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Suppose B = F [x, y, z]/h is the homogeneous coordinate ring of
a characteristic p degree 3 irreducible plane curve C with a node.
Let J be a homogeneous (x, y, z)-primary ideal and n → en be the
Hilbert–Kunz function of B with respect to J .
Let q = pn . When J = (x, y, z), it is known that en = 7

3 q2 − 1
3 q − R

where R = 5
3 if q ≡ 2 (3), and is 1 otherwise. We generalize this,

showing that en = μq2 +αq− R where R only depends on q mod 3.
We describe α and R in terms of classification data for a vector
bundle on C .

© 2011 Elsevier Inc. All rights reserved.

Introduction

Let h be a form of degree > 0 in A = F [x, y, z] where F is algebraically closed of characteristic
p > 0. Suppose J is a homogeneous ideal of A. If q = pn , let J [q] be the ideal generated by all uq , u
in J . Let en be the F -dimension of A/( J [q],h).

Problem: If e0 < ∞, how does en depend on n?

The problem was treated by elementary methods, when J = (x, y, z) and degree h is small, by
several authors. In particular, Pardue in his thesis (see [3] for an exposition) showed that when h is
an irreducible nodal cubic then en is 7

3 q2 − 1
3 q − 5

3 if q ≡ 2 (3), and is 7
3 q2 − 1

3 q − 1 otherwise.
For arbitrary h and J , sheaf-theoretic methods were introduced by Brenner [1] and Trivedi [8].

They calculated μ = limn→∞ en
q2 , showing that μ is rational. When h has coefficients in a finite field

and defines a smooth plane curve C , Brenner [2] showed further that μq2 − en is an eventually
periodic function of n. In [7], the author returned to the case J = (x, y, z), and adapted Brenner’s
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method to treat all h defining reduced irreducible C . (But now μq2 must be replaced by something
a bit more complicated.)

In the present paper we restrict our attention to nodal cubics but allow J to be arbitrary. Us-
ing sheaf-theoretic methods as in [7] we recover Pardue’s result when J = (x, y, z). For arbitrary J
we get a result nearly as precise. What allows us to get sharp results is the well-developed theory
of vector bundles on nodal cubic curves. (See Igor Burban [4] and the references therein.) We are in-
debted to Burban for pointing us towards this theory, and for the result essential to us that he derives
in [4].

1. A little sheaf theory

Definition 1.1. If M is a finitely generated Z-graded A = F [x, y, z] module, hilb(M) = ∑
dim(Md)T d

and poincaré(M) = (1 − T )3 hilb(M). (Note that poincaré(M) is in Z[T , T −1].)

Throughout the paper we adopt the notation of the introduction, with h ∈ A a degree 3 form
defining a nodal C ⊂ P

2, having desingularization X = P
1. Hartshorne [6] is a good reference for what

follows.
Even though C is singular there is a good theory of torsion-free sheaves on C . One may define the

degree of such a sheaf, all such sheaves are reflexive, and one has Riemann–Roch and Serre duality.
In some ways C is like an elliptic curve. For example, if Y is rank 1 torsion-free, h0(Y ) = deg Y if
deg Y > 0, and is 0 if deg Y < 0. When deg Y = 0, h0(Y ) is 1 if Y is isomorphic to O C and is 0
otherwise.

Definition 1.2. poincaré(Y ) = (1 − T )3 ∑
h0(Y (n))T n , where Y (n) is the twist of Y by O C (n).

(Riemann–Roch shows that (1 − T )−1 poincaré(Y ) is in Z[T , T −1].)

Example 1.3.

(a) poincaré(O C ) = (1 − T )3(1 + 3T + 6T 2 + 9T 3 + · · ·) = 1 − T 3.
(b) poincaré(

⊕
O C (−di)) = (1 − T 3) · ∑ T di .

