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Abstract

In this article it is shown that some of the hypotheses of a fixed point theorem of the present author
[B.C. Dhage, On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations,
J. Math. Phys. Sci. 25 (1988) 603–611] involving two operators in a Banach algebra are redundant. Our claim
is also illustrated with the applications to some nonlinear functional integral equationsfor proving the existence
results.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that the first important hybrid fixed point theorem due to Krasnoselskii [1] which combines
the metric fixed point theorem of Banach with the topological fixed point theorem of Schauder in a
Banach space has several applications to nonlinear integral equations that arise in the inversion of the
perturbed differential equations. Many attempts have been made to improve and weaken the hypotheses
of Krasnoselskii’s fixed point theorem. See [2] and the references therein. The case with the Krasnoselskii
type fixed point theorem of the present author [3] in Banach algebras is similar. The study of the nonlinear
integral equations in Banach algebras was initiated by Dhage [3] via fixed point theorems and includes
the following second important hybrid fixed point theorem in Banach algebras. See [3,4].
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Theorem 1.1 ([3] ). Let S be a closed, convex and bounded subset of a Banach algebra X and let
A, B : S→ S be twooperators such that

(a) A is Lipschitzian with a Lipschitz constantα,
(b)

(
I
A

)
(x)−1 exists on B(S), where I is an identity operator and the operatorI

A : X → X is defined by(
I
A

) = x
Ax ,

(c) B is completely continuous, and
(d) Ax By∈ S, ∀ x, y ∈ S.

Then theoperator equation

Ax Bx = x (1)

has a solution, wheneverαM < 1, where M= ‖B(S)‖ = sup{‖Bx‖ : x ∈ S}.
Remark 1.1. Note that

(
I
A

)−1
exists if

(
I
A

)
is well defined and one-to-one onX. Further,

(
I
A

)
is well

defined ifA is regular, i.e.A mapsX into the set of all invertible elements ofX.

We mention thatTheorem 1.1is useful in the study of nonlinear integral equations of mixed type in a
Banach algebra. The above result was further improved in the due course of time by the present author
under weaker versions of the hypotheses (a)–(d) thereof. The following re-formulation ofTheorem 1.2
is noteworthy.

Theorem 1.2 ([4] ). Let S be a closed, convex and bounded subset of a Banach algebra X and let
A, B : S→ X be twooperators such that

(a) A is Lipschitzian with a Lipschitz constantα,
(b) B is completely continuous, and
(c) Ax Bx ∈ S forall x ∈ S.

Then theoperator equation(1) has a solution, wheneverαM < 1, where M= ‖B(S)‖.

The proof of Theorem 1.2involves the use of the advanced notions of the nonlinear functional analysis
such as measures of noncompactness and condensing mappings etc., and so for beginners it is very
difficult to grasp the underlying ideas and the strength of the applicability ofTheorem 1.2. Therefore it
is of interest to prove the improved version ofTheorem 1.1using the ideas of the elementary functional
analysis. Most recently the present author has focused his attention on hypothesis (d) ofTheorem 1.1and
proved the following improved version under weaker conditions. Before stating the fixed point theorem
along these lines, we give a useful definition.

Definition 1.1. A mapping T : X → X is calledD-Lipschitzian if there exists a continuous and
nondecreasing functionφ : R

+ → R
+ such that

‖T x − T y‖ ≤ φ(‖x − y‖) (2)

for all x, y ∈ X, whereφ(0) = 0.

Sometimes we call the functionφ a D-function of T on X. Obviously every Lipschitzian mapping
is D-Lipschitzian, but the converse may not be true. Ifφ is not necessarily nondecreasing and satisfies
φ(r ) < r , for r > 0, the mappingT is called anonlinear contraction with a contraction functionφ.
See [6].
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Let X be a Banach space and letT : X → X. Then T is called acompact operator ifT(X) is
a compact subset ofX. Again T is called totally bounded if for any bounded subsetS of X, T(S)
is a totally bounded set ofX. Further,T is calledcompletely continuous if it is continuous and totally
bounded. Note that every compact operator is totally bounded, but the converse may not be true; however,
the two notions are equivalent on a bounded subset ofX.

