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SUMMARY

Mutations in superoxide dismutase (SOD1) cause
amyotrophic lateral sclerosis (ALS), a neurodegen-
erative disease characterized by loss of motor
neurons. With conformation-specific antibodies, we
now demonstrate that misfolded mutant SOD1 binds
directly to the voltage-dependent anion channel
(VDAC1), an integral membrane protein imbedded
in the outer mitochondrial membrane. This interac-
tion is found on isolated spinal cord mitochondria
and can be reconstituted with purified components
in vitro. ADP passage through the outer membrane
is diminished in spinal mitochondria from mutant
SOD1-expressing ALS rats. Direct binding of mutant
SOD1 to VDAC1 inhibits conductance of individual
channelswhen reconstituted in a lipid bilayer. Reduc-
tion of VDAC1 activity with targeted gene disruption
is shown to diminish survival by accelerating onset
of fatal paralysis in mice expressing the ALS-causing
mutation SOD1G37R. Taken together, our results
establish a direct link between misfolded mutant
SOD1 and mitochondrial dysfunction in this form of
inherited ALS.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset

neurodegenerative disorder characterized by the selective loss

of upper and lower motor neurons in the brain and spinal cord

(Cleveland and Rothstein, 2001). The typical age of onset is

between 50 to 60 years, followed by paralysis and ultimately

death within 2–5 years after onset (Mulder et al., 1986). Most

instances of ALS are sporadic lacking any apparent genetic

linkage, but 10% are inherited in a dominant manner. Twenty

percent of these familial cases have been attributed tomutations

in the gene encoding cytoplasmic Cu/Zn superoxide dismutase

(SOD1) (Rosen et al., 1993). Although multiple hypotheses have

been proposed to explain mutant SOD1-mediated toxicity (Ilieva
et al., 2009), the exact mechanism(s) responsible for motor

neuron degeneration remains unsettled.

Mitochondrial dysfunction has been proposed to contribute

to disease pathogenesis. Histopathological observations of dis-

turbed mitochondrial structure have been reported in muscle

of both sporadic and familial ALS patients (Hirano et al., 1984a,

1984b;Sasaki and Iwata, 1996, 2007) and inmutant SOD1mouse

models expressing dismutase active (Dal Canto and Gurney,

1994; Higgins et al., 2003; Kong and Xu, 1998; Wong et al.,

1995), but not inactive mutants (Bruijn et al., 1997). Moreover,

functionality of mitochondria has been reported to be affected

in spinal cord and skeletal muscles of human sporadic ALS or

familial ALS patients (Dupuis et al., 2003; Echaniz-Laguna et al.,

2002; Vielhaber et al., 1999; Wiedemann et al., 2002), as well as

in some ALS mouse models (Damiano et al., 2006; Mattiazzi

et al., 2002; Nguyen et al., 2009).

A proportion of the predominantly cytosolic SOD1 has been

reported to localize to mitochondria in certain contexts. In both

rodent models and patient samples, mutant SOD1 is present in

fractions enriched for mitochondria derived from affected, but

not unaffected, tissues (Bergemalm et al., 2006; Deng et al.,

2006; Liu et al., 2004; Mattiazzi et al., 2002; Vande Velde et al.,

2008; Vijayvergiya et al., 2005) and a clear temporal correlation

between mitochondrial association and disease progression

was shown for multiple mutant SOD1s (Liu et al., 2004). Purifica-

tion of mitochondria, including floatation steps that eliminate

protein only aggregates, coupled with protease accessibility has

demonstrated mutant SOD1 deposition on the cytoplasmic-

facing surface of spinal cord mitochondria (Liu et al., 2004;

Vande Velde et al., 2008). Sensitivity to proteolysis and immuno-

precipitation with an antibody specific for misfolded SOD1

further indicated that misfolded forms of dismutase active and

inactive SOD1 are deposited onto the cytoplasmic face of the

outer membrane of spinal cord mitochondria (Vande Velde

et al., 2008). This is accompanied by altered accumulated levels

of a few mitochondrial proteins, reduced import of multiple mito-

chondrial proteins, and reduced complex I activity (T. Miller, C.

Vande Velde, and D.W.C., unpublished data).

