Global Attractivity in Nonlinear Delay Differential Equations

Chuanxi Qian*

Department of Mathematics, The University of Rhode Island, Kingston, Rhode Island 02881-0816

Submitted by Jean Mawhin
Received March 11, 1994

We obtain sufficient conditions under which every solution of the nonlinear delay differential equation

\[x(t) = f(t, x(t - \tau_1(t)), \ldots, x(t - \tau_m(t))), \quad t \geq t_0 \]

tends to its equilibrium. Our results have applications to delay differential equations in mathematical biology.

Q 1996 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARY

Our aim in this paper is to investigate the global attractivity of the equilibrium of the following quite general nonlinear and nonautonomous delay differential equation

\[\dot{x}(t) = f(t, x(t - \tau_1(t)), \ldots, x(t - \tau_m(t))), \quad t \geq t_0 \]

(1.1)

where the function \(f \) and the delays \(\tau_1, \tau_2, \ldots, \tau_m \) satisfy the following hypotheses:

(H.1) \(f \in C([t_0, \infty) \times (L, \infty)^m, \mathbb{R}) \) for some \(L \geq -\infty \), and for every \(t \geq t_0 \), \(f(t, u_1, \ldots, u_m) \) is nonincreasing in each of its arguments \(u_1, \ldots, u_m \).

(H.2) There exists an \(x^* > L \) such that \(f(t, x^*, \ldots, x^*) \equiv 0 \) for all \(t \geq t_0 \);

(H.3) \(\tau_i \in C([t_0, \infty), [0, \infty]) \) and \(\lim_{t \to \infty} |t - \tau_i(t)| = \infty \) for \(i = 1, 2, \ldots, m \).

From (H.2) we see that \(x^* \) is an equilibrium of Eq. (1.1). In the next section, we will establish sufficient conditions for \(x^* \) to be a global

* Current address: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762.
attractor of all solutions of Eq. (1.1). Our results have applications to delay differential equations in mathematical biology. For example, they apply to the delay differential equation

$$\dot{x}(t) = r(t) \left(1 - \frac{cx(t)x^p(t - \tau(t))}{1 + x^p(t - \tau(t))}\right), \quad t \geq 0,$$

(1.2)

where

$$\left\{ \begin{array}{l}
c, p \in (0, \infty), r, \tau \in C[[0, \infty), [0, \infty)], \\
\lim_{t \to \infty} [t - \tau(t)] = \infty, \text{ and for some } \tau' > 0, \inf_{t \geq t_0} \tau(t) \geq \tau'. \end{array} \right.$$

(1.3)

When \(r(t) = a, c = b/a, \) and \(\tau(t) = \tau\) for some positive constants \(a, b, \) and \(\tau,\) then Eq. (1.2) reduces to

$$\dot{x}(t) = a - \frac{b}{1 + x^n(t - \tau)}, \quad t \geq 0.$$

(1.4)

Equation (1.4) was proposed by Mackey and Glass [1977] for studying a “dynamic disease” involving respiratory disorders. A sufficient condition for all positive solutions of Eq. (1.4) to tend to its positive equilibrium has been established in [4]. Our result about Eq. (1.2), when restricted to Eq. (1.4), improves the results in [4].

Our results also apply to the delay differential equation

$$\dot{N}(t) = r(t)N(t) \left(1 - \frac{\sum_{i=1}^{m} a_i N^p(t - \tau_i(t))}{\sum_{i=1}^{m} s_i(t) N^p(t - \tau_i(t))}\right), \quad t \geq 0$$

(1.5)

where

$$\left\{ \begin{array}{l}
K, p \in (0, \infty), a_i \in [0, \infty), \tau_i \in C[[0, \infty), (0, \infty)], \\
s_i \in C[[0, \infty), [0, \infty)], \text{ and } \lim_{t \to \infty} [t - \tau_i(t)] = \infty \quad \text{for } i = 1, 2, \ldots. \end{array} \right.$$

(1.6)

A special case of Eq. (1.5) is the population model

$$\dot{N}(t) = r(t)N(t) \left(1 - \frac{N(t - \tau(t))}{K}\right), \quad t \geq 0.$$

(1.7)

Equation (1.7) and extensions of it have been studied extensively. See, for example, [2] and the references cited therein. In this paper, we improve and extend several known global attractivity results related to this equation.
For any \(T \geq t_0 \), we define

\[
T_{-1} = \min_{1 \leq i \leq m} \left\{ \inf_{t \geq T} \{ t - \tau_i(t) \} \right\}.
\]

By a solution of Eq. (1.1) we mean a function \(x \in C^1([T, \infty), (T, \infty]) \) which satisfies Eq. (1.1) for \(t \geq T \).

