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SUMMARY

Plant root development is informed by numerous
edaphic cues. Phosphate (Pi) availability impacts
the root system architecture by adjusting meristem
activity. However, the sensory mechanisms moni-
toring external Pi status are elusive. Two functionally
interacting Arabidopsis genes, LPR1 (ferroxidase)
and PDR2 (P5-type ATPase), are key players in root
Pi sensing, which is modified by iron (Fe) availability.
We show that the LPR1-PDR2 module facilitates,
upon Pi limitation, cell-specific apoplastic Fe and
callose deposition in the meristem and elongation
zone of primary roots. Expression of cell-wall-tar-
geted LPR1 determines the sites of Fe accumulation
as well as callose production, which interferes with
symplastic communication in the stem cell niche,
as demonstrated by impaired SHORT-ROOT move-
ment. Antagonistic interactions of Pi and Fe availabil-
ity control primary root growth via meristem-specific
callose formation, likely triggered by LPR1-depen-
dent redox signaling. Our results link callose-regu-
lated cell-to-cell signaling in root meristems to the
perception of an abiotic cue.

INTRODUCTION

Vigorous development of the seed radicle into an elaborate root

system is critical for plant survival and performance because

roots provide an extensive interface for water uptake, mineral

nutrition, and chemical interactions with the rhizosphere.

Root development, which is highly plastic and responsive to

numerous edaphic cues, has been studied extensively in Arabi-

dopsis thaliana (Petricka et al., 2012). The simple anatomy of its

root, comprising the vascular cylinder and three radial cell layers

(endodermis, cortex, and epidermis), is maintained by the stem

cell niche (SCN) of the root apical meristem (RAM). The SCN is

patterned during embryogenesis and includes the quiescent

center (QC) and contacting pluripotent cells. These initials are
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perpetual sources of daughter cells that generate the lineages

of transit-amplifying (TA) cells of the proximal meristem (Dolan

et al., 1993; Scheres, 2007). At the boundary to the elongation

zone (transition zone), TA cells exit the cell cycle, expand, and

differentiate by acquiring tissue-specific characteristics (Perilli

et al., 2012). The position of the transition zone determines

RAM size and is directly related to the root growth rate (Baum

et al., 2002).

Cell-to-cell signaling is a key organizing principle in metazoan

development. RAM and SCN maintenance require the precise

coordination of cell division and differentiation, which depends

on the directional intercellular transport of mobile signals (Gal-

lagher et al., 2014; Perilli et al., 2012). For example, the QC

maintains adjacent stem cells via unknown short-range signals

that prevent their differentiation (Scheres, 2007; van den Berg

et al., 1997). The transcription factor SHORT-ROOT (SHR)

moves from the stele into the QC and endodermis to determine

cell fate, partly by interaction with SCARECROW (Cui et al.,

2007; Nakajima et al., 2001; Sabatini et al., 2003). Two major

routes of cell-to-cell communication are known in plants. Inter-

cellular translocation of cargo is facilitated by exo- and endocy-

tosis (Contento and Bassham, 2012) or by direct symplastic

transport via specialized channels, called plasmodesmata (PD)

(Burch-Smith and Zambryski, 2012). Metabolites, small pro-

teins, and RNAs may transverse PD by diffusion, whereas other

macromolecules interact with PD and move by a targeted

mechanism. Symplastic trafficking can be tuned by modification

of PD structure or deposition of callose (a b-1,3 glucan) at the

PD neck region (Benitez-Alfonso et al., 2013; Zavaliev et al.,

2011). During numerous developmental processes or environ-

mental responses, callose production controls PD conductivity,

which is counteracted by specific PD-localized b-1,3 gluca-

nases (Burch-Smith and Zambryski, 2012). There is growing

evidence that reactive oxygen species (ROS) and redox

signaling regulate callose deposition and symplastic perme-

ability (Benitez-Alfonso et al., 2011; Stonebloom et al., 2009).

In root development, PD and, possibly, callose turnover are

essential for SHR movement (Vatén et al., 2011) or for deter-

mining the pattern of lateral root formation (Benitez-Alfonso

et al., 2013). However, the mechanisms that connect callose-

regulated cell-to-cell signaling in the RAM to the perception of

soil-borne cues are elusive.
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The mineral nutrient inorganic phosphate (Pi) constitutes a

major nexus in metabolism, and its availability directly impacts

vital plant functions. Pi immobility and resultant Pi limitation are

pervasive in soils and caused by complex chemistries involving

Fe and other metals. To cope with Pi shortage, plants attenuate

primary root extension, promote lateral root development, and

stimulate root hair formation, plastic growth responses thought

to maximize Pi interception in topsoil (Abel, 2011; Péret et al.,

2011). Studies in Arabidopsis identified mutants and accessions

with altered Pi sensitivities of primary root growth and showed

that external Pi is monitored by the root apex to locally inform

root development (Reymond et al., 2006; Svistoonoff et al.,

2007; Ticconi et al., 2004, 2009). Recent work uncovered a cen-

tral role of LPR1 (LOW PHOSPHATE ROOT1), its close paralog

LPR2, and PDR2 (PHOSPHATE DEFICIENCY RESPONSE2)

in local Pi sensing. PDR2 was isolated by mutagenesis of

accession Col (Ticconi et al., 2009), and LPR1 was identified in

recombinant inbred lines of accessions, Bay and Sha, which

show opposite root growth responses to low Pi (Svistoonoff

et al., 2007). LPR1 and PDR2 encode proteins of the secretory

pathway (a multicopper oxidase and the single P5-type

ATPase, respectively), and their expression domains overlap in

the distal RAM. The LPR genes and PDR2 interact genetically

(the insensitive lpr1lpr2 mutations suppress the hypersensitive

pdr2 short root phenotype in low Pi) and are required for SCN

and RAM maintenance in Pi-deprived roots (Svistoonoff et al.,

2007; Ticconi et al., 2009). Intriguingly, external Fe availability

modifies the Pi-dependent root growth response (Svistoonoff

et al., 2007; Ticconi et al., 2009; Ward et al., 2008). Here we

show that the LPR1-PDR2 module mediates cell-specific Fe

deposition in cell walls of the RAM and elongation zone during

Pi limitation. Fe accumulation coincides with sites of callose

deposition, which interferes with cell-to-cell communication

and SCNmaintenance, as revealed by impaired SHRmovement.

We provide evidence for apoplastic LPR1 ferroxidase activity

and propose that antagonistic interactions of Pi and Fe availabil-

ity adjust the primary root growth rate via RAM-specific callose

deposition, likely triggered by LPR1-dependent redox signaling.

RESULTS

Root Growth Inhibition in LowPi Depends on External Fe
Because Fe availability modifies root growth in low Pi (Svistoon-

off et al., 2007; Ward et al., 2008), we studied in detail the inter-

actions of both nutrients during primary root development.

