Hilbert-Kunz theory for nodal cubics, via sheaves

Paul Monsky
Brandeis University, Waltham, MA 02454-9110, USA

A R T I C L E I N F O

Article history:

Received 19 December 2010
Available online 22 September 2011
Communicated by Luchezar L. Avramov

Keywords:

Hilbert-Kunz
Vector bundles
Nodal cubics

Abstract

Suppose $B=F[x, y, z] / h$ is the homogeneous coordinate ring of a characteristic p degree 3 irreducible plane curve C with a node. Let J be a homogeneous (x, y, z)-primary ideal and $n \rightarrow e_{n}$ be the Hilbert-Kunz function of B with respect to J. Let $q=p^{n}$. When $J=(x, y, z)$, it is known that $e_{n}=\frac{7}{3} q^{2}-\frac{1}{3} q-R$ where $R=\frac{5}{3}$ if $q \equiv 2$ (3), and is 1 otherwise. We generalize this, showing that $e_{n}=\mu q^{2}+\alpha q-R$ where R only depends on $q \bmod 3$. We describe α and R in terms of classification data for a vector bundle on C.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Let h be a form of degree >0 in $A=F[x, y, z]$ where F is algebraically closed of characteristic $p>0$. Suppose J is a homogeneous ideal of A. If $q=p^{n}$, let $J^{[q]}$ be the ideal generated by all u^{q}, u in J. Let e_{n} be the F-dimension of $A /\left(J^{[q]}, h\right)$.

Problem: If $e_{0}<\infty$, how does e_{n} depend on n ?
The problem was treated by elementary methods, when $J=(x, y, z)$ and degree h is small, by several authors. In particular, Pardue in his thesis (see [3] for an exposition) showed that when h is an irreducible nodal cubic then e_{n} is $\frac{7}{3} q^{2}-\frac{1}{3} q-\frac{5}{3}$ if $q \equiv 2$ (3), and is $\frac{7}{3} q^{2}-\frac{1}{3} q-1$ otherwise.

For arbitrary h and J, sheaf-theoretic methods were introduced by Brenner [1] and Trivedi [8]. They calculated $\mu=\lim _{n \rightarrow \infty} \frac{e_{n}}{q^{2}}$, showing that μ is rational. When h has coefficients in a finite field and defines a smooth plane curve C, Brenner [2] showed further that $\mu q^{2}-e_{n}$ is an eventually periodic function of n. In [7], the author returned to the case $J=(x, y, z)$, and adapted Brenner's

[^0]method to treat all h defining reduced irreducible C. (But now μq^{2} must be replaced by something a bit more complicated.)

In the present paper we restrict our attention to nodal cubics but allow J to be arbitrary. Using sheaf-theoretic methods as in [7] we recover Pardue's result when $J=(x, y, z)$. For arbitrary J we get a result nearly as precise. What allows us to get sharp results is the well-developed theory of vector bundles on nodal cubic curves. (See Igor Burban [4] and the references therein.) We are indebted to Burban for pointing us towards this theory, and for the result essential to us that he derives in [4].

1. A little sheaf theory

Definition 1.1. If M is a finitely generated \mathbb{Z}-graded $A=F[x, y, z]$ module, $\operatorname{hilb}(M)=\sum \operatorname{dim}\left(M_{d}\right) T^{d}$ and poincaré $(M)=(1-T)^{3} \operatorname{hilb}(M)$. (Note that poincaré (M) is in $\mathbb{Z}\left[T, T^{-1}\right]$. .)

Throughout the paper we adopt the notation of the introduction, with $h \in A$ a degree 3 form defining a nodal $C \subset \mathbb{P}^{2}$, having desingularization $X=\mathbb{P}^{1}$. Hartshorne [6] is a good reference for what follows.

Even though C is singular there is a good theory of torsion-free sheaves on C. One may define the degree of such a sheaf, all such sheaves are reflexive, and one has Riemann-Roch and Serre duality. In some ways C is like an elliptic curve. For example, if Y is rank 1 torsion-free, $h^{0}(Y)=\operatorname{deg} Y$ if $\operatorname{deg} Y>0$, and is 0 if $\operatorname{deg} Y<0$. When $\operatorname{deg} Y=0, h^{0}(Y)$ is 1 if Y is isomorphic to O_{C} and is 0 otherwise.

Definition 1.2. poincaré $(Y)=(1-T)^{3} \sum h^{0}(Y(n)) T^{n}$, where $Y(n)$ is the twist of Y by $O_{C}(n)$. (Riemann-Roch shows that $(1-T)^{-1}$ poincaré (Y) is in $\mathbb{Z}\left[T, T^{-1}\right]$.)

Example 1.3.

(a) poincaré $\left(O_{C}\right)=(1-T)^{3}\left(1+3 T+6 T^{2}+9 T^{3}+\cdots\right)=1-T^{3}$.
(b) poincaré $\left(\oplus O_{C}\left(-d_{i}\right)\right)=\left(1-T^{3}\right) \cdot \sum T^{d_{i}}$.
(c) If L has rank 1 and degree $-n$, then:

$$
\begin{align*}
(1-T)^{-1} \text { poincaré }(L) & =T^{\frac{n+2}{3}}(2+T) \quad \text { if } n \equiv 1 \tag{3}\\
& =T^{\frac{n+1}{3}}(1+2 T) \quad \text { if } n \equiv 2 \tag{3}\\
& =T^{\frac{n}{3}}\left(1+T+T^{2}\right) \quad \text { if } L \approx O_{C}\left(-\frac{n}{3}\right) \\
& =T^{\frac{n}{3}}(3 T) \quad \text { otherwise. }
\end{align*}
$$

Lemma 1.4. Suppose L and M are rank 1 torsion-free, that neither is isomorphic to any $O_{C}(k)$, and that $\operatorname{deg} M \leqslant 1+\operatorname{deg} L$. Then if $0 \rightarrow L \rightarrow U \rightarrow M \rightarrow 0$ is exact, poincaré $(U)=$ poincaré $(L)+$ poincaré (M).