Theorem 1.3 ([5] ). Let S be a closed, convex and bounded subset of a Banach algebra X and let
A : X → X, B : S → X be twooperators such that

(a) A isD-Lipschitzian with a D-functionφ,

(b)
(

I
A

)−1
exists on B(S), where I is an identity operator and the operatorI

A : X → X is defined by(
I
A

)
(x) = x

Ax ,
(c) B is completely continuous, and
(d) x = Ax By⇒ x ∈ S forall y ∈ S.

Then theoperator equation(1) has a solution, whenever Mφ(r ) < r, r > 0, where M= ‖B(S)‖.

Wenote that the hypothesis (b) puts a severe restriction on the class of mappingsA and thereby limits
the scope of applications ofTheorem 1.3to nonlinear problems of differential and integral equations.
In this work we further improve the aboveTheorem 1.3by relaxing the hypothesis (b) and increase its
utility from the point of view of applications.

2. Fixed point theorem

Theorem 2.1. Let S be a closed, convex and bounded subset of a Banach algebra X and let A: X →
X, B : S→ X be twooperators such that

(a) A isD-Lipschitzian with aD-functionφ,
(b) B is completely continuous, and
(c) x = Ax By⇒ x ∈ S, for all y ∈ S.

Then theoperator equation(1) has a solution, whenever Mφ(r ) < r, r > 0, where M= ‖B(S)‖.

Proof. Let y ∈ Sand define a mappingAy : X → X by

Ay(x) = Ax By, x ∈ X.

Notice thatAy is a nonlinear contraction onX with a contraction functionψ given byψ(r ) = Mφ(r ),
r ∈ R

+, since wehave that

‖Ayx1 − Ayx2‖≤‖Ax1 − Ax2‖‖By‖
≤ Mφ(‖x1 − x2‖)

whenever x1, x2 ∈ X. Now anapplication of a fixed point theorem of Boyd and Wong [6] yields that
there is a unique pointx∗ ∈ X such that

Ay(x
∗) = x∗

or, equivalently,

x∗ = Ax∗ By.
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Since hypothesis (c) holds, we have thatx∗ ∈ S. Define a mappingN : S→ X by

Ny = z, (3)

wherez ∈ X is the unique solution of the equation

z = AzBy, y ∈ S.

We showthat N is continuous. Let{yn} be a sequence inS converging to a pointy. SinceS is closed,
y ∈ S. Now

‖Nyn − Ny‖=‖ANyn Byn − ANyBy‖
≤‖ANyn Byn − ANyByn‖ + ‖ANyByn − ANyBy‖
≤‖ANyn − AN(y)‖‖Byn‖ + ‖AN(y)‖‖yn − y‖
≤ Mφ(‖Nyn − Ny‖) + ‖ANy‖‖yn − y‖

and hence

lim sup
n

‖Nyn − Ny‖ ≤ Mφ(lim sup
n

‖Nyn − Ny‖) + ‖ANy‖(lim sup
n

‖yn − y‖).

This shows that limn ‖Nyn − Ny‖ = 0 and consequentlyN is continuous onS. Next we show thatN is
a compact operator onS. Now for anyz ∈ Swe have

‖Az‖≤‖Aa‖ + ‖Az− Aa‖
≤‖Aa‖ + α‖z− a‖
≤c

wherec = ‖Aa‖ + diam(S) for some fixeda ∈ S.
Let ε > 0 be given. SinceB is completely continuous,B(S) is totally bounded. Then there is a set

Y = {y1, . . . , yn} in Ssuch that

B(S) ⊂
n⋃

i=1

Bδ(wi ),

wherewi = B(yi ), δ = (
1−αM

c

)
ε andBδ(wi ) is an open ball inX centered atwi of radiusδ. Therefore

for any y ∈ Swe have ayk ∈ Y such that

‖By− Byk‖ <
(

1 − αM

c

)
ε.