We used a set of six A. thaliana accessions (Col, Bay, and Sha)

and Col mutant lines (pdr2, lpr1lpr2, and lpr1lpr2pdr2) that

display similar root growth rates on +Pi but contrasting sensitiv-

ities of growth inhibition on –Pi medium (Svistoonoff et al., 2007;

Ticconi et al., 2009). Compared with Col and Sha, pdr2 roots re-

sponded in a hypersensitive fashion to –Pi, whereas roots of Bay,

lpr1lpr2, and lpr1lpr2pdr2were insensitive, with the triple mutant

showing a genetic interaction of the LPR and PDR2 genes. Inter-

estingly, inhibition of root growth was rescued by Fe omission

(–Pi–Fe), approaching the growth observed in +Pi (Figure 1A).

Root extension and RAM size are controlled by the rates of cell

division and differentiation aswell as by the number and length of

elongating cells (Beemster and Baskin, 1998). We measured, in

nutrient shift studies, the number of meristematic and elongating
Deve
cells and the length of the first differentiated cell in a single tri-

choblast file. After transfer to +Pi, the three parameters did not

change considerably between genotypes for up to 40 hr (Fig-

ure 1B). However, within 20 hr on –Pi, roots of pdr2 showed a sig-

nificant decrease in the number ofmeristematic cells that sharply

dropped to�25%after 40 hr, suggesting a shift from cell division

to differentiation. For the Col and Sha accessions, a significant

decline was observed after 40 hr, whereas no reduction was

detectable for the three insensitive lines. On the other hand,

the number of elongating cells and the length of the first root

hair-forming cell were reduced strongly in roots of the sensitive

lines within 20 hr on –Pi, pointing to early differentiation of elon-

gating cells. Both parameters did not change for lpr1lpr2 and

lpr1lpr2pdr2 roots. The Bay accession showed only a slight

reduction in trichoblast length. Importantly, transfer to –Pi–Fe

medium prevented RAM reduction and early cell differentiation

for all genotypes (Figure 1B). Therefore, Pi deficiency-induced

root growth inhibition depends on external Fe presence and

is initiated by accelerated differentiation of elongating cells,

followed by a decline in meristematic cells.

Pi Limitation Stimulates Cell-Specific Fe Accumulation
in Root Tips
Several studies reported Fe overload in Pi-deprived plants (Abel,

2011). To visualize Pi-dependent Fe distribution in roots, we

used a sensitized, Fe-specific histochemical procedure (Perls/

diaminobenzidine [DAB] staining) that reports labile (non-heme)

Fe3+ and some Fe2+ (Meguro et al., 2007; Roschzttardtz et al.,

2009). For Pi-replete seedlings, we detected Fe only in the root

apex, a pattern that changed dramatically within 20 hr after

transfer to –Pi (Figure 1C; Figure S1A). Although Col, pdr2, and

Sha roots revealed Fe accumulation along the entire root axis,

including the RAM, the three insensitive lines showed increased

Fe staining only in the mature root region, suggesting that differ-

ential Fe distribution in root tips, and not general Fe overload,

determines the Pi growth response. Direct measurement of Fe

content in whole roots revealed Fe hyperaccumulation in pdr2

on –Pi but similar Fe levels in Col and lpr1lpr2 roots (Figure S1B).

To estimate the relative contribution of Fe3+ and Fe2+ to the labile

Fe pool, we compared Perls/DAB and Turnbull/DAB staining of

root tips because the latter method is specific for Fe2+ (Meguro

et al., 2007). The data revealed much weaker Fe2+ than Fe3+

staining irrespective of Pi supply and genotype (Figure S1C).

Therefore, the dynamics of histological Fe detection are largely

caused by changes in labile Fe3+ pools.

Previous work implicated the root apex in external Pi sensing

(Svistoonoff et al., 2007). We examined cell-type-specific Fe dis-

tribution in Pi-replete root tips and detected Fe mainly in the root

cap (RC) and SCN, with stronger Fe staining in the RC of Col,

pdr2, and Sha roots (Figure 1C). Within 20 hr after transfer

to –Pi, Col and Sha showed Fe accumulation in the rapidly differ-

entiating elongation zone, whereas pdr2 revealed Fe hyperaccu-

mulation in the entire root tip. Such a distribution was not

observed for the three insensitive lines, which showed dimin-

ished Fe staining during continued exposure to –Pi (Figure 1C).

Perls/DAB staining was not detectable after transfer to –Pi–Fe

medium, which corroborates the Fe specificity of the method

and suggests that the elevated Fe content of Pi-deprived roots

depends on external Fe availability (Figure S1A). We used the
lopmental Cell 33, 216–230, April 20, 2015 ª2015 Elsevier Inc. 217
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Figure 1. Fe-Dependent Root Growth Inhibition in Low Pi

(A) Seeds were germinated on +Pi agar (4 days) and transferred to +Pi, –Pi, or –Pi medium without Fe (–Pi–Fe). Representative images were taken 3 days after

transfer. Scale bar, 1 cm.

(B) Root growth analysis. Top graphs (order of genotypes as in A): number of meristematic (M-cells) and elongating cells (E-cells). Bottom graphs: size of the first

differentiated cell and root growth zone (meristem plus elongation zone). Shown are the means of three independent experiments (±SE, n = 12–18, **p < 0.001,

Student’s t test).

(C) Fe accumulation and distribution in primary roots. Seeds were germinated on +Pi (4 days) and transferred to –Pi for 20 hr prior to Perls/DAB staining. The top

panels of each time point show themature root zone. The center and bottom panels depict the early differentiation zone and root apical region, respectively. Scale

bar, 100 mm.

(D) Fe staining (Perls only) of the root SCN (transfer as above). Scale bar, 25 mm. triple, lpr1lpr2pdr2.

See also Figure S1.
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less sensitive Perls method (no DAB enhancement) tomonitor Fe

distribution in the SCN and detected Fe largely in the QC of Pi-

replete Col and pdr2 roots (Figure 1D). Fe deposition in the

SCN increased within 20 hr after transfer to –Pi and was notably

stronger for pdr2. Root tips of lpr1lpr2 never appreciably stained

for Fe (Figure S1D), and the lpr1lpr2pdr2 mutant showed only

faint staining after transfer to –Pi, which supports lpr1lpr2 epis-

tasis to pdr2 (Figure 1D).

Cell-Specific Fe Deposition in the Root Apoplast
We further studied Fe distribution on sections of Perls/DAB-

stained Col and pdr2 root tips. In addition to the RC and SCN

of Pi-replete roots, Fe was commonly detected in the cortex of

the root apex (Figures 2A and 2F). Within 20 hr on –Pi, staining

of Col roots indicated local Fe accumulation within the apoplast

surrounding SCNcells and cortical cells of the shortened elonga-

tion zone (Figures 2B–2D). In pdr2, elevated apoplastic Fe was

detected mainly in the SCN and distal root meristem (Figures

2G–2I). Both lines also accumulated Fe in the differentiation

zone, where it was deposited as a plaque at the outgrowing tip

of root hairs (Figures 2E and 2J). High-resolution images of coun-

terstained, plasmolyzed root cells clearly showed cell-wall-asso-

ciated Perls/DAB staining (Figures 2K and 2L). Sections of

lpr1lpr2 and lpr1lpr2pdr2 root tips revealed diminished local Fe

deposition in the SCN or cortex under –Pi condition (Figure S2).