Proof. Since $\operatorname{deg} M(n) \leqslant 1+\operatorname{deg} L(n)$ for each n, it's enough to show that $h^{0}(U)=h^{0}(L)+h^{0}(M)$. If $\operatorname{deg} L \geqslant 0, \operatorname{deg} L^{\llcorner } \leqslant 0$ and L^{\wedge} is not isomorphic to O_{C}. So $h^{1}(L)=h^{0}\left(L^{\check{ }}\right)=0$, and we use the exact sequence of cohomology. If $\operatorname{deg} L<0, \operatorname{deg} M \leqslant 0$, and M is not isomorphic to O_{C}. So $h^{0}(M)=0$, and the result follows.

Now fix a homogeneous ideal J of A with $\operatorname{dim} A /(J, h)<\infty$, and forms g_{1}, \ldots, g_{s} generating $(J, h) / h$, with $\operatorname{deg} g_{i}=d_{i}$. Then the sheaf map $\bigoplus O_{C}\left(-d_{i}\right) \rightarrow O_{C}$ defined by the g_{i} is onto. So if W is the kernel of this map, W is locally free of rank $s-1$ and degree $-3 \sum d_{i}$.

Lemma 1.5.

(1) poincaré $(A /(J, h))=(1-T)^{3}\left(1-\sum T^{d_{i}}\right)+\operatorname{poincaré}(W)$.
(2) More generally, let $q=p^{n}$ and $W^{[q]}$ be the pull-back of W by Φ^{n}, where $\Phi: C \rightarrow C$ is the Frobenius map. Then:

$$
\text { poincaré }\left(A /\left(J^{[q]}, h\right)\right)=\left(1-T^{3}\right)\left(1-\sum T^{q d_{i}}\right)+\operatorname{poincaré}\left(W^{[q]}\right) .
$$

Proof. For each d we have an exact sequence $0 \rightarrow W(d) \rightarrow \bigoplus O_{C}\left(d-d_{i}\right) \rightarrow O_{C}(d)$, giving a corresponding exact sequence on global sections. Since $H^{0}\left(O_{C}(d)\right)$ identifies with $(A / h)_{d}$, the cokernel of the map $H^{0}\left(\bigoplus_{O_{C}}\left(d-d_{i}\right)\right) \rightarrow H^{0}\left(O_{C}(d)\right)$ identifies with $(A /(J, h))_{d}$. It follows that $\operatorname{dim}(A /(J, h))_{d}=$ $h^{0}\left(O_{C}(d)\right)-h^{0}\left(\bigoplus O_{C}\left(d-d_{i}\right)\right)+h^{0}(W(d))$. Multiplying by T^{d}, summing over d, and using (a) and (b) of Example 1.3 , we get (1). Furthermore, replacing each g_{i} by g_{i}^{q} replaces J by $J^{[q]}$ and W by $W^{[q]}$. So (2) is a consequence of (1).

Remark 1.6. Lemma 1.5 allows us to replace the problem of the dependence of poincaré $\left(A /\left(J^{[q]}, h\right)\right)$ on q by a more geometric question: if W is a vector bundle on C, how does poincaré $\left.W^{[q]}\right)$ vary with q ? A generalization of Lemma 1.5 is a key to the sheaf-theoretic approach to Hilbert-Kunz theory taken by Brenner and Trivedi.

For the rest of this section we take $J=(x, y, z), g_{1}=x, g_{2}=y, g_{3}=z$ so that the W of Lemma 1.5 has rank 2 and degree -9 . We'll use sheaf theory on C to give another proof of Pardue's results.

Lemma 1.7. W maps onto a rank 1 degree -4 torsion-free sheaf, M, whose stalk at the node is the maximal ideal m of the local ring \mathcal{O}.

Proof. W (1) identifies with the kernel of the map $O_{C} \oplus O_{C} \oplus O_{C} \rightarrow O_{C}(1)$ given by x, y and z. By Lemma 7.1 of [7], W (1) maps onto a rank 1 degree -1 torsion-free sheaf whose stalk at the node is m, and we twist by $O_{C}(-1)$.

Lemma 1.8. Suppose $q=p^{n}$. Let M be the sheaf of Lemma 1.7. Pull M back by $\Phi^{n}: C \rightarrow C$ and quotient out the maximal torsion subsheaf to get a rank 1 torsion-free sheaf M_{n}. Then $\operatorname{deg} M_{n}=-5 q+1$.

Proof. Theorem 2.8 of [7] together with Lemma 1.7 above shows that deg $M_{n}=$ constant $\cdot q-$ $\operatorname{dim}\left(\mathcal{O} / m^{[q]}\right)$. Passing to the completion we find that $\operatorname{dim}\left(\mathcal{O} / m^{[q]}\right)=\operatorname{dim}\left(F \llbracket x, y \rrbracket /\left(x y, x^{q}, y^{q}\right)\right)=$ $2 q-1$. So $\operatorname{deg}\left(M_{n}\right)=$ (constant) $\cdot q+1$. Since $\operatorname{deg}(M)=-4$, the constant is -5 .

Lemma 1.9. Let L_{n} be the kernel of the obvious map $W^{[q]} \rightarrow M_{n}$. Then:
(1) There is an exact sequence $0 \rightarrow L_{n} \rightarrow W^{[q]} \rightarrow M_{n} \rightarrow 0$ with $\operatorname{deg} M_{n}=-5 q+1, \operatorname{deg} L_{n}=-4 q-1$.
(2) Neither L_{n} nor M_{n} is free at the node.
(3) poincaré $\left(W^{[q]}\right)=\operatorname{poincaré}\left(L_{n}\right)+\operatorname{poincaré}\left(M_{n}\right)$.