Also we have

‖Ny − Nyk‖≤‖AzBy− Azk Byk‖
≤‖AzBy− Azk By‖ + ‖Azk By− Azk Bzk‖
≤‖Az− Azk‖‖By‖ + ‖Azk‖‖Byk − By‖
≤ (αM)‖z − zk‖ + ‖Azk‖‖Byk − By‖
≤ c

1 − αM
‖By− Byk‖

<ε.
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This is true for everyy ∈ Sand hence

N(S) ⊂
n⋃

i=1

Bε(zi ),

wherezi = N(yi ). As a resultN(S) is totally bounded. SinceN is continuous, it is a compact operator
on S. Now anapplication of Schauder’s fixed point yields thatN has a fixed point inS. Then by the
definition of N

x = Nx = A(Nx)Bx = Ax Bx,

and so the operator equationx = Ax Bxhas a solution inS. �

Since every Lipschitzian mapping isD-Lipschitzian, we obtain the following interesting corollary to
Theorem 2.1in the applicable form to nonlinear differential and integral equations.

Corollary 2.1. Let Sbe a closed, convex and bounded subset of a Banach algebra X and let A: X → X,
B : S→ X be twooperators such that

(a) A is Lipschitzian with a Lipschitz constantα,
(b) B is completely continuous, and
(c) x = Ax By⇒ x ∈ S, for all y ∈ S.

Then theoperator equation(1) has a solution, wheneverαM < 1, where M= ‖B(S)‖.

The following sufficient condition which guarantees the hypothesis (c) ofTheorem 2.1appears in [5].

Proposition 2.1. Let S be a closed, convex and bounded subset of a Banach algebra X such that
S = {y ∈ X | ‖y‖ ≤ r } for some real number r> 0. Let A : X → X − {0}, B : S → X be two
operators satisfying hypotheses(a)–(b) of Theorem2.1. Further, if

‖x‖ ≤
∥∥∥∥
(

I

A

)
x

∥∥∥∥ (4)

for all x ∈ X, then x∈ S.

3. Functional integral equations

The geometrical and topological fixed point theorems have some nice applications to nonlinear
differential and integral equations. See [7] and the references therein. Similarly the hybrid fixed point
theorems in Banach algebras are also useful for proving the existence theorems to certain nonlinear
differential and integral equations. Here in this section we illustrate the applicability of ourTheorem 2.1
andProposition 2.1by considering the following examples of nonlinear functional integral equations.

Example 3.1. Given aclosed and bounded intervalJ = [0,1] in R, theset of all real numbers, consider
the nonlinear functional integral equation (in short FIE)

x(t) =
[

1

1 + |x(θ(t))|
] (

q(t) +
∫ σ(t)

0
g(s, x(η(s)))ds

)
, (5)

for all t ∈ J, whereθ, η : J → J, q : J → R, andg : J × R → R are continuous.
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By a solution of the FIE (5) we mean a continuous functionx : J → R that satisfies FIE (5) on J.
Let X = C(J,R) be a Banach algebra of all continuous real-valued functions onJ with the norm

‖x‖ = sup
t∈J

|x(t)|. (6)

We shall obtain the solution of FIE (5) under some suitable conditions on the functions involved in (5).
Suppose that the functionσ andg satisfy the condition

σ (t) ≤ t,
|g(t, x)| < 1 − ‖q‖, ‖q‖ < 1

}
(7)

for all t ∈ J andx ∈ R.
Define asubsetSof X by

S= {y ∈ X | ‖y‖ ≤ 1}. (8)

Consider the two mappingsA, B : X → X defined by

Ax(t) = 1

1 + |x(θ(t))| , t ∈ J, (9)

and

Bx(t) = q(t)+
∫ σ(t)

0
g(s, x(η(s)))ds, t ∈ J. (10)

Then the FIE (5) is equivalent to the operator equation

Ax(t)Bx(t) = x(t), t ∈ J. (11)

We shall show that the operatorsA andB satisfy all the conditions ofCorollary 2.1.
Clearly A defines a mappingA : X → X − {0}. First we show thatA is Lipschitzian onX. Let

x, y ∈ X. Then we have

|Ax(t) − Ay(t)|=
∣∣∣∣ 1

1 + |x(θ(t))| − 1

1 + |y(θ(t))|
∣∣∣∣

= |x(t)| − |y(t)|
(1 + |x(θ(t))|)(1 + |y(θ(t))|)

≤‖x − y‖.
Taking the supremum overt weobtain

‖Ax − Ay‖ ≤ ‖x − y‖
which shows thatA is a Lipschitzian with a Lipschitz constantα = 1.