We confirmed apoplastic Fe localization by high-resolution

secondary ion mass spectrometry (NanoSIMS) elemental map-

ping (Moore et al., 2011) of semi-thin sections prepared from

pdr2 roots. The images revealed apoplastic co-localization of
56Fe- and 31P-derived ions in the SCN of Pi-replete roots (Figures

2M–2R). After transfer to –Pi, 56Fe signals, but no 31P ions, were

recorded for the apoplast (Figures 2S–2V), which showed signs

of expansion, as suggested by gaps between SCN cells (Fig-

ure 2S). The data confirm cell-specific Fe accumulation in Pi-

deprived root meristems and indicate dynamic colocalization

of both ions in the apoplast, depending on external Pi availability.

Pi-Dependent Callose Deposition Inhibits Symplastic
Communication
Because NanoSIMS imaging indicated apoplast expansion in

–Pi, we prepared root sections for ultrastructural analysis.

Indeed, on –Pi (20 hr), Col and pdr2 root meristems accumulate

electron-translucent cell wall material that is largely restricted to

the SCN (Figure 3A; Figure S3A). High-resolution images re-

vealed accumulation of secretory vesicles and extreme thick-

ening of QC cell walls in pdr2, which is less pronounced in Col

and not evident in lpr1lpr2 roots (Figure 3A, bottom). However,

Col roots revealed substantial cell wall thickening within the

cortex file of the elongation zone, particularly at sites of Fe accu-

mulation (Figure 3D). Propidium iodide (PI) staining indicated

frequent events of cell death only in the pdr2 QC (Figure S3B),

which is likely a consequence of massive cell wall deposition

and may explain accelerated RAM differentiation.

Because the irregular pattern of extra cell wall material is indic-

ative of callose deposition, we examined Pi-dependent callose

formation by immunogold labeling and aniline blue staining (Fig-

ures 3B and 3C). Within 20 hr on –Pi, Col roots revealed callose

deposition in the SCN and cortex cells of the elongation zone, a

pattern strikingly similar to that of Fe accumulation (Figure 3D). In
Deve
pdr2 roots, massive callose formation occurred predominantly in

the SCN and RAM, whereas no extra callose deposition was

observed for the three insensitive genotypes. Enhanced callose

formation was not observed on �Pi�Fe, indicating that callose

production in –Pi depends on Fe availability (Figure S3C).

Because callose deposition may affect PD permeability, we

used two GFP reporter lines to study Pi-dependent regulation

of symplastic transport (Figure 4). GFP expressed under control

of the companion cell-specific gene promoter SUCROSE-H+

SYMPORTER 2 (pSUC2) passively diffuses through PD from

the phloem into surrounding tissues (Benitez-Alfonso et al.,

2009; Imlau et al., 1999). Within 2 days on –Pi, GFP movement

into primary root tips was inhibited greatly in wild-type (Col)

plants expressing pSUC2::GFP. As expected, GFP diffusion

was impaired severely in pdr2 but unaffected in lpr1lpr2 roots

(Figure 4A). SHR is a key regulator of radial root patterning and

acts in a concentration-dependent manner (Helariutta et al.,

2000; Koizumi et al., 2012; Wu et al., 2014). We examined

pSHR::SHR�GFP expression in the RAM of the wild-type (Col),

pdr2, and lpr1lpr2 upon transfer to –Pi. Again, SHR�GFP move-

ment was impaired severely in pdr2 but unaltered in lpr1lpr2 root

meristems (Figure 4B). Analysis of wild-type roots indicated

reduced SHR�GFP fluorescence in the QC within 12 hr, which

declined to intensities below the detection limit after 48 hr (Fig-

ures 4C and 4D). We further noticed the formation of a premature

middle cortex layer (Figure 4C), which is likely caused by

restricted SHR movement into the endodermis (Koizumi et al.,

2012; Paquette and Benfey, 2005). Therefore, SCN-specific cal-

lose deposition in –Pi modulates RAM maintenance, likely via

symplastic cell-to-cell communication.

LPR1 Expression Triggers Fe Accumulation and Callose
Deposition in Low Pi
The similar patterns of LPR1-dependent Fe and callose accumu-

lation in –Pi prompted us to determine the LPR1 expression

domain and consequences of LPR1 overexpression. Analysis

of transgenic pLPR1Col::GUS roots (Col) revealed the highest

LPR1 promoter activity within the SCN and weaker b-glucoroni-

dase (GUS) expression in endodermal cell layers and provascu-

lar tissues, which only slightly expanded into thematuration zone

upon Pi deprivation (Figure 5A). Steady-state LPR1mRNA levels

did not appreciably respond to –Pi and were similar for wild-

type and pdr2 roots (data not shown). Notably, cell-specific

pLPR1::GUS expression correlated with patterns of Fe and cal-

lose deposition in Pi-starved wild-type (Col) root tips (Figures 1C

and 3C).

We generated transgenic CaMV p35S::LPR1 and p35S::

SPLPR1�GFP�LPR1 plants (Col) for analysis of root phenotypes

(Figure 5; Figure S4). Several p35S::LPR1 lines expressing

elevated levels of LPR1mRNA and LPR1 protein showed devel-

opment of a truncated root system only after germination on –Pi,

which was similar to the pdr2 root phenotype. The root tips

stained intensely for Fe and callose on –Pi only, demonstrating

a critical role of LPR1 for Fe accumulation, callose deposition,

and root growth inhibition in response to –Pi (Figure 5B; Figures

S4A–S4E). p35S::SPLPR1�GFP�LPR1 lines showed partial

transgene silencing in the RAM but stronger GFP�LPR1 expres-

sion in the RC (Figure 5C). For all LPR1-overexpressing lines,

nutrient shift studies revealed Fe and callose accumulation in
lopmental Cell 33, 216–230, April 20, 2015 ª2015 Elsevier Inc. 219
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the RC on –Pi only, indicating that LPR1 expression determines

the sites of Fe accumulation and callose deposition (Figure 5D).

LPR1 Encodes a Cell Wall Ferroxidase
LPR1 and LPR2 code for multicopper oxidases (MCOs) of un-

known substrate specificity (Svistoonoff et al., 2007). Polyphenol

oxidases (laccases) and proteins related to ferroxidases are the

largest group in the MCO family across all phyla (Hoegger et al.,

2006). Yeast Fet3p is the best characterized ferroxidase, which

couples the oxidation of four Fe2+ ions to the reduction of O2

to 2H2O via four catalytic Cu sites organized in two centers,

the mononuclear Cu site (T1) and the trinuclear Cu cluster (T2/

T3). Structure-function studies identified three amino acid resi-

dues near the T1 site (E185, D283, and D409) that are critical

for Fe2+ binding and electron transfer (Stoj et al., 2006). Align-

ment of LPR and Fetp sequences showed conservation of the

Cys and ten His residues coordinating the four Cu sites but failed

to identify acidic residues in LPR proteins that may complex Fe2+

(Figure S5A). Homology modeling of LPR1 and LPR2 and struc-

tural superimposition with the crystal structure of Fet3p (Figures

5E and 5F; Figure S5B) indicated the presence of a spatially

conserved acidic triad in LPR1 (E269, D370, and D462) and

LPR2 (E271, D372, and D464), which prompted us to test ferrox-

idase activity.