With Eq. (1.1) we associate an “initial condition” of the form

\[
x(t) = \phi(t) \quad \text{for} \quad T_{-1} \leq t \leq T
\]

where \(\phi \in C^1([T_{-1}, T], (L, \infty)) \) is a given “initial function.” We assume that the IVP(1.1) and (1.8) have a unique solution \(x \) valid on \([T, \infty) \); that is, \(x \) is continuously differentiable on \([T, \infty) \), \(x \) satisfies (1.8), and \(x \) satisfies Eq. (1.1) for \(t \geq T \). As we will see, many equations satisfy this assumption.

2. GLOBAL ATTRACTIVITY OF EQUATION (1.1)

Throughout this paper, we will assume that (H_1)-(H_3) hold and set

\[
\tau(t) = \max\{\tau_i(t) : 1 \leq i \leq m\}, \quad t \geq 0.
\]

The following theorem is the main result in this section.

Theorem 1. Assume that \(x^* \) is the only equilibrium of Eq. (1.1) in \((L, \infty)\) and for any \(\mu \in (L, \infty) \) with \(\mu \neq x^* \),

\[
\left| \int_{t_0}^{\infty} f(s, \mu, \ldots, \mu) \, ds \right| = \infty.
\]

Suppose that there exists a nonincreasing function \(F \in C([L, \infty), \mathbb{R}) \) such that the one-sided limit \(F(L^+) = \lim_{x \to L^+} F(x) \in \mathbb{R} \) exists and satisfies the inequality

\[
x^* + F(x^* + F(L^+)) > L.
\]

Suppose also that for \(t \geq t_0 \)

\[
\int_{t - \tau(t)}^{t} f(s, u, \ldots, u) \, ds \leq F(u) \quad \text{for} \quad L < u < x^*
\]

and

\[
\int_{t - \tau(t)}^{t} f(s, u, \ldots, u) \, ds \geq F(u) \quad \text{for} \quad x^* < u < \infty.
\]
Finally, assume that the solution of the IVP
\[
\begin{align*}
 y_{n+1} &= x^* + F(y_n) \\
 y_0 &= x^* + F(L+)
\end{align*}
\]
(2.3)
tends to \(x^* \) as \(n \) tends to \(\infty \). Then every solution of Eq. (1.1) tends to \(x^* \) as \(t \) tends to \(\infty \).

Proof. First we show that every solution \(x(t) \) which does not oscillate about \(x^* \) tends to \(x^* \). Assume that eventually \(x(t) > x^* \). The proof when eventually \(x(t) < x^* \) is similar and will be omitted. Then from Eq. (1.1) we see that for \(t \) sufficiently large,
\[
\dot{x}(t) \leq f(t, x^*, \ldots, x^*) = 0
\]
and so
\[
\lim_{t \to \infty} x(t) = l \geq x^* \text{ exists and } x(t) \geq l.
\]
Hence it follows that for \(t \) sufficiently large,
\[
l - x(t) = \int_t^\infty f(s, x(s - \tau_1(s)), \ldots, x(s - \tau_m(s))) \, ds
\]
\[
\leq \int_t^\infty f(s, l, \ldots, l) \, ds
\]
which, in view of (2.1), implies that \(l = x^* \).

Next, assume that \(x(t) \) is a solution which oscillates about \(x^* \). The proof of the theorem will be complete once we prove that for any integer \(q \geq 0 \), there exists \(T(q) \geq 0 \) such that
\[
L < y_{2q+1} \leq x(t) \leq y_{2q} \quad \text{for } t \geq T(q) \quad \text{(2.4)}
\]
Since \(x(t) \) oscillates, there is a sequence
\[
t_0 < t_1 < \cdots < t_n < \cdots
\]
such that
\[
\lim_{n \to \infty} t_n = \infty \text{ and } x(t_n) = x^* \text{ for } n = 0, 1, \ldots
\]
(2.5)
Let \(s_n \in (t_n, t_{n+1}) \) be a point where \(x(t) \) obtains its maximum or minimum in \((t_n, t_{n+1})\). Hence \(\dot{x}(s_n) = 0 \) and so it follows from Eq. (1.1) that
\[
f(s_n, x(s_n - \tau_1(s_n)), \ldots, x(s_n - \tau_m(s_n))) = 0
\]
which, in view of the nonincreasing property of \(f \), implies that there is a point \(\xi_n \in [s_n - \tau(s_n), s_n] \) such that

\[
x(\xi_n) = x^*, \quad n = 0, 1, \ldots
\]

Hence by integrating both sides of Eq. (1.1) from \(\xi_n \) to \(s_n \) we find that

\[
x(s_n) - x^* = \int_{\xi_n}^{s_n} \left(f(t, x(t - \tau(t)), \ldots, x(t - \tau_n(t))) \right) dt
\]

\[
\leq \int_{s_n - \tau(s_n)}^{s_n} f(t, L^+, \ldots, L^+) dt
\]

\[
\leq F(L^+) \quad \text{for } n = 0, 1, \ldots
\]

and so

\[
x(s_n) \leq x^* + F(L^+) = y_0 \quad \text{for } n = 0, 1, \ldots
\]