Proof. Since $W^{[q]}$ and M_{n} have degrees $-9 q$ and $-5 q+1$ we get (1). If M_{n} is locally free, the exact sequence (1) shows that L_{n} is also. Since we have an exact sequence $0 \rightarrow M_{n}^{\check{2}} \rightarrow\left(W^{[q]}\right)^{\check{2}} \rightarrow L_{n}^{\llcorner } \rightarrow 0$ we see conversely that if L_{n} is locally free then so is $M_{n}^{\sim}=M_{n}$. Suppose now that L_{n} and M_{n} are locally free. Then $q>1$. Let L_{n}^{\prime} and M_{n}^{\prime} be the pull-backs of L_{n} and M_{n} by Frobenius so that we have an exact sequence $0 \rightarrow L_{n}^{\prime} \rightarrow W^{[p q]} \rightarrow M_{n}^{\prime} \rightarrow 0$. Then $\operatorname{deg} L_{n+1}-\operatorname{deg} M_{n}^{\prime}=(-4 p q-1)-p(-5 q+1)=p q-p-$ $1>0$. So the map $L_{n+1} \rightarrow W^{[p q]} / L_{n}^{\prime}=M_{n}^{\prime}$ is the zero-map, and $L_{n+1} \subset L_{n}^{\prime}$. But $\operatorname{deg} L_{n+1}>\operatorname{deg} L_{n}^{\prime}$, and this contradiction establishes (2). Finally, $\operatorname{deg} M_{n}-\operatorname{deg} L_{n}=2-q \leqslant 1$. Combining this with (2) and Lemma 1.4 we get (3).

Corollary 1.10.

$$
\begin{align*}
(1-T)^{-1} \text { poincaré }\left(W^{[q]}\right) & =T^{\frac{4 q+2}{3}}(1+2 T)+T^{\frac{5 q+1}{3}}(2+T) \quad \text { if } q \equiv 1 \tag{3}\\
& =T^{\frac{4 q+1}{3}}(3 T)+T^{\frac{5 q+2}{3}}(3) \quad \text { if } q \equiv 2 \quad \text { (3) } \tag{3}\\
& =T^{\frac{4 q}{3}}\left(2 T+T^{2}\right)+T^{\frac{5 q}{3}}(1+2 T) \quad \text { if } q \equiv 0 \tag{3}
\end{align*}
$$

Proof. Suppose first that $q \equiv 1$ (3). Since $4 q+1 \equiv 2$ (3), $(1-T)^{-1}$ poincaré $\left(L_{n}\right)=T^{\frac{4 q+2}{3}}(1+2 T)$ by Example 1.3 (c). Similarly, since $5 q-1 \equiv 1$ (3), $(1-T)^{-1}$ poincaré $\left(M_{n}\right)$ is $T^{\frac{5 q+1}{3}}(2+T)$. Now use (3) of Lemma 1.9. The cases $q \equiv 2$ (3) and $q \equiv 0$ (3) are handled similarly. (When $q \equiv 2$ (3) we use the fact that neither L_{n} nor M_{n} is locally free.)

Now let $e_{n}=\operatorname{dim}\left(A /\left(J^{[q]}, h\right)\right)$. Pardue's formula for e_{n} is easily derived from Corollary 1.10. Let $u_{n}=(1-T)^{-1}$ poincaré $\left(W^{[q]}\right)$. By Lemma 1.5, $(1-T)^{2}$ hilb $A /\left(J^{[q]}, h\right)=\left(1+T+T^{2}\right)\left(1-3 T^{q}\right)+u_{n}$. Applying $\left(\frac{\mathrm{d}}{\mathrm{d} T}\right)^{2}$, dividing by 2 , and evaluating at $T=1$ we find that $e_{n}=\frac{1}{2}\left(u_{n}^{\prime \prime}(1)-\left(9 q^{2}+9 q+4\right)\right.$. Suppose that $q \equiv 1$ (3). Then Corollary 1.10 shows that $u_{n}^{\prime \prime}(1)=\left(\frac{4 q+2}{3}\right)(4 q+3)+\left(\frac{5 q+1}{3}\right)(5 q)=\frac{41}{3} q^{2}+$ $\frac{25}{3} q+2$. When $q \equiv 2(3), u_{n}^{\prime \prime}(1)=\left(\frac{4 q+1}{3}\right)(4 q+4)+\left(\frac{5 q+2}{3}\right)(5 q-1)=\frac{41}{3} q^{2}+\frac{25}{3} q+\frac{2}{3}$. And when $q \equiv 0$ (3), $u_{n}^{\prime \prime}(1)=\left(\frac{4 q+3}{3}\right)(4 q+2)+\left(\frac{5 q}{3}\right)(5 q+1)=\frac{41}{3} q^{2}+\frac{25}{3} q+2$. So $e_{n}=\frac{7}{3} q^{2}-\frac{1}{3} q-\frac{5}{3}$ if $q \equiv 2$ (3), and is $\frac{7}{3} q^{2}-\frac{1}{3} q-1$ otherwise.

2. Elements of $\mathbb{Z}\left[T, T^{-1}\right]$ attached to cycles

In Corollary 1.10 we calculated all the $(1-T)^{-1}$ poincaré $\left(W^{[q]}\right)$ for a certain rank 2 bundle, W. In this section we develop some combinatorial machinery that we'll use later to get similar results for arbitrary W.

Definition 2.1. Suppose $r>0$. A cycle (of length r) is an ordered r-tuple of integers, defined up to cyclic permutation. If a is a cycle, $a(k)$ is the cycle obtained from a by adding $3 k$ to each cycle entry.