It is an easy exercise to prove thatB is completely continuous onS. We show that B : S → S. Let
x ∈ S. Then by (7) and (10),

|Bx(t)|≤ |q(t)| +
∫ σ(t)

0
|g(t, x(η(s)))| ds

< |q(t)| +
∫ t

0
(1 − ‖q‖)ds.
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SinceBx ∈ C(J,R), thereis a pointt∗ ∈ J such that

‖Bx‖ = |Bx(t∗)| = max
t∈J

|Bx(t)|.
Therefore we have

‖Bx‖=|Bx(t∗)|
< |q(t∗)| +

∫ t∗

0
(1 − ‖q‖)ds

≤‖q‖ +
∫ 1

0
(1 − ‖q‖)ds

=1,

i.e.‖Bx‖ < 1. As a resultB : S→ S. Finally we show that condition (4) of Proposition 2.1holds. Now
for anyx ∈ X,∥∥∥∥

(
I

A

)
(x)

∥∥∥∥=sup
t∈J

∣∣∣∣ x(t)

Ax(t)

∣∣∣∣
=sup

t∈J
{|x(t)|[1 + |x(θ(t))|]}

≥‖x‖,
and so byProposition 2.1, condition (c) ofTheorem 2.1is satisfied. Thus the operatorsA andB satisfy
all the conditions ofTheorem 2.1and hence an application of it yields that the operator equation (11) and
consequently the FIE (5) has a solution onJ.

Example 3.2. Given a closed and bounded intervalJ = [0,1] in R, consider the nonlinear integral
equation (in short IE)

x(t) = [1 + λ|x(θ(t))|]
(

q(t)+
∫ σ(t)

0
g(s, x(η(s)))ds

)
, (12)

for all t ∈ J, and 0< λ < 1, whereθ, σ, η : J → J, q : J → R, andg : J × R → R are continuous.
By a solution of the FIE (12) we mean a continuous functionx : J → R that satisfies FIE (12) on J.

Let X = C(J,R) be a Banach algebra of all continuous real valued functions onJ with the norm given
in (6).

We shall obtain the solution of FIE (12) under some suitable conditions. We assume that the functions
involved in (12) satisfy the condition (7). Define a subsetSof X by

S =
{

y ∈ X | ‖y‖ ≤ 1

1 − λ

}
. (13)

Consider the two mappingsA, B : X → X defined by

Ax(t) = 1 + λ|x(θ(t))|, t ∈ J, (14)

and

Bx(t) = q(t) +
∫ σ(t)

0
g(s, x(η(s)))ds, t ∈ J. (15)

We shall show that the operatorsA andB satisfy all the conditions ofCorollary 2.1.
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First we show thatA is Lipschitzian onX. Let x, y ∈ X. Then

|Ax(t) − Ay(t)|= |[1 + λ|x(θ(t))|] − [1 + λ|x(θ(t))|]|
=λ | |x(θ(t))| − |y(θ(t))| |
≤λ ‖x − y‖,

or ‖Ax − Ay‖ ≤ λ ‖x − y‖, whichshows thatA is a Lipschitzian with a Lipschitz constantλ.
It is proved as inExample 3.1that the operatorB is completely continuous onSand thatB : S → S.

Also we have‖Bx‖ < 1 for all x ∈ S. Let x ∈ Sbe arbitrary withx = Ax By for somey ∈ S. Then we
have

|x(t)|= |Ax(t)| |By(t)|
≤‖Ax‖‖By‖
≤1 + λ‖x‖
≤ 1

1 − λ

and so,‖x‖ ≤ 1
1−λ . As a resultx ∈ S. Thus hypothesis (c) ofTheorem 2.1is satisfied. Thus ifλ < 1,

then an application ofTheorem 2.1yields that the FIE (12) has a solution onJ. �
Remark 3.1. We note that the operatorA in Example 3.2 does not satisfy condition (4) of
Proposition 2.1.

Remark 3.2. It is worthwhile mentioning that in bothExamples 3.1and 3.2, the operator
(

I
A

)
is not

one-to-one onX. This proves the advantage ofTheorem 2.1over those ofTheorems 1.1and1.3.
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