Oxidative phosphorylation requires the transport of metabo-

lites, including ADP, ATP, and inorganic phosphate across both

mitochondrial membranes. Located in the outer mitochondrial

membrane, the voltage-dependent anion channel (VDAC),
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known as mitochondrial porin, assumes a crucial position in the

cell, controlling metabolic cross-talk between the mitochondrion

and the rest of the cell, thus regulating the metabolic and ener-

getic functions of mitochondria (Shoshan-Barmatz et al., 2006,

2008). Of the three VDAC isoforms (VDAC1–3), VDAC1 is the

most abundant in most cells. VDAC1 is a primary contributor

to ATP/ADP flux across the outer mitochondrial membrane

(Colombini, 2004; Lemasters and Holmuhamedov, 2006). Initially

named somewhat misleadingly as a channel for anions, it is also

responsible for import/export of Ca2+ (Gincel et al., 2001) and

other cations (Benz, 1994; Colombini, 2004), adenine nucleo-

tides (Rostovtseva and Colombini, 1997; Rostovtseva and

Bezrukov, 1998) and other metabolites (Hodge and Colombini,

1997). Indeed, it has been demonstrated that silencing VDAC1

expression in a cultured cell line using shRNA resulted in reduced

ATP production and a decrease in cell growth (Abu-Hamad et al.,

2006).

VDAC1 is also a key player in mitochondria-mediated apopto-

sis. VDAC1 has been implicated in apoptotic-relevant events,

due to serving as the target for members of the pro- and anti-

apoptotic Bcl2-family of proteins (Arbel and Shoshan-Barmatz,

2010; Shimizu et al., 1999) and due to its function in the release

of apoptotic proteins from the intermitochondrial membrane

space (Abu-Hamad et al., 2009; Shoshan-Barmatz et al., 2006,

2008; Tajeddine et al., 2008). VDAC1 has also been implicated

in Parkinson’s disease as a direct target for Parkin-mediated

poly-ubiquitylation and mitophagy (Geisler et al., 2010).

Starting from recognition that a proportion of misfolded,

mutant SOD1 is bound to the cytoplasmic face of the outer

membrane of mitochondria in affected tissues (Liu et al., 2004;

Rakhit et al., 2007; Vande Velde et al., 2008), we now identify

damage to spinal cord mitochondria to arise through direct

binding of misfolded SOD1 onto the cytoplasmic-facing domain

of VDAC1, thereby inhibiting its conductance.
RESULTS

Mutant SOD1 and VDAC1 Interact In Vivo in Spinal
Cord of Transgenic SOD1 Rats
To investigate potential interactions between mutant SOD1 and

VDAC1, mitochondria from rats expressing wild-type human

SOD1 (hSOD1wt) or either of two different ALS-linked SOD1

mutants, a dismutase active hSOD1G93A and a dismutase inac-

tive hSOD1H46R, were highly purified by repeated centrifugation

steps (summarized in Figure 1A) including a final density gradient

flotation step to eliminate any contaminating protein only aggre-

gates (proteins sediment downward in these conditions because

of their higher density), as previously described (Vande Velde

et al., 2008). Immunoblotting of immunoprecipitates generated

after addition of an SOD1 antibody to solubilized mitochondrial

lysates revealed that a proportion of VDAC1 was coprecipitated

with dismutase active and inactive mutant SOD1, but not wild-

type SOD1 (Figure 1B). Parallel immunoprecipitations with a

VDAC1 antibody confirmed coprecipitation of both hSOD1G93A

and hSOD1H46R with VDAC1 (Figure 1D). Binding to VDAC1 was

a property only of spinal cord mitochondria, as no association

of mutant SOD1 was seen with purified brain mitochondria
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from the same animals using immunoprecipitation with SOD1

(Figure 1C) or VDAC1 (Figure 1E) antibodies. This latter finding

is consistent with prior efforts that had demonstrated that

mutant SOD1 associates with the cytoplasmic face of the outer

membrane of mitochondria in spinal cord, but not other tissue

types (Liu et al., 2004; Vande Velde et al., 2008). Moreover,

mutant SOD1 binding to VDAC1 is inversely correlated with the

level of hexokinase-I, a known partner that binds to VDAC1

exposed on the cytoplasmic mitochondrial surface (Abu-Hamad

et al., 2008; Azoulay-Zohar et al., 2004; Zaid et al., 2005), with

hexokinase accumulating to much higher level in brain than

spinal cord mitochondria (Figure 1F).
Misfolded Mutant SOD1 Specifically Interacts with
VDAC1 In Vivo in Spinal Cord of Transgenic SOD1 Rats
To test the nature of the interaction between mutant SOD1 and