Definition 2.2.

$\gamma_{1}(a)$ is the number of entries of a that are $\geqslant 0$.
$\gamma_{2}(a)=\sum \max \left(a_{i}, 0\right)$, where a_{i} runs over the entries of a.
Note that $\gamma_{1}(a)+\gamma_{2}(a)=\sum \max \left(a_{i}+1,0\right)$ where a_{i} runs over the entries of a. We now compute $(1-T)^{2} \sum \gamma_{2}(a(k)) T^{k}$. This is evidently a sum of contributions, one for each entry in a. An entry of 2 gives a contribution of $(1-T)^{2}\left(2+5 T+8 T^{2}+\cdots\right)=2+T$; similarly an entry of 1 (resp. 0) gives a contribution of $(1+2 T)$ (resp. $3 T$). If follows easily that an entry of $-n$ gives a contribution of $T^{n+2} 3(2+T), T^{n+1} 3(1+2 T)$ or $T^{n} 3(3 T)$ according as $n \equiv 1,2$ or 0 mod 3 . We may express this in a slightly different way:

Lemma 2.3. Suppose the distinct entries in the cycle a are $-n_{i}$ with $-n_{i}$ appearing r_{i} times in the cycle. Then $P_{2}(a)=(1-T)^{2} \sum \gamma_{2}(a(k)) T^{k}$ lies in $\mathbb{Z}\left[T, T^{-1}\right]$, and is the sum of contributions, one from each n_{i}. The contribution from n_{i} is:

$$
\begin{align*}
T^{\frac{n_{i}+2}{3}}\left(2 r_{i}+r_{i} T\right) & \text { if } n_{i} \equiv 1 \tag{3}\\
T^{\frac{n_{i}+1}{3}}\left(r_{i}+2 r_{i} T\right) & \text { if } n_{i} \equiv 2 \tag{3}\\
T^{\frac{n_{i}}{3}}\left(3 r_{i} T\right) & \text { if } n_{i} \equiv 0 \tag{3}
\end{align*}
$$

Observe next that the cycle a gives rise to an integer-valued function of period r on \mathbb{Z}, defined up to translation. We say that the cycle is "aperiodic" if this function has no period $<r$. For the rest of this section we assume that $r>1$ and that a is aperiodic.

Definition 2.4. A "bloc", b, of a with entry N consists of consecutive entries of a each of which is N, with both the cycle entry preceding the first bloc entry and the cycle entry following the last bloc entry unequal to N. The length, $l(b)$, of b is the number of entries in b.

Since $r>1$ and the cycle is aperiodic, there are at least 2 blocs in a. The blocs of a appear in cyclic order and fill out a; their lengths sum to r.

Definition 2.5. Let b be a bloc with entry N.
(1) If the blocs just before and just after b have entries $<N, b$ is locally maximal and $\varepsilon(b)=1$.
(2) If the blocs just before and just after b have entries $>N, b$ is locally minimal and $\varepsilon(b)=-1$.
(3) If b is neither locally maximal nor locally minimal, $\varepsilon(b)=0$.

Remark 2.6. Between any 2 locally maximal blocs there is a locally minimal bloc, and between any 2 locally minimals there is a locally maximal. Since there are at least 2 blocs, $\sum \varepsilon(b)=0$.

Definition 2.7.

(1) A bloc b with entry N is positive if $N \geqslant 0$.
(2) Suppose b is positive. $\varepsilon^{*}(b)=\varepsilon(b)$ unless $N=0$ and b is locally maximal. In this case we set $\varepsilon^{*}(b)$ equal to 0 .
(3) $\gamma_{3}(a)=\sum \varepsilon^{*}(b)$, the sum ranging over the positive blocs of a.

We now compute $(1-T)^{2} \sum \gamma_{3}(a(k)) T^{k}$. The sum is evidently a sum of contributions, one from each bloc of a. Consider first a bloc with entry 2 or 1 . The contribution of this bloc is $\varepsilon(b)(1-T)^{2}$. $\left(1+T+T^{2}+\cdots\right)=\varepsilon(b)(1-T)$. Next consider a bloc with entry 0 . If the block is locally minimal it gives a contribution of $(-1)(1-T)^{2}\left(1+T+T^{2}+\cdots\right)=\varepsilon(b)(1-T)$, while if it is locally maximal, the contribution is $(1)(1-T)^{2}\left(T+T^{2}+T^{3}+\cdots\right)=T-T^{2}=\varepsilon(b) \cdot(1-T)-(1-T)^{2}$.

More generally, a locally maximal bloc with entry $-n, n \equiv 0$ (3), provides a contribution of $\varepsilon(b) T^{\frac{n}{3}}(1-T)-T^{\frac{n}{3}}(1-T)^{2}$, while in all other cases (i.e. when $n \equiv \pm 1$ (3) or the bloc is not locally maximal) the contribution is $\varepsilon(b) T^{\frac{n+2}{3}}(1-T), \varepsilon(b) T^{\frac{n+1}{3}}(1-T)$, or $\varepsilon(b) T^{\frac{n}{3}}(1-T)$ according as $n \equiv 1,2$ or $0 \bmod 3$. We'll express this result in a different way.

Definition 2.8. Suppose the distinct entries of a are the integers $-n_{i}$. Then:
(1) s_{i} is $\sum \varepsilon(b)$, the sum extending over all the blocs of a with entry $-n_{i}$.
(2) If $n_{i} \equiv 0$ (3), B_{i} is the number of locally maximal blocs with entry $-n_{i}$.