(c) If L has rank 1 and degree −n, then:

(1 − T )−1 poincaré(L) = T
n+2

3 (2 + T ) if n ≡ 1 (3)

= T
n+1

3 (1 + 2T ) if n ≡ 2 (3)

= T
n
3
(
1 + T + T 2) if L ≈ O C

(
−n

3

)

= T
n
3 (3T ) otherwise.

Lemma 1.4. Suppose L and M are rank 1 torsion-free, that neither is isomorphic to any O C (k), and that
deg M � 1 + deg L. Then if 0 → L → U → M → 0 is exact, poincaré(U ) = poincaré(L) + poincaré(M).

Proof. Since deg M(n) � 1 + deg L(n) for each n, it’s enough to show that h0(U ) = h0(L) + h0(M). If
deg L � 0, deg Lˇ � 0 and Lˇ is not isomorphic to O C . So h1(L) = h0(Lˇ) = 0, and we use the exact
sequence of cohomology. If deg L < 0, deg M � 0, and M is not isomorphic to O C . So h0(M) = 0, and
the result follows. �

Now fix a homogeneous ideal J of A with dim A/( J ,h) < ∞, and forms g1, . . . , gs generating
( J ,h)/h, with deg gi = di . Then the sheaf map

⊕
O C (−di) → O C defined by the gi is onto. So if W

is the kernel of this map, W is locally free of rank s − 1 and degree −3
∑

di .
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Lemma 1.5.

(1) poincaré(A/( J ,h)) = (1 − T )3(1 − ∑
T di ) + poincaré(W ).

(2) More generally, let q = pn and W [q] be the pull-back of W by Φn, where Φ : C → C is the Frobenius map.
Then:

poincaré
(

A/
(

J [q],h
)) = (

1 − T 3)(1 −
∑

T qdi

)
+ poincaré

(
W [q]).

Proof. For each d we have an exact sequence 0 → W (d) → ⊕
O C (d − di) → O C (d), giving a corre-

sponding exact sequence on global sections. Since H0(O C (d)) identifies with (A/h)d , the cokernel of
the map H0(

⊕
O C (d − di)) → H0(O C (d)) identifies with (A/( J ,h))d . It follows that dim(A/( J ,h))d =

h0(O C (d)) − h0(
⊕

O C (d − di)) + h0(W (d)). Multiplying by T d , summing over d, and using (a) and (b)
of Example 1.3, we get (1). Furthermore, replacing each gi by gq

i replaces J by J [q] and W by W [q] .
So (2) is a consequence of (1). �
Remark 1.6. Lemma 1.5 allows us to replace the problem of the dependence of poincaré(A/( J [q],h))

on q by a more geometric question: if W is a vector bundle on C , how does poincaré(W [q]) vary
with q? A generalization of Lemma 1.5 is a key to the sheaf-theoretic approach to Hilbert–Kunz theory
taken by Brenner and Trivedi.

For the rest of this section we take J = (x, y, z), g1 = x, g2 = y, g3 = z so that the W of Lemma 1.5
has rank 2 and degree −9. We’ll use sheaf theory on C to give another proof of Pardue’s results.

Lemma 1.7. W maps onto a rank 1 degree −4 torsion-free sheaf, M, whose stalk at the node is the maximal
ideal m of the local ring O.

Proof. W (1) identifies with the kernel of the map O C ⊕ O C ⊕ O C → O C (1) given by x, y and z. By
Lemma 7.1 of [7], W (1) maps onto a rank 1 degree −1 torsion-free sheaf whose stalk at the node
is m, and we twist by O C (−1). �
Lemma 1.8. Suppose q = pn. Let M be the sheaf of Lemma 1.7. Pull M back by Φn : C → C and quotient out
the maximal torsion subsheaf to get a rank 1 torsion-free sheaf Mn. Then deg Mn = −5q + 1.