VDAC1, immunoprecipitation was performed with a SOD1 anti-

body that recognizes a ‘‘disease-specific epitope’’ (DSE) that is

unavailable on correctly folded SOD1 (Cashman and Caughey,

2004; Paramithiotis et al., 2003; Urushitani et al., 2007), but is

present on misfolded mutant SOD1s in inherited ALS (Rakhit

et al., 2007). Using one such antibody (DSE2), age-dependent

deposition of mutant SOD1 onto the cytoplasmic face of spinal

cord mitochondria has been shown to reflect association of

misfolded SOD1 (Vande Velde et al., 2008). We exploited this

antibody to examine if the SOD1 associated with VDAC1 is

bound through misfolded SOD1. Liver, brain, and spinal cord

cytosolic and mitochondrial fractions purified from symptomatic

rats expressing mutant hSOD1G93A were immunoprecipitated

(see schematic in Figure 2A) with the DSE2 antibody, which

recognizes an epitope in the electrostatic loop of hSOD1

(between residues 125–142) that is buried in normally folded

SOD1. Misfolded mutant SOD1G93A was not detectable in the

soluble fraction of any tissue, but was immunoprecipitated from

the spinal cord, but not liver or brain, mitochondrial fractions

(Figure 2B).

Solubilized spinal cord mitochondria purified from presymp-

tomatic and symptomatic rats expressing either of two different

SOD1 mutants, dismutase active hSOD1G93A and dismutase

inactive hSOD1H46R, as well as hSOD1wt were immunoprecipi-

tated with the DSE2 antibody and coimmunoprecipitated

components identified by immunoblotting. An age-dependent

increase in misfolded SOD1 was seen for both mutants, with

a significantly higher proportion of the dismutase inactive

SOD1H46R in a misfolded conformation. In samples from symp-

tomatic animals, VDAC1 coprecipitated together with the mis-

foldedmutant SOD1, as revealed by immunoblotting of immuno-

precipitates (Figure 2C). This association was selective for

VDAC1, as misfolded mutant SOD1 did not coimmunoprecipi-

tate with any of three other mitochondrial proteins examined

(Figure 2C), including two additional outer mitochondrial

membrane proteins with domains facing the cytoplasm: TOM40,

the 40 kDa component of transport across the outer membrane

(TOM) complex mediating all protein import from the cytoplasm

to the mitochondria, and VDAC2, a second voltage-dependent

anion channel isoform that has been estimated to represent

7% (kidney) to 25% (brain) of accumulated VDAC (Yamamoto



Figure 1. A Complex Containing Mutant SOD1 and VDAC1 from Spinal Cord Mitochondria

(A) Schematic outlining the different purification steps used. Floated isolatedmitochondria from (B and D) hSOD1wt, hSOD1G93A, and hSOD1H46R rat spinal cords

or (C and E) brain were immunoprecipitated with (B and C) an SOD1 antibody or (D and E) VDAC1 antibody.

(B) Immunoblot of the SOD1 immunoprecipitates using VDAC1 antibody indicates that mutant SOD1 proteins hSODG93A and hSOD1H46R coprecipitate VDAC1

(top). SOD1 immunoprecipitation was confirmed by reprobing the membrane with anti-SOD1 antibody (bottom).

(C) Immunoblots of SOD1 immunoprecipitates as in (B) except with brain mitochondria.

(D) Immunoprecipitation using VDAC1 antibody immunoblotted with SOD1 antibody (top). The membrane was then reprobed for VDAC1 (bottom).

(E) Immunoblots of VDAC1 immunoprecipitates as in (D), except with brain mitochondria. Abbreviations: U, unbound fraction (20%); B, bound fraction.

(F) Reduced hexokinase-I levels in spinal cord mitochondria. Polyacrylamide gel analysis of extracts of floated brain and spinal cord mitochondria. (Left)

Coomassie stain; (right) immunoblot for VDAC1, hexokinase I (HK-I), VDAC2, cytochrome c (Cyt. C), and cyclophilin D (Cyp-D).
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et al., 2006). It also did not coprecipitate cyclophilin-D, an impor-

tant component of the permeability transition pore.

Furthermore, in order to determine which cells accumulate the

misfolded form of SOD1, we performed immunostaining using

the DSE2 antibody. Spinal cords from loxSOD1G37R mice at

different stages of the disease were subjected to immunostain-

ing with DSE2 antibody (Figure 2D). The accumulation of mis-

folded SOD1 dramatically increased with disease progression.