The discussion preceding the definition shows:
Theorem 2.9. $P_{3}(a)=(1-T)^{2} \sum \gamma_{3}(a(k)) T^{k}$ is a sum of contributions, one from each n_{i}. The contribution from n_{i} is:

$$
\begin{align*}
T^{\frac{n_{i}+2}{3}}\left(s_{i}-s_{i} T\right) & \text { if } n_{i} \equiv 1 \tag{3}\\
T^{\frac{n_{i}+1}{3}}\left(s_{i}-s_{i} T\right) & \text { if } n_{i} \equiv 2 \tag{3}\\
T^{\frac{n_{i}}{3}}\left(s_{i}-s_{i} T-B_{i}(1-T)^{2}\right) & \text { if } n_{i} \equiv 0 \tag{3}
\end{align*}
$$

We next derive an alternative description of $\gamma_{1}(a)+\gamma_{3}(a)$ in terms of "positive parts of a ".
Definition 2.10. A positive part, p, of a consists of consecutive entries of a all of which are $\geqslant 0$; if a has a negative entry we further require that the entry of a preceding the first entry of p and the entry of a following the last entry of p are <0. (Note that any positive part of a is a union of consecutive positive blocs.)

Definition 2.11.

(1) $\theta(p)=l(p)$ if p consists of a single bloc of zeroes.
(2) $\theta(p)=l(p)$ if $l(p)=r$.
(3) In all other cases, $\theta(p)=1+l(p)$.

Definition 2.12. $\theta(a)=\sum \theta(p)$, the sum extending over the positive parts of a.
Lemma 2.13. If p is a positive part of $a, \theta(p)=l(p)+\sum \varepsilon^{*}(b)$, the sum extending over the blocs in p.
Proof. If p contains a bloc with $\varepsilon^{*} \neq \varepsilon$, then since this bloc is locally maximal with entry 0 it is the only bloc in p and we use (1) of Definition 2.11. So we may assume that $\varepsilon^{*}=\varepsilon$ for each bloc in p. If $l(p)=r, \sum \varepsilon^{*}(b)=\sum \varepsilon(b)$, which is 0 by Remark 2.6, and we use (2) of Definition 2.11. Suppose finally that $l(p)<r$. There is at least one bloc in p with $\varepsilon \neq 0$. The first and last blocs appearing in p with $\varepsilon \neq 0$ are evidently locally maximal. The first sentence of Remark 2.6 then shows that $\sum \varepsilon(b)$, the sum running over the blocs contained in p, is 1 . Definition 2.11(3), now gives the result.

Summing the result of Lemma 2.13 over the positive parts of a we find:
Corollary 2.14. $\theta(a)=\gamma_{1}(a)+\gamma_{3}(a)$.
Theorem 2.15. Let $\gamma_{4}(a)=\left(\sum \max \left(a_{i}+1,0\right)\right)-\theta(a)$ with $\theta(a)$ as in Definition 2.12. Let $P_{4}(a)$ be $(1-T)^{2}$. $\sum \gamma_{4}(a(k)) T^{k}$. Then $P_{4}(a)$ is a sum of contributions, one from each n_{i}, where the $-n_{i}$ are the distinct entries of a. In the notation of Lemma 2.3 and Definition 2.8, the contribution from n_{i} is:

$$
\begin{align*}
T^{\frac{n_{i}+2}{3}}\left(\left(2 r_{i}-s_{i}\right)+\left(r_{i}+s_{i}\right) T\right) & \text { if } n_{i} \equiv 1 \tag{3}\\
T^{\frac{n_{i}+1}{3}}\left(\left(r_{i}-s_{i}\right)+\left(2 r_{i}+s_{i}\right) T\right) & \text { if } n_{i} \equiv 2 \tag{3}\\
T^{\frac{n_{i}}{3}}\left(-s_{i}+\left(3 r_{i}+s_{i}\right) T+B_{i}(1-T)^{2}\right) & \text { if } n_{i} \equiv 0 \tag{3}
\end{align*}
$$

Proof. Combining Corollary 2.14 with the sentence following Definition 2.2 we find that $\gamma_{4}=\left(\gamma_{1}+\right.$ $\left.\gamma_{2}\right)-\left(\gamma_{1}+\gamma_{3}\right)=\gamma_{2}-\gamma_{3}$. Applying this to $a(k)$, multiplying by T^{k} and summing over k we find that $P_{4}(a)=P_{2}(a)-P_{3}(a)$. Lemma 2.3 and Theorem 2.9 conclude the proof.

3. Results for arbitrary \boldsymbol{W} and \boldsymbol{J}

A locally free sheaf of rank >0 is "indecomposable" if it is not a direct sum of two subsheaves of rank >0. Indecomposable locally free W on the nodal cubic C have been classified-see Burban [4] and the references given there. I'll summarize results from the classification.
(1) Suppose $r>0, a$ is an aperiodic cycle of length $r, m \geqslant 1$ and λ is in F^{*}. One may attach to the triple a, m, λ an indecomposable locally free sheaf $W=\mathcal{B}(a, m, \lambda)$.
(2) The pull-back of W to $X=\mathbb{P}^{1}$ is the direct sum of the $\left(O_{X}\left(a_{i}\right)\right)^{m}$ where the entries of a are the a_{i}. In particular, the rank of W is $m r$, and the degree is $m \sum a_{i}$.
(3) If $W=\mathcal{B}(a, m, \lambda)$, then $W(k)$ is isomorphic to $\mathcal{B}(a(k), m, \lambda)$ with $a(k)$ as in Definition 2.1.
(4) When F is algebraically closed (as it is throughout this paper) every indecomposable locally free sheaf on C is isomorphic to some $\mathcal{B}(a, m, \lambda)$.