Proof. Theorem 2.8 of [7] together with Lemma 1.7 above shows that deg Mn = constant · q −
dim(O/m[q]). Passing to the completion we find that dim(O/m[q]) = dim(F �x, y�/(xy, xq, yq)) =
2q − 1. So deg(Mn) = (constant) · q + 1. Since deg(M) = −4, the constant is −5. �
Lemma 1.9. Let Ln be the kernel of the obvious map W [q] → Mn. Then:

(1) There is an exact sequence 0 → Ln → W [q] → Mn → 0 with deg Mn = −5q + 1, deg Ln = −4q − 1.
(2) Neither Ln nor Mn is free at the node.
(3) poincaré(W [q]) = poincaré(Ln) + poincaré(Mn).

Proof. Since W [q] and Mn have degrees −9q and −5q + 1 we get (1). If Mn is locally free, the exact
sequence (1) shows that Ln is also. Since we have an exact sequence 0 → Mň → (W [q] )̌ → Lň → 0 we
see conversely that if Ln is locally free then so is Mň̌ = Mn . Suppose now that Ln and Mn are locally
free. Then q > 1. Let L′

n and M ′
n be the pull-backs of Ln and Mn by Frobenius so that we have an exact

sequence 0 → L′
n → W [pq] → M ′

n → 0. Then deg Ln+1 − deg M ′
n = (−4pq − 1)− p(−5q + 1) = pq − p −

1 > 0. So the map Ln+1 → W [pq]/L′
n = M ′

n is the zero-map, and Ln+1 ⊂ L′
n . But deg Ln+1 > deg L′

n , and
this contradiction establishes (2). Finally, deg Mn − deg Ln = 2 − q � 1. Combining this with (2) and
Lemma 1.4 we get (3). �
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Corollary 1.10.

(1 − T )−1 poincaré
(
W [q]) = T

4q+2
3 (1 + 2T ) + T

5q+1
3 (2 + T ) if q ≡ 1 (3)

= T
4q+1

3 (3T ) + T
5q+2

3 (3) if q ≡ 2 (3)

= T
4q
3
(
2T + T 2) + T

5q
3 (1 + 2T ) if q ≡ 0 (3).

Proof. Suppose first that q ≡ 1 (3). Since 4q + 1 ≡ 2 (3), (1 − T )−1 poincaré(Ln) = T
4q+2

3 (1 + 2T ) by

Example 1.3(c). Similarly, since 5q − 1 ≡ 1 (3), (1 − T )−1 poincaré(Mn) is T
5q+1

3 (2 + T ). Now use (3)
of Lemma 1.9. The cases q ≡ 2 (3) and q ≡ 0 (3) are handled similarly. (When q ≡ 2 (3) we use the
fact that neither Ln nor Mn is locally free.)

Now let en = dim(A/( J [q],h)). Pardue’s formula for en is easily derived from Corollary 1.10. Let
un = (1 − T )−1 poincaré(W [q]). By Lemma 1.5, (1 − T )2 hilb A/( J [q],h) = (1 + T + T 2)(1 − 3T q) + un .
Applying ( d

dT )2, dividing by 2, and evaluating at T = 1 we find that en = 1
2 (u′′

n(1) − (9q2 + 9q + 4)).

Suppose that q ≡ 1 (3). Then Corollary 1.10 shows that u′′
n(1) = (

4q+2
3 )(4q + 3) + (

5q+1
3 )(5q) = 41

3 q2 +
25
3 q + 2. When q ≡ 2 (3), u′′

n(1) = (
4q+1

3 )(4q + 4) + (
5q+2

3 )(5q − 1) = 41
3 q2 + 25

3 q + 2
3 . And when

q ≡ 0 (3), u′′
n(1) = (

4q+3
3 )(4q + 2) + (

5q
3 )(5q + 1) = 41

3 q2 + 25
3 q + 2. So en = 7

3 q2 − 1
3 q − 5

3 if q ≡ 2 (3),

and is 7
3 q2 − 1

3 q − 1 otherwise. �
2. Elements of ZZZ[T , T −1] attached to cycles

In Corollary 1.10 we calculated all the (1 − T )−1 poincaré(W [q]) for a certain rank 2 bundle, W . In
this section we develop some combinatorial machinery that we’ll use later to get similar results for
arbitrary W .