Since \(y_0 \) is independent of the choice of \(s_n \), it follows that

\[
x(t) \leq y_0 \quad \text{for } t \geq t_0.
\]

In view of (H_3), we see that there exists \(T_0 > t_0 \) such that \(t - \tau(t) \geq t_0 \) for \(t \geq T_0 - \tau(T_0) \) and so

\[
x(t - \tau(t)) \leq y_0 \quad \text{for } t \geq T_0 - \tau(T_0).
\]

Also, it follows from (2.5) that there exists \(N_0 \geq T_0 \) such that

\[
t_n \geq T_0 - \tau(T_0) \quad \text{for } n \geq N_0.
\]

By using (2.8) in (2.6) and by using the nonincreasing nature of \(f \), we see that

\[
x(s_n) - x^* \geq \int_{\xi_n}^{s_n} f(t, y_0, \ldots, y_0) dt
\]

\[
\geq F(y_0) \quad \text{for } n \geq N_0
\]

and so

\[
x(s_n) \geq x^* + F(y_0) = y_1 \quad \text{for } n \geq N_0.
\]

As \(y_1 \) is independent of the choice of \(s_n \) and in view of (2.2), it follows that

\[
x(t) \geq y_1 > L \quad \text{for } t \geq t_{N_0}.
\]

By combining (2.7) and (2.9), we see that

\[
L < y_1 \leq x(t) \leq y_0 \quad \text{for } t \geq t_{N_0}.
\]
Now assume that there exists a \(t_{N_k} \) such that
\[
L < y_{2k+1} \leq x(t) \leq y_{2k} \quad \text{for } t \geq t_{N_k}.
\] (2.10)
Then there exists \(T'_k \geq t_{N_k} \) such that
\[
t - \tau(t) \geq t_{N_k} \quad \text{for } t \geq T'_k - \tau(T'_k)
\]
and so it follows from (2.10) that
\[
x(t - \tau(t)) \geq y_{2k+1} \quad \text{for } t \geq T'_k - \tau(T'_k). \tag{2.11}
\]
Also, there exists \(N'_k \geq T'_k \) such that
\[
t_n \geq T'_k - \tau(T'_k) \quad \text{for } n \geq N'_k.
\]
Hence by using (2.11) in (2.6), we find
\[
x(s_n) - x^* \leq \int_{s_n - \tau(s_n)}^{s_n} f(t, y_{2k+1}, \ldots, y_{2k+1}) \, dt
\]
\[
\leq F(y_{2k+1}) \quad \text{for } n \geq N'_k
\]
and so
\[
x(s_n) \leq x^* + F(y_{2k+1}) = y_{2(k+1)} \quad \text{for } n \geq N'_k
\]
which implies that
\[
x(t) \leq y_{2(k+1)} \quad \text{for } t \geq t_{N'_k}.
\] (2.12)
Then from (2.6) and by using the fact that there exist \(T_{k+1} \geq t_{N'_k} \) such that
\[
x(t - \tau(t)) \leq y_{2(k+1)} \quad \text{for } t \geq T_{k+1} - \tau(T_{k+1})
\]
and \(N_{k+1} \geq T_{k+1} \) such that
\[
t_n \geq T_{k+1} - \tau(T_{k+1}) \quad \text{for } n \geq N_{k+1},
\]
it follows for \(n \geq N_{k+1} \) that
\[
x(s_n) - x^* \geq \int_{s_n - \tau(s_n)}^{s_n} f(t, y_{2(k+1)}, \ldots, y_{2(k+1)}) \, dt
\]
\[
\geq F(y_{2k+1}) \quad \text{for } n \geq N_{k+1},
\]
and so
\[
x(s_n) \geq x^* + F(y_{2(k+1)}) = y_{2(k+1)+1} \quad \text{for } n \geq N_{k+1}.
\]
Hence,
\[x(t) \geq y_{2(k+1)+1} \quad \text{for } t \geq t_{N_k+1}, \]
(2.13)

Now from (2.10) and (2.2) and by using the nonincreasing property of \(F \), we obtain
\[y_{2(k+1)} = x^* + F(y_{2(k+1)}) \leq x^* + F(L+) \]
and so
\[y_{2(k+1)+1} = x^* + F(y_{2(k+1)}) \geq x^* + F(x^* + F(L+)) > L. \]
(2.14)

By combining (2.12), (2.13), and (2.14), we find
\[L < y_{2(k+1)+1} \leq x(t) \leq y_{2(k+1)} \quad \text{for } t \geq t_{N_k+1}, \]
and so by induction it follows that (2.4) holds. Since \(\{y_n\} \) tends to \(x^* \) as \(n \) tends to \(\infty \), it follows from (2.4) that \(x(t) \) also tends to \(x^* \) as \(t \) tends to \(\infty \). The proof is complete.