In Theorem 2.2 of [5], Drozd, Greuel and Kashuba give a formula for $h^{0}(W)$ when $W=\mathcal{B}(a, m, \lambda)$. (As we're dealing with a nodal cubic rather than a cycle of projective lines, we take the s in the statement of that theorem to be 1.) In particular they show:

Theorem 3.1. Suppose $W=\mathcal{B}(a, m, \lambda)$ with $r>1$. Then in the notation of our Section $2, h^{0}(W)=m$. $\left(\left(\sum \max \left(a_{i}+1,0\right)\right)-\theta(a)\right)=m\left(\gamma_{4}(a)\right)$.

Corollary 3.2. Situation as in Theorem 3.1. Then $(1-T)^{-1}$ poincaré $(W)=m(1-T)^{2} \sum \gamma_{4}(a(k)) T^{k}$.
Applying Theorem 2.15 we find:
Theorem 3.3. Situation as in Theorem 3.1. Suppose the distinct entries in a are $-n_{i}$. Then ($1-$ $T)^{-1}$ poincaré (W) is the sum of the following contributions, one from each n_{i} :

$$
\begin{array}{rll}
T^{\frac{n_{i}+2}{3}}\left(\left(2 m r_{i}-m s_{i}\right)+\left(m r_{i}+m s_{i}\right) T\right) & \text { if } n_{i} \equiv 1 & \quad(3), \\
T^{\frac{n_{i}+1}{3}}\left(\left(m r_{i}-m s_{i}\right)+\left(2 m r_{i}+m s_{i}\right) T\right) & \text { if } n_{i} \equiv 2 \quad(3), \\
T^{\frac{n_{i}}{3}}\left(-m s_{i}+\left(3 m r_{i}+m s_{i}\right) T+m B_{i}(1-T)^{2}\right) & \text { if } n_{i} \equiv 0 \quad(3), \tag{3}
\end{array}
$$

where r_{i} is the number of times $-n_{i}$ appears in a, and s_{i} and B_{i} are obtained from a as in Definition 2.8.
We now make use of the following key result of Burban [4]: if $W=\mathcal{B}(a, m, \lambda)$ then $W^{[q]}$ is isomorphic to $\mathcal{B}\left(q a, m, \lambda^{q}\right)$ where $q a$ is obtained from a by multiplying each cycle entry, a_{i}, by q.

Theorem 3.4. Let W be a locally free sheaf on C. Suppose the pull-back of W to $X=\mathbb{P}^{1}$ is the direct sum of $\left(O_{X}\left(-n_{i}\right)\right)^{r_{i}}$ where the n_{i} are distinct and each $r_{i}>0$. Then one can assign to each n_{i} an s_{i} (with $\left|s_{i}\right| \leqslant r_{i}$), and to each $n_{i} \equiv 0$ (3) a B_{i}, so that the following holds:

For each q (when $p=3$, for each $q>1$), $(1-T)^{-1}$ poincaré $\left(W^{[q]}\right)$ is the sum of the following contributions, one for each n_{i} :

$$
\begin{array}{rll}
T^{\frac{q n_{i}+2}{3}}\left(\left(2 r_{i}-s_{i}\right)+\left(r_{i}+s_{i}\right) T\right) & \text { if } q n_{i} \equiv 2 & \quad(3), \\
T^{\frac{q n_{i}+1}{3}}\left(\left(r_{i}-s_{i}\right)+\left(2 r_{i}+s_{i}\right) T\right) & \text { if } q n_{i} \equiv 1 & \text { (3), } \\
T^{\frac{q n_{i}}{3}}\left(-s_{i}+\left(3 r_{i}+s_{i}\right) T+B_{i}(1-T)^{2}\right) & \text { if } q n_{i} \equiv 0 & \text { (3). } \tag{3}
\end{array}
$$

Proof. It suffices to prove the result for indecomposable W. So we may assume that W is $\mathcal{B}(a, m, \lambda)$. Suppose first that the length of the cycle a is >1. Then $W^{[q]}$ is isomorphic to $\mathcal{B}\left(q a, m, \lambda^{q}\right)$; furthermore the pull-back of $W^{[q]}$ to $X=\mathbb{P}^{1}$ is the direct sum of the $\left(O_{X}\left(-q n_{i}\right)\right)^{m r_{i}}$.

Now replace W by $W^{[q]}$ in Theorem 3.3. The effect of this is to replace n_{i} by $q n_{i}$ and leave m unchanged. The result we desire would follow if we could show that the s_{i} and B_{i} attached to the cycle $q a$ and its cycle entry $-q n_{i}$ are independent of the choice of q (when $p=3$ we need to show that this independence holds for $q \geqslant 3$). But as there is an obvious 1 to 1 correspondence between the blocs of a and the blocs of $q a$, and this correspondence preserves ε, this is clear.

When the cycle a consists of a single entry, $-n_{1}$, we can make a much simpler argument. In this case W has a filtration with m isomorphic quotients, each a line bundle of degree $-n_{1}$, and it's easy
to calculate $(1-T)^{-1}$ poincaré $\left(W^{[q]}\right)$. Now $r_{1}=m$, and we find that Theorem 3.4 holds for W with $s_{1}=0$, and when $n_{1} \equiv 0(3), B_{1}=1$ if $\lambda=1$ and $B_{1}=0$ otherwise.

Suppose now that W is the kernel bundle attached to an ideal J and generators g_{1}, \ldots, g_{s} of J. Let $d_{i}=\operatorname{deg} g_{i}$, and set $e_{n}=\operatorname{dim} A /\left(J^{[q]}, h\right)$ where $q=p^{n}$. Theorem 3.4 attaches to W certain integers n_{i}, r_{i}, s_{i} and B_{i}. We'll use the argument given at the end of Section 1 to express each e_{n} (when $p=3$, each e_{n} with $n>0$) in terms of $n_{i}, r_{i}, s_{i}, B_{i}$ and $\sum d_{i}^{2}$.