Using a ferrozine-based assay, we compared ferroxidase

activity in root extracts of wild-type (Col) and p35S::LPR1 plants

and measured up to 5-fold higher specific activities for the

LPR1 overexpression lines. Ferroxidase activity correlated

approximately with steady-state LPR1 mRNA and protein levels

(Figures S4F–S4H). We confirmed this observation by transient

expression of p35S::SPLPR1�GFP�LPR1 in tobacco leaves,

which demonstrated LPR1-dependent expression of ferroxidase

activity in planta (Figure 5G). We previously detected LPR1 in the

ER (Ticconi et al., 2009). Because ferroxidases typically reside

in the extracellular matrix, we reexamined SPLPR1�GFP�LPR1

targeting in transgenic Arabidopsis roots. In addition to ER

localization, our data revealed cell-wall-derived GFP�LPR1 fluo-

rescence (Figure 5H). LPR1 cell wall targeting was confirmed in

transgenic pUBQ10::SPLPR1�GFP�LPR1 plants, which showed

considerably lower GFP�LPR1 expression (Figure 5I; Fig-

ure S5C), and in cell wall extracts after sequential washing of

suspension-cultured wild-type (Col) cells (Figure 5J). Therefore,

LPR1 ferroxidase functions in the apoplast.

LPR1-Dependent Fe Accumulation in Low Pi Correlates
with ROS Production
Recent studies have implicated ROS and cellular redox status

in the regulation of symplastic transport, which is controlled by
Figure 2. Cell-Specific Fe Deposition in the Root Apoplast

(A–J) Semi-thin (1-mm) longitudinal sections of Perls/DAB-stained root tips of Col

and D) and (H and I) showmagnifications of the RAM in (B) and (G), respectively. (E

cortex cell layer, respectively. M, meristem; EZ, elongation zone; DZ, differentiat

(K and L) Toluidine blue counterstain of Col root stem cells (K) and cortex cells (L) a

mark plasmolyzed protoplasts. Scale bar, 5 mm.

(M–V) NanoSIMS images of semi-thin (1-mm) longitudinal sections of pdr2 root tips

apoplastic 56Fe (M) and 31P (N) signalsafter transfer to+Pimedium.Scalebar, 5mm.A

Fe- and P-containing extracellular deposits (O–R). The arrowhead points to local c

See also Figure S2.

Deve
callose turnover at the PD neck region (Benitez-Alfonso et al.,

2011; Stonebloom et al., 2009; Zavaliev et al., 2011). Accumu-

lation of apoplastic labile Fe3+ in root tips is a potential source

of catalytic Fe, which participates in ROS generation and Fe

redox cycling (Kosman, 2010; Meguro et al., 2007). The similar

pattern of apoplastic Fe3+ and callose accumulation in root

meristems on –Pi prompted us to monitor LPR1-dependent

ROS formation. We observed apoplastic ROS (carboxylated

20,70-dichlorodihydrofluorescein diacetate [C-H2DCFDA] stain-

ing) and superoxide (Nitro blue tetrazolium [NBT] staining) for-

mation in root tips of the sensitive but not insensitive lines

within 12–24 hr after transfer from +Pi to –Pi medium (Figure 6).

Furthermore, overexpression of p35S::SPLPR1�GFP�LPR1

enhanced ROS production in the RC on –Pi only (Figure 5D),

which suggests that LPR1-dependent Fe oxidation generates

ROS in low Pi.

High Pi Availability Counters Fe Excess
The striking correlation of Fe accumulation, ROS production,

and callose deposition in Pi-starved root tips raised the ques-

tion whether excess Fe and its presumed toxicity triggers

root growth inhibition, as proposed previously (Ward et al.,

2008). We therefore transferred seedlings from control agar

to +Pi medium supplemented with 10-fold higher (500 mM)

Fe (+Pi++Fe). When compared with transfer to –Pi+Fe, we

noticed Fe hyperaccumulation in Col root meristems, which

was augmented further in pdr2. No Fe staining in lpr1lpr2

root meristems and only faint staining in lpr1lpr2pdr2 was

detectable (Figure 7A). Measurement of Fe in whole roots

confirmed Fe overaccumulation in +Pi++Fe medium, which

was similar for all genotypes (Figure S1B). Surprisingly, Fe

overload did not elicit superoxide formation and callose depo-

sition. Likewise, RAM organization was maintained, and root

growth was significantly less inhibited compared with plants

on –Pi (Figure 7B). Therefore, LPR1-controlled Fe accumula-

tion and callose deposition in root tips likely depends on extra-

cellular Pi:Fe ratios.

Root Apical Fe Sequestration Mediates the Growth
Response to Low Pi
Because the growth response to –Pi requires external Fe and the

LPR1 expression domain delimits Fe accumulation and callose

formation, we monitored Fe acquisition by root tips. IRON-

REGULATED TRANSPORTER 1 (IRT1), located in the plasma

membrane of differentiated root epidermal cells, constitutes

the major feedback-regulated Fe uptake system in Arabidopsis

(Kobayashi and Nishizawa, 2012; Vert et al., 2002). Irrespective

of Pi supply, wild-type (Col) and irt1-1 knockout plants showed
(A–E) and pdr2 (F–J) seedlings after transfer from +Pi to –Pi medium (20 hr). (C

) and (J) show root hair bulges. Yellow and red arrowheads point to the QC and

ion zone. Scale bar, 25 mm.

fter transfer to –Pi. Arrows point to apoplastic Perls/DAB staining, and asterisks

20 hr after transfer. Shown are high-magnification images of stem cells showing

lsoshownareoverview imagesafter transfer to+Pi (O–R) or–Pi (S–V).Circledare

ell wall expansion, and asterisks mark the QC. Scale bar, 10 mm.
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Figure 4. Pi-Dependent Inhibition of Symplastic Trafficking in the RAM
Transgenic wild-type (Col) seeds were germinated for 4 days prior to transfer to +Pi or�Pi medium. Primary roots were counterstained with PI (red fluorescence)

and analyzed for GFP fluorescence (green).

(A) pSUC2::GFP expression 2 days after transfer. Scale bar, 100 mm.

(B) pSHR::SHR�GFP expression 2 days after transfer. Arrows point to the QC. Scale bar, 50 mm.