Definition 2.1. Suppose r > 0. A cycle (of length r) is an ordered r-tuple of integers, defined up to
cyclic permutation. If a is a cycle, a(k) is the cycle obtained from a by adding 3k to each cycle entry.

Definition 2.2.

γ1(a) is the number of entries of a that are � 0.
γ2(a) = ∑

max(ai,0), where ai runs over the entries of a.

Note that γ1(a) + γ2(a) = ∑
max(ai + 1,0) where ai runs over the entries of a. We now compute

(1 − T )2 ∑
γ2(a(k))T k . This is evidently a sum of contributions, one for each entry in a. An entry of

2 gives a contribution of (1 − T )2(2 + 5T + 8T 2 + · · ·) = 2 + T ; similarly an entry of 1 (resp. 0) gives
a contribution of (1 + 2T ) (resp. 3T ). If follows easily that an entry of −n gives a contribution of
T n+2 3(2 + T ), T n+1 3(1 + 2T ) or T n 3(3T ) according as n ≡ 1, 2 or 0 mod 3. We may express this in
a slightly different way:

Lemma 2.3. Suppose the distinct entries in the cycle a are −ni with −ni appearing ri times in the cycle. Then
P2(a) = (1 − T )2 ∑

γ2(a(k))T k lies in Z[T , T −1], and is the sum of contributions, one from each ni . The
contribution from ni is:

T
ni+2

3 (2ri + ri T ) if ni ≡ 1 (3),

T
ni+1

3 (ri + 2ri T ) if ni ≡ 2 (3),

T
ni
3 (3ri T ) if ni ≡ 0 (3).
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Observe next that the cycle a gives rise to an integer-valued function of period r on Z, defined up
to translation. We say that the cycle is “aperiodic” if this function has no period < r. For the rest of
this section we assume that r > 1 and that a is aperiodic.

Definition 2.4. A “bloc”, b, of a with entry N consists of consecutive entries of a each of which is N ,
with both the cycle entry preceding the first bloc entry and the cycle entry following the last bloc
entry unequal to N . The length, l(b), of b is the number of entries in b.

Since r > 1 and the cycle is aperiodic, there are at least 2 blocs in a. The blocs of a appear in cyclic
order and fill out a; their lengths sum to r.

Definition 2.5. Let b be a bloc with entry N .

(1) If the blocs just before and just after b have entries < N , b is locally maximal and ε(b) = 1.
(2) If the blocs just before and just after b have entries > N , b is locally minimal and ε(b) = −1.
(3) If b is neither locally maximal nor locally minimal, ε(b) = 0.

Remark 2.6. Between any 2 locally maximal blocs there is a locally minimal bloc, and between any 2
locally minimals there is a locally maximal. Since there are at least 2 blocs,

∑
ε(b) = 0.

Definition 2.7.

(1) A bloc b with entry N is positive if N � 0.
(2) Suppose b is positive. ε∗(b) = ε(b) unless N = 0 and b is locally maximal. In this case we set

ε∗(b) equal to 0.
(3) γ3(a) = ∑

ε∗(b), the sum ranging over the positive blocs of a.

We now compute (1 − T )2 ∑
γ3(a(k))T k . The sum is evidently a sum of contributions, one from

each bloc of a. Consider first a bloc with entry 2 or 1. The contribution of this bloc is ε(b)(1 − T )2 ·
(1 + T + T 2 + · · ·) = ε(b)(1 − T ). Next consider a bloc with entry 0. If the block is locally minimal it
gives a contribution of (−1)(1 − T )2(1 + T + T 2 +· · ·) = ε(b)(1 − T ), while if it is locally maximal, the
contribution is (1)(1 − T )2(T + T 2 + T 3 + · · ·) = T − T 2 = ε(b) · (1 − T ) − (1 − T )2.

