0(S)G

ND0(S)
= 0.

Thus h(D0(S)) = 1/p. �
Proof of Theorem 3.4. From the following exact sequence

1 −→ P (K ) −→ I(K ) −→ Cl(K ) −→ 1,

we have

1 −→ P (K )G −→ I(K )G −→ Cl(K )G −→ H1(G, P (K )
) −→ · · · .

Since H1(G, P (K )) = 1 by Lemma 3.5, we have

1 −→ P (K )G −→ I(K )G −→ Cl(K )G −→ 1.

Thus

1 −→ P (K )G

P (k)
−→ I(K )G

P (k)
−→ Cl(K )G −→ 1. (3.4)

From the following exact sequence

1 −→ U K −→ K ∗ −→ P (K ) −→ 1,

we have
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1 −→ F∗
q −→ k∗ −→ P (K )G −→ H1(G, U K ) −→ 1

and

H1(G, U K ) ∼= P (K )G

P (k)
. (3.5)

Since I(K )G

P (k)
is a vector space over Fp with basis [P1], [P2], . . . , [Pm], by (3.4), (3.5), Lemmas 3.6

and 3.7, we get the desired result. �
Remark 3.8. If K is real, it is an interesting question to find explicitly the relation satisfied by [P1],
[P2], . . . , [Pm] in Cl(K )G . By Lemma 3.5, if we can find a nontrivial element ū of H1(G, U K ), then by
Hilbert 90, we have u = xσ−1, where u ∈ U K and x ∈ K . It is easy to see that

m∑
i=1

ordPi (x)[Pi] = 0

in Cl(K )G .

From Proposition 2.4 of [3], we have

Gal
(
G(K )/K

) ∼= Cl(K )/Cl(K )(σ−1) ∼= Cl(K )G . (3.6)

(For the meaning of Cl(K )(σ−1) , see the beginning of Section 5. It should be noted that the last
isomorphism is merely an isomorphism of abelian groups but not canonical.) Therefore, we get:

Corollary 3.9.

# Gal
(
G(K )/K

) =
{

pm−1, if K is real,

pm, if K is imaginary.

Remark 3.10. One of referees told us that Corollary 3.9 is already contained in a paper by B. Angles
(see [1, p. 269]). By the way, the same paper also points out an interesting fact that if m, i.e. the
number of ramified places, is big enough then the Hilbert p-class field tower of K is infinite.

4. The genus field G(K )

In this section, we prove the following theorem which is the main result of this paper.

Theorem 4.1.

G(K ) =
{

k(α1,α2, . . . ,αm), if K is real,

k(β,α1,α2, . . . ,αm), if K is imaginary,

where α
p
i − αi = Di = Q i

P
ei (1 � i � m), β p − β = f (t), and Di, Q i, Pi, f (t) are defined in Section 2.

i
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We only prove the imaginary case. The proof is similar for the real case. Since

(
m∑

i=1

αi + β

)p

−
(

m∑
i=1

αi + β

)
=

m∑
i=1

Q i

P ei
i

+ f (t) = D,

we can assume α = ∑m
i=1 αi + β . In order to prove the above theorem, we need two lemmas.

Lemma 4.2. E = k(β,α1,α2, . . . ,αm) is an unramified abelian extension of K .

Proof. Let P be a place of k and let (1/t) be the infinite place of k. If P �= P1, P2, . . . , Pm, (1/t),
then P is unramified in k(β),k(αi) (1 � i � m), hence the places above P are unramified in E/K .
Otherwise, without loss of generality, we can suppose P = P1. Since α = ∑m

i=1 αi + β , we have
E = Kk(α2, . . . ,αm, β). Thus P = P1 is unramified in k(α2, . . . ,αm, β), hence the place above P is
unramified in E/K . �
Lemma 4.3. The infinite places of K split completely in E = k(β,α1,α2, . . . ,αm).

Proof. Since α = ∑m
i=1 αi + β , we have E = Kk(α1,α2, . . . ,αm). Since the infinite place (1/t) of k

splits completely in k(α1,α2, . . . ,αm), hence the place above (1/t) also splits completely in E/K . �
Proof of Theorem 4.1. From Lemmas 4.2 and 4.3, we have

k(α1,α2, . . . ,αm, β) ⊂ G(K ). (4.1)

Comparing ramifications, k(β),k(αi) (1 � i � m) are linearly disjoint over k, so

[
k(α1,α2, . . . ,αm, β) : k

] = pm+1

and

[
k(α1,α2, . . . ,αm, β) : K

] = pm.