(C) Time course of pSHR::SHR�GFP expression in the wild-type (Col) after transfer to –Pi. The bottom right panels indicate the formation of a middle cortex layer

48 hr after transfer (as found in 89%of primary root meristems examined; n = 28). Cell layers are false-color coded (middle cortex cells in green). Scale bar, 50 mm.

(D) Quantitative analysis of SHR�GFP movement in the wild-type (Col) from the stele into the QC after transfer to +Pi (black bars) or –Pi (white bars). The QC-to-

stele fluorescence ratios (±SE, n = 16–26 cells/time point, p < 0.001, Student’s t test) were calculated using ImageJ.
comparable primary root growth (Figure 7C) and Fe staining in

root meristems (Figure S6). This suggests an IRT1-independent

Fe uptake system restricted to the root tip. To test this predic-

tion, we transferredCol, pdr2, and lpr1lpr2 seedlings to either +Pi

or –Pi and cut off the primary root tips at the proximal meristem

border. The detached root tips continued to grow on the agar
Figure 3. Pi-Dependent Callose Deposition in the Root Apex

(A) Electron micrographs of ultra-thin (90-nm) longitudinal sections of the SCN a

plants to +Pi or�Pi medium (20 hr). Asterisks label QC cells in the overview row (SC

cell walls, respectively. Arrowheads point to secretory vesicles. Scale bars, 10 m

(B) Callose detection by immunogold labeling in Col and pdr2 roots. Labeling is

(C) Aniline blue staining (3D projections) of primary roots after transfer of 4-day-o

(D) Comparison of transmission electronmicrographs (TEM), Fe staining (Perls or P

of a Col seedling after transfer from +Pi+Fe to�Pi+Femedium. Shown are typical

the shortened transition/elongation zone. Scale bars, 10 mm.

See also Figure S3.

Deve
surface and showed, within 1 day, the genotype-specific growth

response to Pi availability and characteristic Fe staining pattern

(Figure 7D). Therefore, root tip-specific, LPR1-dependent Fe

acquisition, and not long-distance Fe import from mature tis-

sues, mediates the developmental response of root meristems

to Pi availability.
nd ultrastructural analysis of QC cells and cell walls after transfer of 4-day-old

N). The rows labeled QC andCW show high-resolution images of QC cells and

m (SCN), 1 mm (QC), and 0.5 mm (CW).

detected only in the cell walls of Pi-deprived roots. Scale bar, 0.5 mm.

ld plants to +Pi or �Pi medium (2 days). Scale bar, 100 mm. triple, lpr1lpr2pdr2.

erls/DAB), and callose staining by aniline blue (A-Blue) in the primary root apex

regions of Fe accumulation and callose deposition within the SCN and cortex of
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Figure 5. Properties of LPR1 and Consequences of LPR1 Overexpression

(A) Expression of pLPR1::GUS after transfer of 4-day-old plants to +Pi or�Pi medium (24 hr). Shown are primary roots (left; scale bar, 100 mm) and the SCN (right;

scale bar, 20 mm).

(legend continued on next page)
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DISCUSSION

Sessile plants employ indeterminate growth strategies for

habitat exploration or stress evasion. Post-embryonic develop-

ment is therefore profoundly responsive to environmental

cues. We provide significant insights into the molecular pro-

cesses that adjust root development to Pi availability. Pi is the

predominant nutritional factor controlling primary root length

(Kellermeier et al., 2014), presumably to favor topsoil foraging

of the immobile nutrient. External Pi status is sensed locally at

the root apex, and an inadequate Pi supply attenuates primary

root growth via early inhibition of cell elongation followed bymer-

istem size reduction (Sánchez-Calderón et al., 2005; Svistoonoff

et al., 2007; Ticconi et al., 2004). Our study uncovers an essential

role for Fe in root Pi sensing and reveals that antagonistic inter-

actions between Pi and Fe availability determine root cell-spe-

cific callose deposition to regulate symplastic signaling in the

SCN and RAM activity.

Localized Callose Deposition Adjusts RAM Activity to
External Pi Status
The epistatically interacting lpr1lpr2 and pdr2 mutations cause

insensitive and hypersensitive root growth responses to –Pi,

respectively. Loss of PDR2 leads to stem cell differentiation

and frequent cell death in the SCN of Pi-deprived roots, pheno-

types that aremasked in lpr1lpr2pdr2 plants (Ticconi et al., 2009;

Figure S3B). Because stem cell maintenance depends on cell-

to-cell communication in the SCN (Gallagher et al., 2014; Perilli

et al., 2012; van den Berg et al., 1997), we monitored callose

formation in the RAM and observed conditional deposition

strictly dependent on Pi status and genotype (Figure 3). In the

wild-type on –Pi, callose deposition rapidly inhibits (<12 hr)

SHRmovement into theQC and developing endodermis. Forma-

tion of amiddle cortex, as reported for heterozygous shrmutants

(Koizumi et al., 2012), is consistent with impaired SHR trafficking

(Figure 4). Loss of stem cell maintenance and RAM activity are

likely consequences. Cell-specific callose accumulation in –Pi

is augmented in pdr2 but is not evident in lpr1lpr2 or the triple

mutant. Therefore, Pi-conditional callose deposition depends
(B) Root tip morphology, Fe accumulation (Perls), and callose deposition (aniline b

100 mm.

(C) p35S::SPLPR1�GFP�LPR1 expression in a primary root tip. Scale bar, 100 m

(D) Fe accumulation (Perls), callose deposition (aniline blue), and ROS formation

4-day-old plants to +Pi or �Pi (3 days). Asterisks mark NBT staining that is diffe

(E) 3D structure of Fet3p (left) and homology model of LPR1 with its predicted tr

(F) Putative T1 Cu and Fe2+ binding sites of LPR1. The experimentally determine

imposed. Metal ions are shown as spheres. The black dotted lines trace predicted

major contribution of D283 to Fe2+ binding of Fet3p (Stoj et al., 2006).

(G) Ferroxidase activity of GFP�LPR1. Top: specific ferroxidase activity of total p

the means of four independent transfection experiments (±SE). Bottom: immuno

(H) Cell wall localization of GFP�LPR1 in p35S::SPLPR1�GFP�LPR1 plants. GFP

cytokinesis (center row). Also shown is the fluorescence of GFP and FM4-64 (a li

(bottom row). Scale bars, 10 mm.

(I) Cell wall co-localization of GFP�LPR1 and PI in pUBQ10::SPLPR1�GFP�LPR1

level inducing autofluorescence in untransformed wild-type (Col) controls. Unde

control seedlings (Figure S5C), showed a distinct GFP signal in cell walls (red ar

(J) Detection of LPR by immunoblot analysis in cell wall fractions of suspension-c

prepared and lyophilized. LPR1 was reproducibly detected in whole cells and onl

three independent experiments is shown.

See also Figures S4 and S5.

Deve
on LPR1 function, which is supported by the spatially coincident

pLPR1::GUS expression domain, and by ectopic callose forma-

tion in Pi-starved p35S::LPR1 roots (Figures 5A–5D).