Although little accumulation of misfolded SOD1 is found by

disease onset, it was preferentially found within motor neurons.

During disease progression, a dramatic increase of misfolded

SOD1 was apparently accumulated in other cells as well and

probably also extracellularly. Throughout disease a proportion

of the misfolded SOD1 was colocalized with mitochondria of

motor neurons and other cells, starting at onset and increasing

with disease progression (Figure 2D).

Binding of Mutant SOD1 Directly Inhibits VDAC1
Channel Conductance
To test if binding of mutant SOD1 affects VDAC1 function,

VDAC1 was purified from spinal cords of nontransgenic rats

(Figure 3A) and reconstituted into a planar lipid bilayer (Figure 3A)
using conditions previously demonstrated to yield polarized

VDAC1 membrane insertion such that the VDAC1 surface

exposed on the cis side is the surface exposed to the cytosol

when inserted into the mitochondrial outer membrane (Azou-

lay-Zohar et al., 2004; Israelson et al., 2005; Arbel and

Shoshan-Barmatz, 2010). Activity of individual channels was

measured as a function of time by the ions passing across the

bilayer in response to an applied voltage gradient. This revealed

that in the absence of SOD1, VDAC1 was stably in a fully open

state (4 nS at 1 M KCl [Shoshan-Barmatz et al., 2006]) and re-

mained so for extended periods.

Mutant SOD1 proteins hSOD1G93A, hSOD1G85R, as well as

hSOD1wt, were expressed using baculovirus and purified

(Figure 3C; Hayward et al., 2002). Wild-type SOD1, even at the

highest added concentration (8 mg/ml), had no effect on VDAC1

conductance when added on either cis or trans sides of the

membrane (Figures 3E and 3I). However, addition of purified

recombinant hSOD1G93A or hSOD1G85R (Figure 3C) substantially

reduced VDAC1 channel conductance (Figures 3F and 3G). Both

mutant SOD1s modified VDAC1 conductance only when added

to the cis side (Figures 3F and 3G), but not the trans side (Figures

3J and 3K) of the bilayer, indicating that mutant SOD1 interacts
Neuron 67, 575–587, August 26, 2010 ª2010 Elsevier Inc. 577



Figure 2. The Misfolded Mutant SOD1 Specifically Coprecipitates with VDAC1 in Spinal Cord Mitochondria

(A) Schematic showing the isolation of cytosolic and mitochondrial fractions.

(B) Liver, brain, and spinal cord cytosolic, and mitochondrial fractions were purified from symptomatic rats expressing hSOD1G93A and the fractions were sub-

jected to immunoprecipitation using DSE2 (3H1), a monoclonal antibody only recognizing misfolded SOD1 (Vande Velde et al., 2008). The immunoprecipitates

were immunoblotted using an SOD1 antibody.

(C) Isolated floated mitochondria from hSOD1wt, hSOD1G93A, and hSOD1H46R rat spinal cords (from presymptomatic and symptomatic animals) were immuno-

precipitated with DSE2 (3H1), and the immunoprecipitates were immunoblotted using VDAC1, VDAC2, TOM-40, and cyclophilin-D antibodies. SOD1 immuno-

precipitation was confirmed by reprobing the membrane with an SOD1 antibody (top).

(D) Immunohistochemical detection of misfolded SOD1 using DSE2 antibody shows that misfolded SOD1 (green) colocalizes with TOM20 (red), a mitochondrial

outer membrane protein in a subset of spinal cord neurons assessed using NeuN (blue), a neuronal marker as highlighted by filled arrows. DSE2 positive staining

can be detected in some neurons at onset and significantly increases with the appearance of disease symptoms.

Of note DSE2 staining is not restricted to neuronal mitochondria but is also detected in nonneuronal cells and the extracellular space as shown with thin arrows.