Definition 3.5. $\mu=\frac{1}{6} \sum r_{i} n_{i}^{2}-\frac{3}{2} \sum d_{i}^{2}, \alpha=\frac{1}{3} \sum s_{i} n_{i}$.
The general result of Brenner [1] concerning Hilbert-Kunz multiplicities in graded dimension 2 shows that $e_{n}=\mu q^{2}+O(q)$. We'll show that when $p=3$ (and $n>0$) $e_{n}=\mu q^{2}+\alpha q-R$ for constant R. And when $p \neq 3, e_{n}=\mu q^{2}+\alpha q-R(q)$ where $R(q)$ only depends on $q \bmod 3$.

Theorem 3.6. Suppose $p=3$. Let $R=\sum\left(r_{i}-B_{i}\right)$. Then for $n>0, e_{n}=\mu q^{2}+\alpha q-R$.
Proof. Let $u_{n}=(1-T)^{-1}$ poincaré $\left(W^{[q]}\right)$ and $v_{n}=\left(1+T+T^{2}\right) \cdot\left(-1+\sum T^{d_{i} q}\right)$. As we saw in Section 1 , $2 e_{n}=u_{n}^{\prime \prime}(1)-v_{n}^{\prime \prime}(1)$; see Lemma 1.5 and the proof of Corollary 1.10 . Now $v_{n}^{\prime \prime}(1)=-2+$ a sum of terms $\left(d_{i} q\right)\left(d_{i} q-1\right)+\left(d_{i} q+1\right)\left(d_{i} q\right)+\left(d_{i} q+2\right)\left(d_{i} q+1\right)$. Expanding we find that $v_{n}^{\prime \prime}(1)=\left(3 \sum d_{i}^{2}\right) q^{2}+$ $\left(3 \sum d_{i}\right) q+2 s-2$, where s is the number of d_{i}. Since W has degree $-\sum r_{i} n_{i}$ and rank $\sum r_{i}$ we find:

$$
\begin{equation*}
v_{n}^{\prime \prime}(1)=\left(3 \sum d_{i}^{2}\right) q^{2}+\left(\sum r_{i} n_{i}\right) q+2 \sum r_{i} \tag{*}
\end{equation*}
$$

Now as $p=3$ and $q>1$, each $q n_{i} \equiv 0$ (3). Theorem 3.4 then shows that u_{n} is a sum of terms $T^{\frac{q n_{i}}{3}}\left(-s_{i}+\left(3 r_{i}+s_{i}\right) T+B_{i}(1-T)^{2}\right)$. So $u_{n}^{\prime \prime}(1)$ is a sum of terms $\frac{q n_{i}}{3} \cdot \frac{q n_{i}-3}{3} \cdot\left(-s_{i}\right)+\frac{q n_{i}+3}{3} \cdot \frac{q n_{i}}{3} \cdot\left(3 r_{i}+\right.$ $\left.s_{i}\right)+2 B_{i}$. This term simplifies to $\frac{q n_{i}}{3}\left(q r_{i} n_{i}+3 r_{i}+2 s_{i}\right)+2 B_{i}$, and so:

$$
\begin{equation*}
u_{n}^{\prime \prime}(1)=\left(\frac{1}{3} \sum r_{i} n_{i}^{2}\right) q^{2}+\left(\sum r_{i} n_{i}\right) q+\left(\frac{2}{3} \sum s_{i} n_{i}\right) q+2 \sum B_{i} . \tag{**}
\end{equation*}
$$

Combining $(*)$ and $(* *)$ we find that $2 e_{n}=u_{n}^{\prime \prime}(1)-v_{n}^{\prime \prime}(1)=2 \mu q^{2}+2 \alpha q+2 \sum\left(B_{i}-r_{i}\right)$, giving the theorem.

Theorem 3.7. Suppose $p \neq 3$. Set

$$
R(q)=\sum_{q n_{i} \equiv 1(3)}\left(\frac{2 r_{i}-2 s_{i}}{3}\right)+\sum_{q n_{i} \equiv 2(3)}\left(\frac{2 r_{i}-s_{i}}{3}\right)+\sum_{q n_{i} \equiv 0(3)}\left(r_{i}-B_{i}\right) .
$$

Note that $R(q)$ only depends on $q \bmod 3$. Then $e_{n}=\mu q^{2}+\alpha q-R(q)$.
Proof. We argue as in the proof of Theorem 3.6. (*) remains valid, but now $u_{n}^{\prime \prime}(1)$ is a more complicated sum of terms. When $q n_{i} \equiv 0$ (3), the term once again is $\frac{q n_{i}}{3}\left(q r_{i} n_{i}+3 r_{i}+2 s_{i}\right)+2 B_{i}$. But when $q n_{i} \equiv 1$ (3) this term is replaced by $\frac{q n_{i}+2}{3}\left(q r_{i} n_{i}+r_{i}+2 s_{i}\right)$; that is to say by $\frac{q n_{i}}{3}\left(q r_{i} n_{i}+3 r_{i}+\right.$ $\left.2 s_{i}\right)+\frac{2 r_{i}+4 s_{i}}{3}$. And when $q n_{i} \equiv 2$ (3), it is replaced by $\frac{q n_{i}+1}{3}\left(q r_{i} n_{i}+2 r_{i}+2 s_{i}\right)$; that is to say by $\frac{q n_{i}}{3}\left(q r_{i} n_{i}+3 r_{i}+2 s_{i}\right)+\frac{2 r_{i}+2 s_{i}}{3}$. So:

$$
u_{n}^{\prime \prime}(1)=\left(\frac{1}{3} \sum r_{i} n_{i}^{2}\right) q^{2}+\left(\sum r_{i} n_{i}\right) q+\sum_{q n_{i} \equiv 1(3)} \frac{2 r_{i}+4 s_{i}}{3}+\sum_{q n_{i} \equiv 2(3)} \frac{2 r_{i}+2 s_{i}}{3}+2 \sum B_{i}
$$

Combining the above result with (*) we find that $2 e_{n}=u_{n}^{\prime \prime}(1)-v_{n}^{\prime \prime}(1)=2 \mu q^{2}+2 \alpha q+$ $\sum_{q n_{i} \equiv 1(3)} \frac{4 s_{i}-4 r_{i}}{3}+\sum_{q n_{i} \equiv 2(3)} \frac{2 s_{i}-4 r_{i}}{3}+2 \sum_{q n_{i} \equiv 0(3)}\left(B_{i}-r_{i}\right)=2 \mu q^{2}+2 \alpha q-2 R(q)$.