We previously reported loss of SHR�GFP fluorescence in the

endodermal layer of pdr2 root meristems on –Pi (Ticconi et al.,

2009). Our initial interpretation of unrestricted SHR�GFP move-

ment beyond the endodermis in pdr2 was deduced from the

observation that endodermal GFP�SCR expression in pdr2

also declined on –Pi but was rescued by increasing SCR gene

dosage. Because SCR expression above the basal level de-

pends on SHR activity in the endodermis (Cui et al., 2007), our

previous data are consistent with this study, which, however, in-

dicates impaired SHR movement into the endodermis in –Pi.

Previous work has demonstrated the importance of callose

deposition and symplastic trafficking in the control of root devel-

opment (Benitez-Alfonso et al., 2009, 2013; Vatén et al., 2011).

Dynamic callose turnover is accomplished by the coordinated

action of callose synthases (CALS) and b-1,3-glucanases.

Gain-of-function mutations of RAM-expressed CALS3 lead to

uncontrolled callose deposition at the PD during early root devel-

opment, impaired SHR movement, and a truncated root system

(Vatén et al., 2011). Transcript levels of the 12 CALS genes in

Arabidopsis do not respond to Pi status, and none of the viable

knockout lines revealed a Pi-dependent root phenotype (data

not shown), suggesting redundant and posttranscriptional regu-

lation of callose biosynthesis, as proposed recently (Vatén et al.,

2011). Several studies point to a role of ROS-dependent callose

deposition for regulating symplastic trafficking (Benitez-Alfonso

et al., 2011; Stonebloom et al., 2009). Identification of the thiore-

doxin GAT1 (GFP ARRESTED TRAFFICKING1) provided genetic

evidence that redox regulation of callose deposition and sym-

plastic permeability is essential for RAM maintenance (Benitez-

Alfonso et al., 2009). Similar to gat1 roots, the rml1 (root meris-

temless1) mutant, which is defective in antioxidant glutathione

synthesis and early root development, shows reduced PD con-

ductivity because of elevated callose and ROS accumulation in

root tips (Benitez-Alfonso and Jackson, 2009). Although these

studies highlight the significance of redox-regulated callose

deposition in the execution of root developmental programs,
lue) of p35S::LPR1 (line #41) after germination on +Pi or�Pi (5 days). Scale bar,

m.

(C-H2DCFDA and NBT) in p35S::SPLPR1�GFP�LPR1 root tips after transfer of

rent from the +Pi condition or the wild-type. Scale bars, 100 mm.

inuclear (T2/T3) Cu cluster (right).

d residues of Fet3p (green) and predicted residues of LPR1 (blue) are super-

electron transfers from Fe2+ to the T1 Cu site. The red dotted line indicates the

rotein extracts of transfected tobacco leaves (GFP�LPR1 or GFP). Shown are

blot analysis of leaf extracts with anti-LPR1 or anti-GFP antibodies.

and PI fluorescence of primary root cells (top row) and of the cell plate during

pophilic dye decorating endomembranes) after plasmolysis with 150 mM NaCl

roots (line #2). Because of the low GFP expression, laser intensity was set to a

r these conditions, all pUBQ10::SPLPR1�GFP�LPR1 lines tested, but not the

row). Scale bar, 20 mm.

ultured A. thaliana (Col) cells. Cell wall fractions of intact cells (7 days old) were

y in the DTT fraction after sequential cell wall extraction. One representative of
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Figure 6. LPR1-Dependent Apoplastic ROS Formation in Low Pi

Shown are the Pi-dependent dynamics of ROS production and distribution in

primary root tips.
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our work points to a role of Fe-dependent ROS signaling for ad-

justing callose formation during the perception of an external

cue.

LPR1-Dependent Fe Accumulation Controls Callose
Deposition in Low Pi
Root Pi sensing depends on LPR1 and external Fe availability.

Irrespective of the genotype, Fe absence in –Pi prevents root

growth inhibition (Figure 1), as reported for the Col wild-type

(Svistoonoff et al., 2007; Ward et al., 2008), and callose deposi-

tion (Figure S3C). In the presence of Fe, the contrasting growth

responses of lpr1lpr2 and pdr2, as well as their epistatic interac-

tion, correlate strikingly with low and high Fe accumulation in

root tips, respectively. The major site of differential Fe accumu-

lation between genotypes is the apoplast of cells within the

domain of LPR1-dependent callose deposition, particularly the

cell walls of the SCN and elongating cortex cells (Figure 1).

Because the mature root zone of all genotypes tested accumu-

lates Fe in –Pi (Figure 1C; Figure S1A), and because long-dis-

tance translocation of Fe into the RAM is unlikely (Figure 7D),

LPR1 expression in the root apex and its natural variation deter-

mine the growth response to Pi availability (Reymond et al., 2006;

Svistoonoff et al., 2007).

We present evidence that the LPR1 MCO functions as a cell-

wall-localized ferroxidase (Figure 5; Figure S4). Its close paralog

LPR2, which plays a minor but additive role in the response to Pi

availability (Svistoonoff et al., 2007), also displays ferroxidase

activity (data not shown). Yeast and algal ferroxidases facilitate

cellular Fe uptake by providing Fe3+ to physically interacting

Fe3+-specific permeases (e.g., Ftr1p), whereas related insect

and mammalian MCOs mediate cellular Fe efflux in concert

with Fe2+-specific permeases (e.g., ferroportin). The exported

and subsequently oxidized Fe is loaded onto transferrin for

transport, storage, or oxidative stress regulation (Hentze et al.,

2004; Lang et al., 2012). However, plant ferroxidases and their

roles for Fe homeostasis remain to be explored (Kobayashi

and Nishizawa, 2012). Unlike Fet3p in yeast, LPR1 lacks a trans-

membrane domain, and there is no obvious Ftr1p ortholog in

plants. Our data indicate that LPR1 is responsible for apoplastic

Fe3+ deposition in the interior cell layers of Pi-deprived root tips

(Figure 1; Figure S1). Therefore, possible sources of the LPR1

substrate are Fe2+-effluxed by ferroportin (FPN)) or the product

of ferric-chelate reductase oxidase (FRO) activities, which

reduce apoplast-diffusible Fe3+ chelates for IRT1-dependent

Fe2+ uptake (Kobayashi and Nishizawa, 2012). Although FRO3
(A) Carboxy-H2DCFDH staining of ROS in root tips upon transfer of 4-day-old

seedlings from +Pi to �Pi medium. Top: cortex cells in the transition zone.

Bottom: RAM. Asterisks mark the QC. Scale bar, 50 mm.

(B) Carboxy-H2DCFDA detects apoplastic ROS. Seedlings were imaged

immediately after staining for 10 min (non-washed) or after additional washing

for stain removal (washed). Top row: RAM and SCN after seedling transfer

to –Pi (24 hr). Center row: overview (left) and detail (right) of some stressed cells

(showing intracellular staining) in the distal RAM on +Pi. Bottom row: pre-

treatment with 10 mM H2O2 (15 min) to elevate intracellular and apoplastic

ROS. Red and white arrows point to the same cell wall before and after

washing, respectively. The data indicate that the dye reports ROS production

in the apoplast. Scale bars, 50 mm (top) and 10 mm (bottom).