Thus from Corollary 3.9 and (4.1), we get the result. �
5. The p-part of Cl(K )

Let l be a prime number and Zl be the ring of l-adic integers. If K is a cyclic extension of k of
degree l, then Cl(K )l is a finite module over the discrete valuation ring Zl[σ ]/(1 +σ +· · ·+σ l−1) and
Cl(K ) is a finite module over ring Z[σ ]/(1 + σ + · · · + σ l−1). Denote the image of (σ − 1)i acting on

Cl(K )l and Cl(K ) by Cl(K )
(σ−1)i

l and Cl(K )(σ−1)i
, respectively. The Galois module structure of Cl(K )l is

determined by the dimensions:

λi = dim
(
Cl(K )

(σ−1)i−1

l /Cl(K )
(σ−1)i

l

)
for i � 1, these quotients being Fl vector spaces in a natural way. Since Z[σ ]/(1 + σ + · · · + σ l−1) ∼=
Z[ζl] and

∏l−1
i=1(1 − ζ i

l ) = l, the action of σ − 1 on the non-l parts of Cl(K ) is invertible. So λi also
equals to

dim
(
Cl(K )(σ−1)i−1

/Cl(K )(σ−1)i )
.
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In number field situations, the dimensions λi have been investigated by Rédei [11] for l = 2 and
Gras [5] for arbitrary l. In function field situations, these dimensions λi have been investigated by
Wittmann for l �= p. In this section, we give a formula to compute λ2 for l = p. This is an analogue of
the Rédei–Reichardt formula [11] for Artin–Schreier extensions.

If K is imaginary, as in the proof of Theorem 4.1, we suppose that K = k(α), where α =∑m
i=1 αi + β . We have the following sequence of maps

Cl(K )G −→ Cl(K )/Cl(K )(σ−1) ∼= Gal
(
G(K )/K

)
↪→ Gal

(
G(K )/k

)
∼= Gal

(
k(α1)/k

) × · · · × Gal
(
k(αm)/k

) × Gal
(
k(β)/k

)
.

Considering [Pi] ∈ Cl(K )G (1 � i � m) under these maps, we have

[Pi] �−→ [P̄i] �−→ (
Pi, G(K )/K

) �−→ (
Pi, G(K )/K

)
�−→ ((

Pi,k(α1)/k
)
, . . . ,

(
Pi,k(αm)/k

)
,
(

Pi,k(β)/k
))

,

where the i-th component is (Pi, G(K )/K )|k(αi) .
We define the Rédei matrix R = (Rij) ∈ Mm×m(Fp) as follows:

Rij =
{

D j

Pi

}
, for 1 � i, j � m, i �= j,

and Rii is defined to satisfy the equality:

m∑
j=1

Rij +
{

f

P i

}
= 0.

From the discussions in Section 2, we have

(
Pi, G(K )/K

)
α = α,

(
Pi, G(K )/K

)
α j = α j +

{
D j

Pi

}
, for i �= j,

(
Pi, G(K )/K

)
β = β +

{
f

P i

}
,

so

(
Pi, G(K )/K

)
α j = α j + Rij, ∀1 � i, j � m.

Therefore it is easy to see that the image of Cl(K )G → Cl(K )/Cl(K )(σ−1) is isomorphic to the vector
space spanned by the row vectors (Ri1, Ri2, . . . , Rim, { f

P i}) (1 � i � m).
We conclude that

λ2 = dimFp

(
Cl(K )

(σ−1)
p /Cl(K )

(σ−1)2

p
)

= dimFp ker
(
Cl(K )G

p −→ Cl(K )p/Cl(K )
(σ−1)
p

)
= dimFp ker

(
Cl(K )G −→ Cl(K )/Cl(K )(σ−1)

)
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= dimFp Cl(K )G − dimFp Im
(
Cl(K )G −→ Cl(K )/Cl(K )(σ−1)

)
= m − rank(R).

Since the proof of the real case is similar, we only give the results and sketch the proof.
If K is real, from the discussions in Section 2, we have f (t) = 0, so

D =
m∑

i=1

Di .

We define the Rédei matrix R = (Rij) ∈ Mm×m(Fp) as follows:

Rij =
{

D j

Pi

}
, for 1 � i, j � m, i �= j,

and Rii is defined to satisfy the equality:

m∑
j=1

Rij = 0.

The same procedure as in the imaginary case shows that the image of Cl(K )G → Cl(K )/Cl(K )(σ−1) is
isomorphic to the vector space spanned by the row vectors of the Rédei matrix. Thus

λ2 = dimFp Cl(K )G − dimFp Im
(
Cl(K )G −→ Cl(K )/Cl(K )(σ−1)

)
= m − 1 − rank(R).

Theorem 5.1. If K is imaginary, then λ2 = m − rank(R); if K is real, then λ2 = m − 1 − rank(R), where R is
the Rédei matrix defined above.

If p = 2, then σ acts as −1 on Cl(K ). So λ1, λ2 are equal to the 2-rank, 4-rank of the ideal class
group Cl(K ), respectively. In particular, the above theorem tells us the 4-rank of the ideal class group
Cl(K ) which is an analogue of the classical Rédei–Reichardt 4-rank formula for narrow ideal class
groups of quadratic number fields.
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