Now let us consider some special cases of Eq. (1.1). For the autonomous differential equation
\[\dot{x}(t) = f(x(t - \tau_1), \ldots, x(t - \tau_m)), \quad t \geq t_0, \]
(2.15)
where \(\tau_1, \ldots, \tau_m \) are nonnegative constants, the following result is a consequence of Theorem 1.

Corollary 1. Assume that \(x^* \) is the only equilibrium of Eq. (2.15) in \((L, \infty) \). Suppose also that a one-sided limit
\[f(L+) = \lim_{x \to L^+} f(x) \in \mathbb{R} \]
exists and satisfies the inequality
\[x^* + \tau f(x^* + \tau f(L+)) > L \]
where \(\tau = \max(\tau_i; 1 \leq i \leq m) \). Finally, assume that the solution of the IVP
\[
\begin{align*}
y_{n+1} &= x^* + \tau f(y_n) \\
y_0 &= x^* + \tau f(L+) \end{align*}
\]
(2.16)
tends to \(x^* \) as \(n \) tends to \(\infty \). Then every solution of Eq. (2.15) tends to \(x^* \) as \(t \) tends to \(\infty \).

Proof. Let \(F(u) = \tau f(u, \ldots, u) \). Then it is easy to see that all the hypotheses of Theorem 1 are satisfied and so the proof is complete.
The following result about differential equation with separable variables is also a direct consequence of Theorem 1.

Corollary 2. Consider the differential equation

\[\dot{x}(t) = \sum_{i=1}^{m} p_i(t) f_i(x(t - \tau_i(t))), \quad t \geq t_0 \quad (2.17) \]

where for \(i = 1, 2, \ldots, m \), \(p_i \in C([0, \infty), [0, \infty]) \); \(f_i \in C([L, \infty), \mathbb{R}] \) for some \(L \geq -\infty \); and \(\tau_i \in C([0, \infty), [0, \infty]) \) with \(\lim_{t \to \infty} |t - \tau_i(t)| = \infty \).

Assume that for \(i = 1, 2, \ldots, m \),

\[\sum_{i=1}^{m} \int_{0}^{\infty} p_i(t) \, dt = \infty \quad \text{and} \quad P_i = \sup \left\{ f_i^t |_{t - \tau_i(t)} \right\} \, ds : t - \tau(t) \geq 0 < \infty. \]

Suppose that for each \(i = 1, 2, \ldots, m \), \(f_i \) is nonincreasing and the one-sided limit

\[f_i(L^+) = \lim_{x \to L^+} f_i(x) \]

exists. Suppose also that there exists a \(x^* > L \) such that

\[x^* + \sum_{i=1}^{m} P_i f_i(x) + \sum_{i=1}^{m} P_i f_i(L^+) > L \]

and for \(i = 1, 2, \ldots, m \),

\[f_i(x^*) = 0 \quad \text{and} \quad f_i(x) \neq 0 \quad \text{for} \ x \neq x^*. \]

Finally, assume that the solution of the IVP

\[
\begin{cases}
 y_{n+1} = x^* + \sum_{i=1}^{m} P_i f_i(y_n) \\
 y_0 = x^* + \sum_{i=1}^{m} P_i f_i(L^+)
\end{cases}
\quad (2.18)
\]

tends to \(x^* \) as \(n \) tends to \(\infty \). Then every solution of Eq. (2.15) tends to \(x^* \) as \(t \) tends to \(\infty \).

Proof. Clearly, \(x^* \) is the only equilibrium of Eq. (2.17). Let \(f(t, u_1, \ldots, u_m) = \sum_{i=1}^{m} p_i(t) f_i(u_i) \) and \(F(u) = \sum_{i=1}^{m} P_i f_i(u) \). We see that all the hypotheses of Theorem 1 are satisfied and so the proof is complete.

3. APPLICATIONS

In this section, we apply our results to obtain sufficient conditions for global attractivity of some delay differential equations.
First we introduce some lemmas. The first lemma provides a sufficient condition for the solution of the form of IVP(2.3) to tend to the equilibrium.

Lemma 1. Consider the difference equation

$$y_{n+1} = h(y_n)$$

where

$$h \in C^1([l, \infty), (l, \infty)] \quad \text{with} \quad l \geq -\infty.$$

Assume that $$y^*$$ is the unique fixed point of $$h$$ and that $$h$$ is a nonincreasing function. Suppose also that the one-sided limit

$$h(l+) = \lim_{y \to l^+} h(y) \in (l, \infty)$$

exists and that

$$h'(y)h'(h(y)) < 1 \quad \text{either for } l < y < y^* \text{ or for } y^* < y < h(l+).$$

Then the solution $$(y_n)$$ of Eq. (3.1) with $$y_0 = h(l+)$$ tends to $$y^*$$ as $$n$$ tends to $$\infty$$.