(C) NBT staining of superoxide in root tips upon transfer to +Pi or�Pi medium.

Scale bar, 100 mm.
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Figure 7. Pi-Fe Antagonism and Local Fe Uptake Adjust RAM

Activity to Pi Availability

(A) Comparison of primary root phenotypes after transfer of 4-day-old plants

to +Pi+Fe (49.16 mM Fe3+-EDTA), �Pi+Fe (49.24 mM Fe3+-EDTA), or +Pi++Fe

(495.1 mM Fe3+-EDTA) medium. Brackets give calculated Fe bioavailabilities.

Shown is staining for Fe (Perls), RAM organization (PI), superoxide (NBT), and

callose (aniline blue). Scale bars, 50 mm.

(B) Primary root growth after transfer (2 days) to the indicated media (±SE,

n = 32–44).

(C) Primary root growth of Col-0 and irt1-1 seedlings after transfer (2 days)

to +Pi or �Pi medium (±SE, n = 12–18).

Deve
is expressed in the RAM (Mukherjee et al., 2006), IRT1expression

is largely excluded from the root apex (Vert et al., 2002), suggest-

ing only a minor role of IRT1 for Fe2+ uptake by root tips

(Figure 7C). Whatever the origin of Fe2+, we hypothesize that

LPR1-dependent Fe3+ production in the apoplast initiates Fe

redox cycling as a potential source of ROS (Kosman, 2010;

Meguro et al., 2007). Effluxed ascorbate may reduce the LPR1

product to redox-active Fe2+ (Grillet et al., 2014), thereby trig-

gering callose deposition and root cell differentiation. Indeed,

LPR1 overexpression causes ectopic Fe3+ and ROS generation

in –Pi (Figure 5D), and genotype-dependent ROS formation in

the apoplast is detectable in Pi-deprived root tips (Figure 6).

Interestingly, this scenario is reminiscent of the role for Fe in plant

defense. Pathogen attack elicits targeted redistribution of Fe3+

to the apoplast, where it mediates ROS production, leading to

activation of defense genes and localized callose deposition (Az-

nar et al., 2014; Liu et al., 2007). Fe accumulation and its conse-

quences are also associated with neurodegenerative diseases.

During Alzheimer’s pathologies, deposits of the redox active am-

yloid b peptide (Ab), which binds with high affinities to Fe3+ and

Cu2+, proficiently generate ROS, causing pervasive oxidative

damage. Fenton-type reactions and redox cycling are initiated

by Ab-catalyzed reduction of the bound transition metals (Smith

et al., 2007).

The redox activity of LPR1-derived Fe3+ is likely controlled by

apoplast chemistry (e.g., pH) and the properties of available Fe

ligands, including apoplastic Pi. Because of their metal-chelating

activity, phosphates are synergistic antioxidants and, therefore,

used as food additives (see Codex Alimentarius). Elemental im-

aging revealed apoplastic co-localization of Pi and Fe in the

SCN of Pi-sufficient roots. However, only Fe ions were detect-

able after transfer to –Pi, suggesting cellular Pi uptake and redox

activation of apoplastic Fe (Figure 2). Antagonistic control of Fe

redox activity by Pi availability was indicated by exposing roots

to 10-fold Fe excess in +Pi. Although Fe hyperaccumulated in

root tips in a LPR1-dependent fashion, ROS and callose forma-

tion were suppressed, and RAM organization was maintained

(Figure 7A). Therefore, dependent on external Pi, the dynamics

of apoplastic Fe chelation and speciation likely determine ROS

and callose production in the RAM.

It has been proposed that root growth inhibition in –Pi results

from general Fe toxicity because of increased Fe bioavailability

(Ward et al., 2008). We show that the Fe-mediated growth

response to external Pi is under genetic control by LPR1 and

PDR2. LPR1-dependent Fe redox cycling and ROS production

likely serve as a signal to report apoplastic Pi:Fe ratios and to

regulate callose production in the LPR1 expression domain.

Cell-specific callose deposition fine-tunes symplastic communi-

cation in the RAM to adjust its activity. LPR1 and PDR2 expres-

sion is not responsive to Pi status, and LPR1 activity seems to

be controlled by substrate availability in the apoplast. PDR2

encodes the orphan single P5-type ATPase in Arabidopsis,

AtP5A/MIA (Jakobsen et al., 2005; Ticconi et al., 2009). Loss of
(D) Plants (4 days) were transferred to +Pi or�Pi medium, and the primary root

tips were cut off at the proximal meristem boundary. After 24 hr, the detached

root tips were imaged on the same plate (top rows; scale bar, 500 mm) and

stained (Perls) for Fe (bottom rows; scale bars, 100 mm).

See also Figure S6.
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P5A-ATPase activity in yeast leads to pleiotropic phenotypes

consistent with a failure to maintain basic ER functions, such

as protein folding and processing or trafficking of secretory ves-

icles (Sørensen et al., 2015). Although general secretion is not

severely impaired in pdr2 root meristems (Ticconi et al., 2004),

disruption of AtP5A/MIA/PDR2 selectively sensitizes a subset

of ER quality control responses (Ticconi et al., 2009). Based on

the lpr1lpr2pdr2 mutant phenotype, PDR2 likely restricts LPR

output. PDR2 may inhibit secretion of LPR or its associated fer-

roxidase activity. Likewise, PDR2 may remove oxidized Fe, the

product of the LPR reaction. We are currently investigating the

mechanism for how AtP5A/MIA/PDR2 controls LPR function.

Callose turnover at cell walls is a widely used strategy to regu-

late numerous processes in plant development, defense, and

stress response, many of which target PD function to adjust

intercellular signaling and resource sharing (Burch-Smith and

Zambryski, 2012; Zavaliev et al., 2011). ROS signaling initiated

by diverse processes is an emerging theme for adjusting PD

connectivity (Benitez-Alfonso et al., 2011). Our work highlights

the importance of callose-regulated symplastic communication

in root meristems for the perception of an abiotic parameter, Pi

availability, which likely depends on Fe redox cycling.