No DSE2 staining was detected in neurons of 1 year old nontransgenic control mice (Non Tg). Scale bar: 10 mm. Abbreviation: U, unbound fraction (20%); B,

bound fraction; Pre, presymptomatic; Sym, symptomatic.
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with what would correspond to the cytosolic face of VDAC1 in-

serted into the outer mitochondrial membrane. Use of multi-

channel recordings revealed that not only did mutant SOD1

significantly lower the maximum voltage gated conductance of

individual channels, it also provoked a stable, reduced level of

VDAC1 conductance at all applied voltages (Figures 3L–3N). In

order to determine if this interaction is specific for mutant

SOD1, the effect of another aggregating protein (a-synuclein)

was tested on bilayers containing reconstituted VDAC1. Even

when added to levels 25 times greater than an amount of mutant

SOD1 that markedly affected VDAC1 conductance (Figures 3F

and 3G), neither wild-type nor mutant a-synuclein affected

VDAC1 channel activity at any voltage (Figure 1S).
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ADP Transport across the Outer Mitochondrial
Membrane Is Reduced in Spinal Cords of Mutant
SOD1 Rats
Since both dismutase active and inactive SOD1 mutant

proteins reduced VDAC1 channel conductance for K+ and

Cl� (Figure 3), we next tested whether mitochondrial conduc-

tance across the outer mitochondrial membrane was affected

in animals chronically expressing mutant SOD1. To do this,

we examined the uptake into mitochondria of adenine nucle-

otides (Figure 4A) which are known to be transported by

VDAC1 (Lemasters and Holmuhamedov, 2006; Rostovtseva

and Colombini, 1997). Freshly isolated spinal cord and liver

mitochondria from SOD1G93A rats were incubated (for 1 min)



Figure 3. Mutant, but Not Wild-Type, SOD1 Interacts with Bilayer-Reconstituted VDAC1 to Reduce Its Channel Conductance

(A) Coomassie Blue staining and immunoblot of purified VDAC1 purified from rat spinal cord.

(B) Schematic presentation showing the planar lipid bilayer reconstitution and channel conductance assay system. Purified spinal cord VDAC1was reconstituted

into a planar lipid bilayer, and channel currents through VDAC1 were recorded.

(C) Coomassie Blue staining and immunoblot of purified recombinant hSOD1wt, hSOD1G93A, and hSOD1G85R expressed in insect cells using baculovirus.

(D–G) Currents through VDAC1 in response to a voltage step from 0 to �10 mV were recorded before and 2 min after the addition (to 2 mg/ml final) of purified

recombinant (E) hSOD1wt, (F) hSOD1G93A, or (G) hSOD1G85R to the cis side of the bilayer.

(H–K) Currents through VDAC1 as in (D)–(G), except after SOD1 addition to the trans side of the bilayer. The dotted lines indicate current levels in the maximal and

zero conductance states. These examples are representative of the results from 3–4 independent reconstitution experiments.

(L–N) Mutant SOD1 effect on VDAC1 channel activity at different voltages. Average steady-state conductance of VDAC1 before and after addition of (L) hSOD1wt,

(M) hSOD1G93A, or (N) hSOD1G85R, determined as a function of voltage with a multichannel recording.

Neuron

Mutant SOD1 Directly Inhibits VDAC1 Conductance

Neuron 67, 575–587, August 26, 2010 ª2010 Elsevier Inc. 579



Figure 4. ADP Transport across the Outer Mito-

chondrial Membrane Is Reduced in Mitochondria

from Spinal Cord of SOD1G93A ALS Rats

(A) Schematic presentation of method for measuring ADP

accumulation into isolated mitochondria as measured

using radio-labeled [3H]ADP.

(B and C) Mitochondria were isolated from (B) spinal cord

and (C) liver of nontransgenic, hSOD1wt, hSOD1G93A

presymptomatic, and hSOD1G93A symptomatic rats.

Student’s t test was used and p < 0.001 (marked by three

asterisks) and p < 0.01 (marked by two asterisks) were

considered statistically significant. Values represent the

means ± SEM of three to four independent experiments.
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with radio-labeled [3H]ADP and the amount of imported ADP

was measured by scintillation counting after rapid filtration

to remove the unincorporated ADP. Coincubation with 1 mM

of the VDAC1 inhibitor DIDS (4, 40-diisothiocyanostilbene-2,
20-disulfonic acid) demonstrated that �2/3 of the ADP uptake

was through VDAC1 (Figures 4B and 4C). Compared to mito-

chondria from non-transgenic animals, uptake of ADP by

spinal cord mitochondria from SOD1 mutant expressing

animals was selectively and progressively inhibited, yielding

�40% inhibition of VDAC1-dependent uptake (�25% overall

inhibition of ADP uptake) by a symptomatic stage (Figure 4B).

Inhibition of ADP uptake was selective to spinal mitochondria

as liver mitochondria from the same hSOD1G93A animals re-

tained normal ADP import at all ages examined (Figure 4C).