Proof. We will assume that for $$y^* < y < h(l+)$$,

$$h'(y)h'(h(y)) < 1. \quad (3.2)$$

The proof when (3.2) holds for $$l < y < y^*$$ is similar and will be omitted.

From the nonincreasing nature of $$h$$, it is easy to see that $$y_2 \leq y_0$$ and by induction

$$y_1 \leq y_3 \leq \cdots \leq y^* \leq \cdots \leq y_2 \leq y_0.$$

Therefore

$$h(l+) \geq \lim_{n \to \infty} y_{2n} = u \geq y^* \quad \text{and} \quad l < \lim_{n \to \infty} y_{2n+1} = v \leq y^*.$$

By taking limits on both sides of Eq. (3.1), we find that

$$u = h(v) \quad \text{and} \quad v = h(u)$$

and so

$$u = h(h(u)) \quad \text{with} \quad u \geq y^*. \quad (3.3)$$

We claim that $$u = y^*$$. To this end, consider the function

$$\lambda(y) = y - h(h(y)) \quad \text{for} \quad y \geq y^*$$
and observe that
\[\lambda(y^*) = 0 \text{ and } \lambda'(y) = 1 - h'(y)h'(h(y)) > 0 \quad \text{for } y > y^*. \]

Then
\[y > h(h(y)) \quad \text{for } y > y^* \]

which, in view of (3.3), implies that \(u = y^* \). Then it follows that \(v = y^* \) also. Hence \(\{y_n\} \) tends to \(y^* \) as \(n \) tends to \(\infty \) and the proof is complete.

The next lemma which is extracted from [5] will also be useful.

Lemma 2. Consider the difference equation
\[z_{n+1} = \exp \left(\frac{\alpha}{1 + \beta z_n} \right), \quad n = 0, 1, \ldots, \quad (3.4) \]

where
\[\alpha \in (0, \infty), \beta \in [0, \infty), \text{ and } z_0 \in [0, \infty). \]

Then the equilibrium \(z^* = 1 \) of Eq. (3.4) is globally asymptotically stable if and only if
\[\frac{\alpha}{1 + \beta} \leq 1. \]

Now let us look at Eq. (1.2). We will only consider the solutions of Eq. (1.2) with the following initial conditions
\[\begin{cases}
 x(t) = \phi(t) & \text{for } -\tau^* \leq t < 0, \text{ where} \\
 \tau^* = \sup_{t \geq 0} \tau(t) \leq \infty, \phi \in C\left([\tau^*, 0], [0, \infty]\right) \text{ and } \phi(0) > 0. \quad (3.5)
\end{cases} \]

Observe that in the interval \([0, \tau']\), Eq. (1.2) reduces to a linear equation whose solution is given by
\[x(t) = \phi(0) \exp \left(- \int_0^t r(s) \frac{\varphi^p(s - \tau(s))}{1 + \varphi^p(s - \tau(s))} ds \right) \]
\[+ \int_0^t r(s) \exp \left(-c \int_s^t \varphi^p(u - \tau(u)) \frac{\varphi^p(u - \tau(u))}{1 + \varphi^p(u - \tau(u))} du \right) ds. \]

We find that \(x(t) \) exists and is positive throughout the interval \(0 \leq t \leq \tau' \).
One can see by induction that \(x(t) \) exists and is positive for all \(t \geq 0 \).
Clearly, Eq. (1.2) has a unique positive equilibrium K. Then by employing Theorem 1 and Lemma 1 we obtain the following global attractivity result.

Theorem 2. Assume that

$$\int_{0}^{\infty} r(t) \, dt = \infty. \quad (3.6)$$

Suppose also that

$$K + r_0 \left(1 - c \frac{(r_0 + K)^{p+1}}{1 + (r_0 + K)^p} \right) > 0 \quad (3.7)$$

and

$$(cr_0)^2 \frac{K^p (1 + p + K^p)}{(1 + K^p)^2} \cdot \frac{(p + 1)^2}{4p} \leq 1 \quad (3.8)$$

where

$$r_0 = \sup \left\{ \int_{t-\tau(t)}^{t} r(s) \, ds : t - \tau(t) \geq 0 \right\}.$$

Then every positive solution of Eq. (1.2) tends to K as t tends to ∞.

Proof. Set

$$f(t, u_1, u_2) = r(t) \left(1 - \frac{cu_1 u_2}{1 + u_2} \right), \quad F(u) = r_0 \left(1 - c \frac{u^{p+1}}{1 + u^p} \right),$$

and $L = 0$. Clearly, if we show that the solution of the IVP

$$\begin{align*}
 y_{n+1} &= K + r_0 \left(1 - c \frac{y_n^{p+1}}{1 + y_n^p} \right) \\
 y_0 &= K + r_0
\end{align*} \quad (3.9)$$

tends to the equilibrium K as n tends to ∞, then all the hypotheses of Theorem 1 will be satisfied and the proof will be complete.