More generally, a locally maximal bloc with entry −n, n ≡ 0 (3), provides a contribution of
ε(b)T

n
3 (1 − T ) − T

n
3 (1 − T )2, while in all other cases (i.e. when n ≡ ±1 (3) or the bloc is not lo-

cally maximal) the contribution is ε(b)T
n+2

3 (1 − T ), ε(b)T
n+1

3 (1 − T ), or ε(b)T
n
3 (1 − T ) according as

n ≡ 1, 2 or 0 mod 3. We’ll express this result in a different way.

Definition 2.8. Suppose the distinct entries of a are the integers −ni . Then:

(1) si is
∑

ε(b), the sum extending over all the blocs of a with entry −ni .
(2) If ni ≡ 0 (3), Bi is the number of locally maximal blocs with entry −ni .

The discussion preceding the definition shows:

Theorem 2.9. P3(a) = (1 − T )2 ∑
γ3(a(k))T k is a sum of contributions, one from each ni . The contribution

from ni is:

T
ni+2

3 (si − si T ) if ni ≡ 1 (3),

T
ni+1

3 (si − si T ) if ni ≡ 2 (3),

T
ni
3
(
si − si T − Bi(1 − T )2) if ni ≡ 0 (3).
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We next derive an alternative description of γ1(a) + γ3(a) in terms of “positive parts of a”.

Definition 2.10. A positive part, p, of a consists of consecutive entries of a all of which are � 0; if a
has a negative entry we further require that the entry of a preceding the first entry of p and the entry
of a following the last entry of p are < 0. (Note that any positive part of a is a union of consecutive
positive blocs.)

Definition 2.11.

(1) θ(p) = l(p) if p consists of a single bloc of zeroes.
(2) θ(p) = l(p) if l(p) = r.
(3) In all other cases, θ(p) = 1 + l(p).

Definition 2.12. θ(a) = ∑
θ(p), the sum extending over the positive parts of a.

Lemma 2.13. If p is a positive part of a, θ(p) = l(p) + ∑
ε∗(b), the sum extending over the blocs in p.

Proof. If p contains a bloc with ε∗ �= ε, then since this bloc is locally maximal with entry 0 it is the
only bloc in p and we use (1) of Definition 2.11. So we may assume that ε∗ = ε for each bloc in p.
If l(p) = r,

∑
ε∗(b) = ∑

ε(b), which is 0 by Remark 2.6, and we use (2) of Definition 2.11. Suppose
finally that l(p) < r. There is at least one bloc in p with ε �= 0. The first and last blocs appearing in p
with ε �= 0 are evidently locally maximal. The first sentence of Remark 2.6 then shows that

∑
ε(b),

the sum running over the blocs contained in p, is 1. Definition 2.11(3), now gives the result. �
Summing the result of Lemma 2.13 over the positive parts of a we find:

Corollary 2.14. θ(a) = γ1(a) + γ3(a).

Theorem 2.15. Let γ4(a) = (
∑

max(ai + 1,0))− θ(a) with θ(a) as in Definition 2.12. Let P4(a) be (1 − T )2 ·∑
γ4(a(k))T k. Then P4(a) is a sum of contributions, one from each ni , where the −ni are the distinct entries

of a. In the notation of Lemma 2.3 and Definition 2.8, the contribution from ni is:

T
ni+2

3
(
(2ri − si) + (ri + si)T

)
if ni ≡ 1 (3),

T
ni+1

3
(
(ri − si) + (2ri + si)T

)
if ni ≡ 2 (3),

T
ni
3
(−si + (3ri + si)T + Bi(1 − T )2) if ni ≡ 0 (3).