Mutant SOD1 Binding to Mitochondria In Vitro
Diminishes ADP but Not Ca2+ Uptake
To test if inhibition of ADP import seen in spinal cord mito-

chondria from mutant SOD1 animals could be generated

solely from mutant SOD1 binding to the cytoplasmic face of

those mitochondria, purified recombinant SOD1 proteins

(hSOD1wt, hSOD1G93A, and hSOD1G85R) (Figure 3C) were

added to mitochondria purified from spinal cords or livers

of non transgenic rats (Figure 5A). Although a proportion of

each of the recombinant SOD1s associated with both spinal

cord and liver mitochondria (Figure 5D), accumulation of

radio-labeled Ca2+ (presumably through the action of the

mitochondrial calcium uniporter) into spinal cord or liver mito-

chondria was not affected by the addition of wild-type or

mutant SOD1 (Figure 5C). On the other hand, VDAC1-medi-

ated ADP accumulation into the same spinal cord or liver

mitochondria was inhibited by both hSOD1G93A and
580 Neuron 67, 575–587, August 26, 2010 ª2010 Elsevier Inc.
hSOD1G85R mutants, but not hSOD1wt

(Figure 5B). This inhibition corresponded to

a proportion of misfolded SOD1 associated

with those mitochondria after incubation with

either mutant, but not wild-type SOD1, as

demonstrated by immunoprecipitation of

intact mitochondria with the DSE2 antibody

to misfolded SOD1 (Figure 5E). In contrast,

wild-type SOD1 associated with the samemito-

chondria was not recognized by this misfolded

SOD1 antibody (Figure 5E), consistent with its
retention of normal folding and/or import into thosemitochondria

(Figure 5E).

Reduced VDAC1 Activity Diminishes Survival of Mutant
SOD1G37R Mice by Accelerating Disease Onset
Sincewehave established that (1)mutant SOD1 interacts directly

with VDAC1 thereby inhibiting VDAC1 conductance (Figure 3),

(2) spinal cord mitochondria from SOD1 mutant animals have

progressive loss of ADP uptake, and (3) misfolded mutant

SOD1 binds to normal mitochondria in vitro accompanied by

selective loss of ADP conductance (Figure 5), we examined how

reduced level and activity of VDAC1 affect disease course in

SOD1G37R mutant mice. To do this, we exploited mice heterozy-

gous for disruption of the VDAC1 gene (producing what is effec-

tively a null allele [Weeber et al., 2002]). These mice accumulate

about half the normal level of VDAC1 protein (Figure 2S), while

overall ADP conductance of spinal mitochondrial isolated from

VDAC1+/� mice is reduced by �25% (Figure 3S) relative to

wild-type mice. After mating with SOD1G37R mice, sex matched

cohorts of mice and their littermates carrying the SOD1G37R

transgene and zero, one, or two active VDAC1 alleles were ob-

tained and followed for disease onset, progression and survival.

Measurement of ADP conductance of spinal mitochondria

from SOD1G37R/VDAC1+/� mice revealed a reduction to a level

comparable to that corresponding to complete deletion of

VDAC1 (Figure 3S).

A simple and objective measure of disease onset and early

disease progression was applied by initiation of weight loss,

reflecting denervation-induced muscle atrophy. While timing of

progression from onset through either early (Figure 6E) or late

(Figure 6F) disease phases was onlymodestly affected by reduc-

tion of VDAC1 levels, disease onset (Figures 6A and 6D) and



Figure 5. Mutant SOD1 Proteins Affect ADP

but Not Ca2+ Accumulation into Mitochon-

dria

(A) ADP or Ca2+ accumulation into isolated mito-

chondria was measured using a filter trap assay

with radio-labeled 45CaCl2 or [
3H]ADP. Mitochon-

dria were isolated from fresh spinal cords and

livers of nontransgenic rats.

(B) ADP and (C) Ca2+ accumulation were

measured before and after the addition of 3 mM

(50 mg/ml) hSOD1wt, hSOD1G93A, or hSOD1G85R

purified proteins. Student’s t test was used and

p < 0.001 (marked by three asterisks) and

p < 0.01 (marked by two asterisks) were consid-

ered statistically significant. Values represent the

means ± SEM of three independent experiments.

(D) Purified hSOD1wt, hSOD1G93A, or hSOD1G85R

were incubated with liver or spinal cord mitochon-

drial fractions purified from a nontransgenic rat for

20 min at 37�C. The samples were then washed

three times and the mitochondrial pellet was sub-

jected to immunoblot using an SOD1 antibody.