To this end, set

$$h(u) = K + r_0 \left(1 - c \frac{u^{p+1}}{1 + u^p} \right) \quad \text{for} \ u > 0.$$
Then, $h \in C^1((0, \infty), \mathbb{R})$ and
\[\lim_{u \to 0^+} h(u) = K + r_0. \]
Observe that
\[h'(u) = -cr_0 \frac{u^p(1 + u^p)}{(1 + u^p)^2} \]
and so
\[h'(u)h'(h(u)) = (cr_0)^2 \frac{u^p(1 + u^p)F^p(u)(1 + F^p(u))}{(1 + u^p)^2(1 + F^p(u))^2}. \]
(3.10)

We claim that
\[h'(u)h'(h(u)) < 1 \quad \text{for } 0 < u < K. \]
(3.11)

Set
\[g(s) = \frac{s^p(1 + s^p)}{(1 + s^p)^2} \quad \text{for } s \geq 0 \]
and observe that
\[g'(s) = \frac{ps^{p-1}(1 + (1-p)s^p)}{(1 + s^p)^3} \quad \text{for } s \geq 0. \]

If $p \leq 1$, then $g'(s) > 0$ for $s > 0$. Hence for $0 < u < K$, \[g(u) < g(K) = \frac{K(2 + K)}{(1 + K)^2} \]
and \[g(F(u)) \leq g(\infty) = 1. \]
Then it follows from (3.8) and (3.10) that
\[h'(u)h'(h(u)) < (cr_0)^2 \frac{K(2 + K)}{(1 + K)^2} \leq 1 \quad \text{for } 0 < u < K. \]

Now assume that $p > 1$. Then $g'(s) = 0$ for $s = (p + 1)/(p - 1)^{1/p}$. Observe that
\[g(0) = 0, \quad g(\infty) = 1, \]
and \(g(s) \) is increasing for \(0 < s < ((p + 1)/(p - 1))^{1/p} \) and decreasing for \(((p + 1)/(p - 1))^{1/p} < s < \infty \). Then it follows that
\[
g(s) \leq g\left(\left(\frac{p + 1}{p - 1}\right)^{1/p}\right) = \frac{(p + 1)^2}{4p}.
\]

Also as \(u \leq K \leq F(u) \) and either
\[
K > \left(\frac{p + 1}{p - 1}\right)^{1/p} \quad \text{or} \quad K \leq \left(\frac{p + 1}{p - 1}\right)^{1/p},
\]
we find
\[
g(u)g(F(u)) \leq \frac{K^p(1 + p + K^p)}{(1 + K^p)^2} \frac{(p + 1)^2}{4p}.
\]

Thus it follows from (3.10), (3.12), and (3.8) that (3.11) holds. Hence by Lemma 1, the solution of (3.9) tends to \(K \) as \(n \) tends to \(\infty \). Therefore by Theorem 1, every positive solution of Eq. (1.2) tends to \(K \) as \(t \) tends to \(\infty \). The proof is complete.

Observe that
\[
\frac{K^p(1 + p + K^p)}{(1 + K^p)^2} \leq \frac{(p + 1)^2}{4p}
\]
and so the following result is an immediate consequence of Theorem 2.

Corollary 3. Assume that (3.6) and (3.7) hold and that
\[
cr_0 \cdot \frac{(p + 1)^2}{4p} \leq 1.
\]
Then every positive solution \(x(t) \) of Eq. (1.2) tends to \(K \) as \(t \) tends to \(\infty \).

For Eq. (1.4), we have the following result.

Corollary 4. Assume that \(K \) is the unique positive equilibrium of Eq. (1.4) and that
\[
K + \left(a - b \frac{(K + a\tau)^{p+1}}{1 + (K + a\tau)^p} \right) \tau > 0
\]
and

\[
(b\tau)^2 \frac{K^p (1 + p + K^p)}{(1 + K^p)^2} \frac{(p + 1)^2}{4p} \leq 1.
\]

Then every positive solution of Eq. (1.4) tends to \(K \) as \(t \) tends to \(\infty \); in particular, if (3.13) holds and

\[
(b\tau) \frac{(p + 1)^2}{4p} \leq 1
\]

then every positive solution of Eq. (1.4) tends to \(K \) as \(t \) tends to \(\infty \).

Next we will consider Eq. (1.5). We will only consider the solutions of Eq. (1.5) with the following initial conditions of the form

\[
\begin{cases}
N(t) = \phi(t) & \text{for } -\tau^* \leq t \leq 0 \\
\phi \in C([-\tau^*, 0], [0, \infty)) & \text{and } \phi(0) > 0.
\end{cases}
\]

(3.14)

Since \(\tau_i(t) > 0 \) for \(i = 1, 2, \ldots, m \) and \(t \geq 0 \), it is not difficult to show as in [1, pp. 10–11] that the solutions of (1.5) and (3.14) are defined for all \(t \geq 0 \) and that they remain positive for \(t \geq 0 \).