Proof. Combining Corollary 2.14 with the sentence following Definition 2.2 we find that γ4 = (γ1 +
γ2) − (γ1 + γ3) = γ2 − γ3. Applying this to a(k), multiplying by T k and summing over k we find that
P4(a) = P2(a) − P3(a). Lemma 2.3 and Theorem 2.9 conclude the proof. �
3. Results for arbitrary W and J

A locally free sheaf of rank > 0 is “indecomposable” if it is not a direct sum of two subsheaves of
rank > 0. Indecomposable locally free W on the nodal cubic C have been classified—see Burban [4]
and the references given there. I’ll summarize results from the classification.

(1) Suppose r > 0, a is an aperiodic cycle of length r, m � 1 and λ is in F ∗ . One may attach to the
triple a,m, λ an indecomposable locally free sheaf W = B(a,m, λ).

(2) The pull-back of W to X = P
1 is the direct sum of the (O X (ai))

m where the entries of a are
the ai . In particular, the rank of W is mr, and the degree is m

∑
ai .
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(3) If W = B(a,m, λ), then W (k) is isomorphic to B(a(k),m, λ) with a(k) as in Definition 2.1.
(4) When F is algebraically closed (as it is throughout this paper) every indecomposable locally free

sheaf on C is isomorphic to some B(a,m, λ).

In Theorem 2.2 of [5], Drozd, Greuel and Kashuba give a formula for h0(W ) when W = B(a,m, λ).
(As we’re dealing with a nodal cubic rather than a cycle of projective lines, we take the s in the
statement of that theorem to be 1.) In particular they show:

Theorem 3.1. Suppose W = B(a,m, λ) with r > 1. Then in the notation of our Section 2, h0(W ) = m ·
((

∑
max(ai + 1,0)) − θ(a)) = m(γ4(a)).

Corollary 3.2. Situation as in Theorem 3.1. Then (1 − T )−1 poincaré(W ) = m(1 − T )2 ∑
γ4(a(k))T k.

Applying Theorem 2.15 we find:

Theorem 3.3. Situation as in Theorem 3.1. Suppose the distinct entries in a are −ni . Then (1 −
T )−1 poincaré(W ) is the sum of the following contributions, one from each ni :

T
ni+2

3
(
(2mri − msi) + (mri + msi)T

)
if ni ≡ 1 (3),

T
ni+1

3
(
(mri − msi) + (2mri + msi)T

)
if ni ≡ 2 (3),

T
ni
3
(−msi + (3mri + msi)T + mBi(1 − T )2) if ni ≡ 0 (3),

where ri is the number of times −ni appears in a, and si and Bi are obtained from a as in Definition 2.8.

We now make use of the following key result of Burban [4]: if W = B(a,m, λ) then W [q] is iso-
morphic to B(qa,m, λq) where qa is obtained from a by multiplying each cycle entry, ai , by q.

Theorem 3.4. Let W be a locally free sheaf on C . Suppose the pull-back of W to X = P
1 is the direct sum of

(O X (−ni))
ri where the ni are distinct and each ri > 0. Then one can assign to each ni an si (with |si| � ri ),

and to each ni ≡ 0 (3) a Bi , so that the following holds:
For each q (when p = 3, for each q > 1), (1 − T )−1 poincaré(W [q]) is the sum of the following contribu-

tions, one for each ni :

T
qni+2

3
(
(2ri − si) + (ri + si)T

)
if qni ≡ 2 (3),

T
qni+1

3
(
(ri − si) + (2ri + si)T

)
if qni ≡ 1 (3),

T
qni
3

(−si + (3ri + si)T + Bi(1 − T )2) if qni ≡ 0 (3).

Proof. It suffices to prove the result for indecomposable W . So we may assume that W is B(a,m, λ).
Suppose first that the length of the cycle a is > 1. Then W [q] is isomorphic to B(qa,m, λq); further-
more the pull-back of W [q] to X = P

1 is the direct sum of the (O X (−qni))
mri .