EXPERIMENTAL PROCEDURES

Plant Lines and Growth Conditions

A. thaliana accessions Columbia (Col-0), Shahdara (Sha), and Bayreuth

(Bay-0) and the Col lines pdr2, lpr1lpr2, lpr1lpr2pdr2, irt1 (SALK_024525),

pSUC2::GFP, and pSHR::SHR-GFP have been described previously (Imlau

et al., 1999; Svistoonoff et al., 2007; Ticconi et al., 2009) or were obtained

from the European Arabidopsis Stock Center (NASC). GATEWAY technol-

ogy (Invitrogen) and Agrobacterium-mediated transformation were used to

generate transgenic lines. Seeds were germinated on 1% (w/v) phyto-agar

(Duchefa) using the described salt media. If not stated otherwise, +Pi+Fe

medium (referred to as +Pi or high Pi) contained 2.5 mM KH2PO4 (pH 5.6),

and 50 mM Fe3+-EDTA, whereas –Pi+Fe medium (referred to as –Pi or low Pi)

did not contain KH2PO4. Both supplements were omitted for the –Pi–Fe condi-

tion. The agar was routinely purified and contributed 8–10 mMP and 3–6 mMFe

to the growth medium (Ticconi et al., 2009). Bioavailable Fe3+ and Pi were

calculated as described previously (Ward et al., 2008). Details on transgenic

lines are described in the Supplemental Experimental Procedures.

Statistical Analysis of Root Meristem Size and Cell Elongation

Measurements of elongating epidermal and meristematic root cells were per-

formed after transfer of 4-day-old seedlings to the indicated media. PI-stained

roots were imaged by confocal laser-scanning microscopy, 3D projections

were generated, andanatomical parameterswere calculated asdescribedpre-

viously (Berger et al., 1998). Rootmeristem size was determined as the number

of cells in a single trichoblast cell file, starting from theQC to the first elongating

cell. The average number of elongating cells in the same cell file was calculated

from the first elongating to the first differentiating cell, as determined by the

appearance of a root hair bulge. The length of the latter cell type was recorded

for calculating the average cell length of differentiating cells. All claims of statis-

tical significance are based on a two-tailed Student’s t test.

Histochemical Fe Staining

The Fe-specific Perls staining was adapted from Roschzttardtz et al. (2009).

Plants were incubated for up to 30 min in 4% (v/v) HCl, 4% (w/v) K-ferrocya-

nide (Perls stain), or K-ferricyanide (Turnbull stain). For DAB intensification,

plants were washed (dH2O) and incubated (1 hr) in methanol containing

10 mM Na-azide and 0.3% (v/v) H2O2. After washing with 100 mM Na-phos-

phate buffer (pH 7.4), plants were incubated for up to 30 min in the same buffer

containing 0.025% (w/v) DAB (Sigma-Aldrich) and 0.005% (v/v) H2O2 but no

CoCl2. The reaction was stopped by washing (dH2O) and optically clearing
228 Developmental Cell 33, 216–230, April 20, 2015 ª2015 Elsevier I
with chloral hydrate (1 g/ml, 15% glycerol). For preparation of semi-thin

(1-mm) sections, roots were fixed as for electron microscopy, but the uranyl-

acetate step was omitted. Perls/DAB-stained roots and sections were

analyzed on a Zeiss AxioImager.

Electron Microscopy and NanoSIMS Chemical Imaging

Ultra-thin root sections (90 nm) were processed and imaged on a Zeiss Libra

120 transmission electron microscope, and a CAMECA NanoSIMS 50 was

used for high-resolution elemental mapping of semi-thin (1-mm) sections as

described in the Supplemental Experimental Procedures.

Confocal Laser-Scanning Microscopy and Staining Procedures

Confocal microscopywas done on a Zeiss LSM710. For PI or FM4-64 staining,

seedlings were directly imaged in 10 mM PI or 50 mM Synapto Red C2 (Sigma-

Aldrich). Callosewas stained for 1.5 hr with 0.1% (w/v) aniline blue (AppliChem)

in 100 mM Na-phosphate buffer (pH 7.2). Co-localization of GFP and PI was

monitored in sequential mode. GUS staining and ROS detection are described

in the Supplemental Experimental Procedures.

Statistical Analysis of SHR-GFP Movement

Plants were grown for 4 days on +Pi+Fe agar and transferred to +Pi+Fe

or –Pi+Fe medium for the indicated times. Three independent experiments

were performed for statistical analysis of SHR-GFP movement into the QC.

Plants were counterstained with PI and imaged by confocal laser-scanning

microscopy in sequential mode and with identical settings. For statistical

analysis, QC cells were identified, and GFP intensity was measured on ImageJ

software by setting a region of interest (ROI) to the nucleus. For statistical

analysis of the QC-to-stele ratio, the same ROI was subsequently moved

into the middle of the stele, and GFP fluorescence was measured again (Koi-

zumi et al., 2012). The QC-to-stele ratio was calculated for each measurement

using Microsoft Excel.

Structural Modeling

The predicted 3D structure models of LPR1 (F4I4K5) and LPR2 (Q949X9), en-

coded by At1g23010 and At1g71040, respectively, were generated using the

protein threading method provided by the Protein Homology/AnalogY Recog-

nition Engine, version 2.0 (Phyre2) (Kelley and Sternberg, 2009) with 100%

confidence. LPR1 and LPR2 have 78.4% sequence identity and are structur-

ally similar, as indicated by structure superimposition (Zhang and Skolnick,

2005). Final 3Dmodels of LPR1 and LPR2 were submitted to the 3DLigandSite

server (Wass et al., 2010) for in silico metal binding prediction, which identified

the trinuclear copper cluster (T2/T3) in both proteins. Manual analysis pre-

dicted the mononuclear copper binding site (T1) as well as the putative triad

of Fe2+-binding amino acid residues in LPR1 and LPR2. These are similar to

yeast Fet3p (Stoj et al., 2006) based on multiple sequence alignment (Katoh

et al., 2002) of LPR1, LPR2, Fet3p (P38993), and Fet5p (P43561), and on su-

perimposition with the experimental structure of Fet3p. PyMOL (http://www.

pymol.org) was used for analysis and generation of figures.

Ferroxidase Assay

Ferroxidase activity was determined using Fe(NH4)2(SO4)2$6H2O as the

electron donor (substrate) and 3-(2-pyridyl)-5,6-bis(2-[5-furylsulfonic acid])-

1,2,4-triazine (ferrozine) as a specific Fe2+ chelator to scavenge the remaining

substrate after the reactions (Erel, 1998). Reactions were carried out in tubes

containing 1050 ml buffer (450 mM Na-acetate [pH 5.8], 100 mM CuSO4), 15 ml

total protein extract prepared from roots, or 15 ml ceruloplasmin (2.17 mg/ml)

as control. After starting the reaction with 225 ml substrate (357 mM) containing

100 mM CuSO4, aliquots (200 ml) were removed at appropriate intervals and

transferred to microtiter plate wells for reaction-quenching with 14 ml 18 mM

ferrozine. The rate of Fe2+ oxidation was calculated from the decreased absor-

bance at 560 nm using a molar absorptivity of ε560 = 25,400 M�1 cm�1 for the

Fe2+-ferrozine complex (Hoopes and Dean, 2004). All reagents except human

ceruloplasmin (Athens Research) were purchased from Sigma-Aldrich.

LPR1 Expression Analysis

RNA and cDNA preparation, qRT-PCR, protein extraction, and immunoblot

analysis of LPR1 expression are described in the Supplemental Experimental

Procedures.
nc.
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