(E) Purified hSOD1wt, hSOD1G93A, or hSOD1G85R

was incubated for 20 min at 37�C with spinal

cord mitochondria purified from nontransgenic

rats. The samples were then washed three times

and the mitochondrial pellet was subjected to

immunoprecipitation using DSE2 (3H1) antibody, a

monoclonal antibody only recognizing misfolded

SOD1. The immunoprecipitates were immuno-

blotted using an SOD1 antibody.
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progression to an early disease point (Figure 6B) were acceler-

ated by 41 and 45 days, respectively, in SOD1G37R/VDAC1+/�

mice (183 ± 22 and 230 ± 28 days) compared with their

SOD1G37R littermates (224 ± 19 and 275 ± 25 days). Moreover,

age at which end stage disease was reached was also reduced

by an average of 59 days (Figure 6C; SOD1G37R/VDAC1+/� mice

[310 ± 42 days] compared with their SOD1G37R littermates
Neuron 67, 575–587
[369 ± 32 days]). A similar reduction in

age of onset and life span was also

observed for SOD1G37R/VDAC1�/� mice

(Figure 4S), demonstrating that reduction

in VDAC1 activity does affect SOD1

mutant-dependent pathogenesis,

primarily by accelerating an early step in

disease onset or spread.

DISCUSSION

We have demonstrated here in floated

spinal cord mitochondria from mutant

SOD1 expressing animals that both mis-

folded dismutase active or inactive

SOD1 mutants bind directly and selec-

tively to the cytoplasmically exposed

face of VDAC1. Both dismutase active

and dismutase inactive, but not wild-
type, SOD1 binding to VDAC1 reduces channel conductance,

as demonstrated for K+ and Cl� ions by electrophysiological

recording and for ADP by inhibition of normal ADP accumulation

into mitochondria. Channel conductance was not affected in

liver mitochondria (where misfolded SOD1 does not accumu-

late). Mutant association and conductance inhibition is repli-

cated in spinal cord mitochondria purified from mutant
, August 26, 2010 ª2010 Elsevier Inc. 581



Figure 6. Reduction of VDAC1 Levels Accel-

erates Disease Onset and Diminishes

Survival in the hSOD1G37R Mouse Model of

ALS

Ages of (A) disease onset (determined as the time

when mice reached peak body weight), (B) early

disease (determined as the time when mice lost

10% of maximal weight), and (C) disease end

stage (determined as the time when the animal

could not right itself within 20 s when placed on

its side) of SOD1G37R-VDAC1+/� (blue) and

SOD1G37R-VDAC1+/+ littermates (red). Mean

ages ± SD is provided.

(D, E, and F) Mean onset (D), mean duration of

early disease (from onset to 10% weight loss, E)

and mean duration of late disease (from 10%

weight loss to end-stage, F). Error bars denote SD.

See also Figure S4.
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expressing animals beginning presymptomatically and

increasing in severity during disease progression contempora-

neous with increased accumulation of misfolded mutant SOD1.

The clear implication from this is that only the misfolded portion

of SOD1 is able to affect the channel, thereby partially blocking

metabolite flux across the outer mitochondrial membrane.

Reduced conductance by VDAC1 will decrease ATP synthesis,

increase the ADP/ATP ratio in the cytosol and reduce membrane

potential (as outlined in Figure 7). Chronic mitochondrial

dysfunction can in turn drive generation of damaging reactive

oxygen species that could drive further SOD1misfolding through

chemical damage to it, as has been previously documented

selectively in spinal cords from mutant SOD1 animals (Liu

et al., 2004; Vande Velde et al., 2008). Thus, our evidence

demonstrates that reduced VDAC1 conductance, and corre-

spondingly reduced respiration rate (Lemasters and Holmuha-

medov, 2006), are direct components of intracellular damage

from mutant SOD1.
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Moreover, not only does mutant

SOD1 lower VDAC1-dependent ADP

conductance by half as much as does

complete VDAC1 deletion (Figure 3S),

further reduction in conductance (by

VDAC1 gene inactivation) significantly

accelerates disease onset (but not

progression), reducing survival by more

than two months for both VDAC1

heterozygous and homozygous mice.