Clearly, \((K/\sum_{i=1}^m a_i)^{1/p} \) is the unique positive equilibrium of Eq. (1.5). Then by employing Theorem 1 and Lemma 2, we establish the following global attractivity result for Eq. (1.5).

Theorem 3. Assume that

\[
\int_0^{\infty} \frac{r(t)}{1 + \sum_{i=1}^m s_i(t)} dt = \infty
\]

(3.15)

and

\[
\frac{pR_0}{1 + s/a} \leq 1
\]

(3.16)

where

\[
a = \sum_{i=1}^m a_i, \quad s_0 = \inf \left\{ \sum_{i=1}^m s_i(t) \text{ for } t \geq 0 \right\}
\]

and

\[
R_0 = \sup \left\{ \int_{t-\tau(t)}^t r(s) ds \text{ for } t - \tau(t) \geq 0 \right\}.
\]
Then every positive solution \(N(t) \) of Eq. (1.5) tends to its positive equilibrium \(N^* = (K/\sum_{i=1}^{m} a_i)^{1/p} \) as \(t \) tends to \(\infty \).

Proof. Set

\[
N(t) = N^* e^{x(t)} \quad \text{for} \quad t \geq 0.
\]

Then \(x(t) \) satisfies the equation

\[
\dot{x}(t) = a^{-1}r(t) \left\{ \frac{\sum_{i=1}^{m} a_i (1 - e^{p(t - \tau_i(t))})}{1 + a^{-1} \sum_{i=1}^{m} s_i(t) e^{p(t - \tau_i(t))}} \right\}.
\]

It suffices to show that \(x(t) \) tends to zero. To this end, set

\[
f(t, u_1, \ldots, u_m) = a^{-1}r(t) \left\{ \frac{\sum_{i=1}^{m} a_i (1 - e^{p(t - \tau_i(t))})}{1 + a^{-1} \sum_{i=1}^{m} s_i(t) e^{p(t - \tau_i(t))}} \right\}
\]

and

\[
F(u) = R_0 \left\{ \frac{1 - e^{pu}}{1 + a^{-1}s_0 e^{pu}} \right\}.
\]

Then it is easy to see that all the hypotheses of Theorem 1 will be satisfied provided the solution of the IVP

\[
\begin{cases}
y_{n+1} = R_0 \left\{ \frac{1 - e^{p y_n}}{1 + a^{-1}s_0 e^{p y_n}} \right\} \\
y_0 = R_0
\end{cases}
\tag{3.17}
\]

tends to zero as \(n \) tends to \(\infty \). Set \(z_n = e^{p y_n} \). Then (3.17) becomes

\[
\begin{cases}
z_{n+1} = \exp \left\{ p R_0 \left((1 - z_n)/(1 + a^{-1}s_0 z_n) \right) \right\} \\
z_0 = e^{p R_0}
\end{cases}
\tag{3.18}
\]

By Lemma 2 we see that under the hypothesis (3.16), \(\{z_n\} \) tends to 1 and so \(\{y_n\} \) tends to zero as \(n \) tends to \(\infty \). Therefore \(x(t) \) tends to zero which implies that \(N(t) \) tends to \(N^* \) as \(t \) tends to \(\infty \). The proof is complete.

When \(m = 1, a_i = 1, \) and \(\tau_i(t) \equiv \tau > 0 \) is a constant, Eq. (1.5) reduces to

\[
\dot{x}(t) = a^{-1}r(t)N(t) \left\{ \frac{K - N^p(t - \tau)}{K + s(t) N^p(t - \tau)} \right\}, \quad t \geq 0.
\tag{3.19}
Hence the following result, which has been established in [5], is an immediate consequence of Theorem 3.

Corollary 5. Assume that

\[\int_0^\infty \frac{r(t)}{1 + s(t)} \, dt = \infty \quad \text{and} \quad \frac{pR_0}{1 + s_0} \leq 1 \]

where

\[R_0 = \sup \left\{ \int_{t-\tau}^{t} r(s) \, ds : t - \tau \geq 0 \right\} \quad \text{and} \quad s_0 = \inf \{ s_1(t) : t \geq 0 \} \]

Then every positive solution \(N(t) \) of Eq. (3.19) tends to the positive equilibrium \(K^{1/p} \) as \(t \) tends to \(\infty \).

Remark 1. When \(\tau = 0 \), \(p = 1 \), \(r(t) \equiv r \), and \(s_i(t) \equiv s \) are constants, Eq. (3.19) was proposed by Smith [6] as an alternative to the logistic equation for a “food-limited” population. The time-delayed, food-limited model (3.19) has been studied by Gopalsamy *et al.* [3] and Grove *et al.* [5].

Now consider another special case of Eq. (1.5). When \(p = 1 \) and \(s_i(t) \equiv 0 \) for \(i = 1, 2, \ldots, m \), Eq. (1.5) reduces to

\[\dot{N}(t) = r(t) N(t) \left(1 - \frac{\sum_{i=1}^{m} a_i N(t - \tau_i)}{K} \right), \quad t \geq 0, \quad (3.20) \]

and so we have the following consequence of Theorem 3.