Now replace W by W [q] in Theorem 3.3. The effect of this is to replace ni by qni and leave m
unchanged. The result we desire would follow if we could show that the si and Bi attached to the
cycle qa and its cycle entry −qni are independent of the choice of q (when p = 3 we need to show
that this independence holds for q � 3). But as there is an obvious 1 to 1 correspondence between
the blocs of a and the blocs of qa, and this correspondence preserves ε, this is clear.

When the cycle a consists of a single entry, −n1, we can make a much simpler argument. In this
case W has a filtration with m isomorphic quotients, each a line bundle of degree −n1, and it’s easy
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to calculate (1 − T )−1 poincaré(W [q]). Now r1 = m, and we find that Theorem 3.4 holds for W with
s1 = 0, and when n1 ≡ 0 (3), B1 = 1 if λ = 1 and B1 = 0 otherwise. �

Suppose now that W is the kernel bundle attached to an ideal J and generators g1, . . . , gs of J .
Let di = deg gi , and set en = dim A/( J [q],h) where q = pn . Theorem 3.4 attaches to W certain integers
ni , ri , si and Bi . We’ll use the argument given at the end of Section 1 to express each en (when p = 3,
each en with n > 0) in terms of ni , ri , si , Bi and

∑
d2

i .

Definition 3.5. μ = 1
6

∑
rin2

i − 3
2

∑
d2

i , α = 1
3

∑
sini .

The general result of Brenner [1] concerning Hilbert–Kunz multiplicities in graded dimension 2
shows that en = μq2 + O (q). We’ll show that when p = 3 (and n > 0) en = μq2 + αq − R for con-
stant R . And when p �= 3, en = μq2 + αq − R(q) where R(q) only depends on q mod 3.

Theorem 3.6. Suppose p = 3. Let R = ∑
(ri − Bi). Then for n > 0, en = μq2 + αq − R.

Proof. Let un = (1−T )−1 poincaré(W [q]) and vn = (1+T +T 2) ·(−1+∑
T diq). As we saw in Section 1,

2en = u′′
n(1) − v ′′

n(1); see Lemma 1.5 and the proof of Corollary 1.10. Now v ′′
n(1) = −2 + a sum of

terms (diq)(diq − 1)+ (diq + 1)(diq)+ (diq + 2)(diq + 1). Expanding we find that v ′′
n(1) = (3

∑
d2

i )q
2 +

(3
∑

di)q + 2s − 2, where s is the number of di . Since W has degree −∑
rini and rank

∑
ri we find:

v ′′
n(1) =

(
3
∑

d2
i

)
q2 +

(∑
rini

)
q + 2

∑
ri . (∗)

Now as p = 3 and q > 1, each qni ≡ 0 (3). Theorem 3.4 then shows that un is a sum of terms

T
qni

3 (−si + (3ri + si)T + Bi(1 − T )2). So u′′
n(1) is a sum of terms qni

3 · qni−3
3 · (−si) + qni+3

3 · qni
3 · (3ri +

si) + 2Bi . This term simplifies to qni
3 (qrini + 3ri + 2si) + 2Bi , and so:

u′′
n(1) =

(
1

3

∑
rin

2
i

)
q2 +

(∑
rini

)
q +

(
2

3

∑
sini

)
q + 2

∑
Bi . (∗∗)

Combining (∗) and (∗∗) we find that 2en = u′′
n(1) − v ′′

n(1) = 2μq2 + 2αq + 2
∑

(Bi − ri), giving the
theorem. �
Theorem 3.7. Suppose p �= 3. Set

R(q) =
∑

qni≡1 (3)

(
2ri − 2si

3

)
+

∑
qni≡2 (3)

(
2ri − si

3

)
+

∑
qni≡0 (3)

(ri − Bi).

Note that R(q) only depends on q mod 3. Then en = μq2 + αq − R(q).