Theorems 3.6 and 3.7 differ from similar results in [2] and [7] in that they allow practical calculation of all the e_{n}. (The eventually periodic terms that occur in the results of [2] and [7] arise from dynamical systems acting on the rational points of certain moduli spaces-in practice they cannot be calculated.) The following examples show how easy it is to apply Theorems 3.6 and 3.7.

Example 3.8. Suppose $p=2$ and $h=x^{3}+y^{3}+x y z$. Let J be generated by g_{1}, \ldots, g_{8} where the g_{i} are $x^{3}, y^{3}, z^{3}, x^{2} y, x^{2} z, x z^{2}, y^{2} z$ and $y z^{2}$. If W is the kernel bundle arising from these g_{i}, then $(1-T)^{-1}$ poincaré $\left(W^{[8]}\right)=(1-T)^{-1}$ poincaré $\left(A /\left(J^{[8]}, h\right)\right)-\left(1-T^{3}\right)\left(1-8 T^{24}\right)$. This is calculated immediately using Macaulay 2 which shows:

$$
(1-T)^{-1} \text { poincaré }\left(W^{[8]}\right)=3 T^{27}+12 T^{28}+6 T^{30}=T^{27}(3+12 T)+T^{30}(6+0 T) .
$$

We'll use this information to determine all the e_{n}.
(a) $n_{1}=\left\lfloor\frac{3.27}{8}\right\rfloor=10, n_{2}=\left\lfloor\frac{3.30}{8}\right\rfloor=11$.
(b) Since $8 n_{1} \equiv 2$ (3), $r_{1}-s_{1}=3$ and $2 r_{1}+s_{1}=12$. It follows that $r_{1}=5, s_{1}=2$. Similarly, since $8 n_{2} \equiv 1$ (3), $2 r_{2}-s_{2}=6$ and $r_{2}+s_{2}=0$. So $r_{2}=2, s_{2}=-2$.
(c) $\mu=\frac{1}{6}(5 \cdot 100+2 \cdot 121)-\frac{3}{2}\left(\sum_{1}^{8} 9\right)=\frac{47}{3}, \alpha=\frac{1}{3}(2 \cdot 10-2 \cdot 11)=-\frac{2}{3}$.
(d) Since $n_{1} \equiv 1$ (3) and $n_{2} \equiv 2$ (3), $R(1)=\frac{2 r_{1}-2 s_{1}}{3}+\frac{2 r_{2}-s_{2}}{3}=\frac{6}{3}+\frac{6}{3}=4, R(2)=\frac{2 r_{1}-s_{1}}{3}+\frac{2 r_{2}-2 s_{2}}{3}=$ $\frac{8}{3}+\frac{8}{3}=\frac{16}{3}$.

Theorem 3.7 now tells us that $e_{n}=\frac{47}{3} q^{2}-\frac{2}{3} q-4$ for even n and $\frac{47}{3} q^{2}-\frac{2}{3} q-\frac{16}{3}$ for odd n.
Example 3.9. Take the g_{i} and h as in the above example but with $p=3$. Now Macaulay 2 gives:

$$
\begin{aligned}
(1-T)^{-1} \text { poincaré }\left(W^{[9]}\right) & =13 T^{31}+2 T^{32}+2 T^{33}+4 T^{34} \\
& =T^{30}\left(0+13 T+2 T^{2}\right)+T^{33}\left(2+4 T+0 T^{2}\right) .
\end{aligned}
$$

It follows that $n_{1}=\frac{30 \cdot 3}{9}=10$, and we find that $r_{1}=5, s_{1}=2, B_{1}=2$. Similarly, $n_{2}=\frac{33 \cdot 3}{9}=11$, and $r_{2}=2, s_{2}=-2, B_{2}=0$. The μ and α are once again $\frac{47}{3}$ and $-\frac{2}{3}$, but now $R=(5-2)+(2-0)=5$. We conclude from Theorem 3.6 that $e_{n}=\frac{47}{3} q^{2}-\frac{2}{3} q-5$ for $n>0$.

References

[1] H. Brenner, The rationality of the Hilbert-Kunz multiplicity in graded dimension two, Math. Ann. 334 (2006) 91-110.
[2] H. Brenner, The Hilbert-Kunz function in graded dimension two, Comm. Algebra 35 (2007) 3199-3213.
[3] R. Buchweitz, Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra 197 (1997) 246-267.
[4] I. Burban, Frobenius morphism and vector bundles on cycles of projective lines, Comm. Algebra (2010), in press, arXiv: 1010.0399.
[5] Y.A. Drozd, G.-M. Greuel, I. Kashuba, On Cohen-Macaulay modules on surface singularities, Mosc. Math. J. 3 (742) (2003) 397-418.
[6] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986) $375-386$.
[7] P. Monsky, Hilbert-Kunz functions for irreducible plane curves, J. Algebra 316 (2007) 326-345.
[8] V. Trivedi, Semistability and Hilbert-Kunz multiplicities for curves, J. Algebra 284 (2005) 627-644.

[^0]: E-mail address: monsky@brandeis.edu.