Corollary 6. Assume that

\[\int_0^\infty r(t) \, dt = \infty \quad \text{and} \quad R_0 \leq 1 \quad (3.21) \]

where

\[R_0 = \sup \left\{ \int_{t-\tau}^{t} r(s) \, ds \right\}. \]

Then every positive solution of Eq. (3.20) tends to the positive equilibrium \(k / \sum_{i=1}^{m} a_i \) as \(t \) tends to \(\infty \).

Equation (3.20) is well known as a nonautonomous delay logistic equation. The qualitative behavior of this equation has been studied extensively. It has been shown (see [2, p. 57]) that for the special case of Eq. (3.20),

\[\dot{N}(t) = rN(t) \left(1 - \frac{a_1 N(t - \tau_1) + a_2 N(t - \tau_2)}{K} \right), \quad t \geq 0, \quad (3.22) \]
where
\[r, a_1, a_2, \tau_1, \tau_2 \in (0, \infty) \]

if
\[r(\tau_1 + \tau_2) \exp[r(\tau_1 + \tau_2)] < 1, \quad (3.23) \]

then every positive solution of Eq. (3.22) tends to the positive equilibrium \(K/(a_1 + a_2) \) as \(t \) tends to \(\infty \). However, in this special case, our condition (3.21) reduces to
\[r \max\{\tau_1, \tau_2\} \leq 1 \]

which clearly is an improvement over (3.23).

For the special case of Eq. (3.20),
\[\dot{N}(t) = rN(t)\left(1 - \frac{N(t - \tau(t))}{K}\right), \quad (3.24) \]

it has been shown (see [2, p. 65]) that if
\[r\tau_0 e^{\tau_0 e^{r\tau_0}} < 1 \quad (3.25) \]

where \(\tau_0 = \sup(\tau(t): \tau \geq 0) \), then every positive solution of Eq. (3.24) tends to \(K \) as \(t \) tends to \(\infty \). However, in this special case, our condition (3.21) reduces to
\[r\tau_0 \leq 1 \]

which is an improvement of (3.25).

Finally, we will apply our results to the delay differential equation
\[\dot{y}(t) = -r(t)y(t - \tau(t))\left[1 - y^2(t)\right], \quad t \geq t_0, \quad (3.26) \]

where
\[r, \tau \in C\left[[t_0, \infty), (0, \infty)\right] \quad \text{and} \quad \lim_{t \to \infty} [t - \tau(t)] = \infty, \]

with an initial condition of the form
\[
\begin{cases}
 y(t) = \phi(t) & \text{for} \ -\tau^* \leq t \leq 0 \text{ where} \\
 \phi \in C\left[[-\tau^*, 0], \mathbb{R}\right] & \text{and} \ |\phi(0)| < 1.
\end{cases} \quad (3.27)
\]
It is not difficult to show that the solution of (3.26) and (3.27) exists for all \(t \geq 0 \) and satisfies the condition \(-1 < y(t) < 1\). Set

\[
y(t) = \frac{e^{2x(t)} - 1}{e^{2x(t)} + 1}, \quad t \geq 0.
\]

Then Eq. (3.26) reduces to

\[
\dot{x}(t) = r(t) \left\{ \frac{1 - e^{2x(t-\tau(t))}}{1 + e^{2x(t-\tau(t))}} \right\}, \quad t \geq 0, \tag{3.28}
\]

and so we have the following result.

Theorem 4. Assume that

\[
\int_0^\infty r(t) \, dt = \infty \quad \text{and} \quad R_0 \leq 1 \tag{3.29}
\]

where

\[
R_0 = \sup \left\{ \int_{t-\tau(t)}^t r(s) \, ds : t - \tau(t) \geq 0 \right\}.
\]

Then every solution of (3.26) and (3.27) tends to zero as \(n \) tends to \(\infty \).

Proof. Set

\[
f(t, u) = r(t) \left\{ \frac{1 - e^{2u}}{1 + e^{2u}} \right\} \quad \text{and} \quad F(u) = R_0 \left\{ \frac{1 - e^{2u}}{1 + e^{2u}} \right\}
\]

Then by an argument similar to that in Theorem 3, we see that under the hypothesis (3.29) the solution of the IVP

\[
\begin{align*}
y_{n+1} &= R_0 \left\{ \frac{1 - e^{2y_n}}{1 + e^{2y_n}} \right\} \\
y_0 &= R_0
\end{align*}
\]

(3.30)

tends to zero. Hence it is easy to see that all the hypotheses of Theorem 1 are satisfied and so every solution of (3.28) tends to zero. Therefore, every solution of (3.26) and (3.27) tends to zero as \(t \) tends to \(\infty \). The proof is complete.
REFERENCES