Proof. We argue as in the proof of Theorem 3.6. (∗) remains valid, but now u′′
n(1) is a more com-

plicated sum of terms. When qni ≡ 0 (3), the term once again is qni
3 (qrini + 3ri + 2si) + 2Bi . But

when qni ≡ 1 (3) this term is replaced by qni+2
3 (qrini + ri + 2si); that is to say by qni

3 (qrini + 3ri +
2si) + 2ri+4si

3 . And when qni ≡ 2 (3), it is replaced by qni+1
3 (qrini + 2ri + 2si); that is to say by

qni
3 (qrini + 3ri + 2si) + 2ri+2si

3 . So:

u′′
n(1) =

(
1

3

∑
rin

2
i

)
q2 +

(∑
rini

)
q +

∑
qn ≡1 (3)

2ri + 4si

3
+

∑
qn ≡2 (3)

2ri + 2si

3
+ 2

∑
Bi .
i i
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Combining the above result with (∗) we find that 2en = u′′
n(1) − v ′′

n(1) = 2μq2 + 2αq +∑
qni≡1 (3)

4si−4ri
3 + ∑

qni≡2 (3)
2si−4ri

3 + 2
∑

qni≡0 (3)(Bi − ri) = 2μq2 + 2αq − 2R(q). �
Theorems 3.6 and 3.7 differ from similar results in [2] and [7] in that they allow practical calcu-

lation of all the en . (The eventually periodic terms that occur in the results of [2] and [7] arise from
dynamical systems acting on the rational points of certain moduli spaces—in practice they cannot be
calculated.) The following examples show how easy it is to apply Theorems 3.6 and 3.7.

Example 3.8. Suppose p = 2 and h = x3 + y3 + xyz. Let J be generated by g1, . . . , g8 where the gi
are x3, y3, z3, x2 y, x2z, xz2, y2z and yz2. If W is the kernel bundle arising from these gi , then
(1 − T )−1 poincaré(W [8]) = (1 − T )−1 poincaré(A/( J [8],h)) − (1 − T 3)(1 − 8T 24). This is calculated
immediately using Macaulay 2 which shows:

(1 − T )−1 poincaré
(
W [8]) = 3T 27 + 12T 28 + 6T 30 = T 27(3 + 12T ) + T 30(6 + 0T ).

We’ll use this information to determine all the en .

(a) n1 = � 3·27
8 
 = 10, n2 = � 3·30

8 
 = 11.
(b) Since 8n1 ≡ 2 (3), r1 − s1 = 3 and 2r1 + s1 = 12. It follows that r1 = 5, s1 = 2. Similarly, since

8n2 ≡ 1 (3), 2r2 − s2 = 6 and r2 + s2 = 0. So r2 = 2, s2 = −2.
(c) μ = 1

6 (5 · 100 + 2 · 121) − 3
2 (

∑8
1 9) = 47

3 , α = 1
3 (2 · 10 − 2 · 11) = − 2

3 .

(d) Since n1 ≡ 1 (3) and n2 ≡ 2 (3), R(1) = 2r1−2s1
3 + 2r2−s2

3 = 6
3 + 6

3 = 4, R(2) = 2r1−s1
3 + 2r2−2s2

3 =
8
3 + 8

3 = 16
3 .

Theorem 3.7 now tells us that en = 47
3 q2 − 2

3 q − 4 for even n and 47
3 q2 − 2

3 q − 16
3 for odd n.

Example 3.9. Take the gi and h as in the above example but with p = 3. Now Macaulay 2 gives:

(1 − T )−1 poincaré
(
W [9]) = 13T 31 + 2T 32 + 2T 33 + 4T 34

= T 30(0 + 13T + 2T 2) + T 33(2 + 4T + 0T 2).
It follows that n1 = 30·3

9 = 10, and we find that r1 = 5, s1 = 2, B1 = 2. Similarly, n2 = 33·3
9 = 11, and

r2 = 2, s2 = −2, B2 = 0. The μ and α are once again 47
3 and − 2

3 , but now R = (5 − 2) + (2 − 0) = 5.

We conclude from Theorem 3.6 that en = 47
3 q2 − 2

3 q − 5 for n > 0.
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