Intracellular targets for SOD1 damage

beyond VDAC1 have been proposed

(Ilieva et al., 2009), including aberrant

glutamate handling from delayed

synaptic glutamate recovery by astro-

cytes (Rothstein et al., 1995), mutant

damage in the extracellular space

following aberrant cosecretion with

chromogranin (Urushitani et al., 2006),

endoplasmic reticulum stress from
inhibition of the ERAD pathway by mutant SOD1 binding to

the integral membrane protein derlin (Nishitoh et al., 2008),

and excessive production by microglia of extracellular super-

oxide following mutant SOD1 binding to the small G protein

Rac1 and its subsequent stimulation of NAPDH oxidase (Har-

raz et al., 2008). Moreover, it was recently proposed that

misfolded SOD1 damage to mitochondria can induce morpho-

logical changes and cytochrome c release in the presence of

Bcl-2 (Pedrini et al., 2010). To those hypotheses, we propose

that the partial blockage of the VDAC1 channel by direct asso-

ciation with misfolded SOD1 would make motor neurons more

vulnerable to any of these additional stresses derived either

from mutant SOD1 acting within motor neurons, astrocytes,

microglia, and possibly additional neighboring nonneuronal

cells. Indeed, in the presence of reduced VDAC1 conductance

such pathways must play roles in pathogenesis, as we have

shown that mutant SOD1-mediated disease still ensues in

VDAC1 null mice.



Figure 7. Effects of Misfolded SOD1

Binding to VDAC1

Model showing the effects of misfolded SOD1

binding to VDAC1. Misfolded SOD1 is proposed

to inhibit VDAC1 conductance and suppress

both uptake and release of mitochondrial metabo-

lites.

This reduction in metabolites flux would result in

reduced energy production and oxidative stress

leading to mitochondrial dysfunction.
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Surprisingly, in the absence of VDAC1, we have found a 60%

residual ADP conductance which seems most likely to be

contributed by compensatory VDACs or VDAC-like activity(ies).

Although no other VDAC isoform is known to be overexpressed

in VDAC1 null mice, VDAC2 has been shown to exist in two forms

that differ in conductance and selectivity (Xu et al., 1999). It is

plausible that in the absence of VDAC1, VDAC2 exists predom-

inantly in a high conductance state, as a compensatory mecha-

nism. This mechanism should now be tested by purifying VDAC2

from VDAC1 knockout mouse, and testing its channel properties

in lipid bilayers.

The compromise in mutant SOD1-mediated VDAC1 conduc-

tance that we have found offers a mechanistic explanation for

alteration in mitochondrial electron transfer chain complexes

and the capacity to consume oxygen and synthesize ATP previ-

ously reported in one mutant SOD1 expressing mouse line (Jung

et al., 2002; Kirkinezos et al., 2005; Mattiazzi et al., 2002). The

recent report that association of hSOD1G93A and hSOD1G85R

withmotor neuronmitochondria reduces capacity of the electron

transfer chain to limit Ca2+-induced Jm depolarization (Nguyen

et al., 2009) is also fully compatible with altered adenine nucleo-

tide transport across the outer mitochondrial membrane as the

initiating deficit. So too is the report of reduced ability of mito-

chondria fromSOD1G93AandSOD1G85Rmice tosurvive repetitive

Ca2+ addition (Damiano et al., 2006).

VDAC1 has been proposed to be themediator for ROS release

from the intermitochondrial spaces to the cytosol (Han et al.,

2003; Madesh and Hajnóczky, 2001). Moreover, hexokinase

(known to interact with VDAC1) has been shown in cell culture
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to decrease ROS release when overex-

pressed, thereby reducing intracellular

levels of ROS (Ahmad et al., 2002; da-

Silva et al., 2004). The relatively low level

of hexokinase in spinal cord as compared

to that in brain (Figure 1F) may therefore

be a component of selective vulnerability.

This is also consistent with the selective

association of misfolded mutant SOD1

with VDAC1 on the cytoplasmic face of

mitochondria from spinal cord, but not

liver or brain. Although both tissues accu-

mulate high levels of mutant SOD1 (Liu

et al., 2004; Vande Velde et al., 2008),

prior findings show that misfoldedmutant

SOD1 is bound to the cytoplasmic face of
spinal cord mitochondria, while apparently imported into the

intermembrane space of mitochondria from cortex of the same

animals and not associated with liver mitochondria at all (Vande

Velde et al., 2008). Another factor likely underlying the differ-

ences in mutant SOD1 association with mitochondria, and there-

fore potentially factors underlying selective vulnerability, is that

mitochondria from different tissues (and which retain different

functional properties) have different protein compositions (Bailey

et al., 2007; Mootha et al., 2003), including hexokinase levels.

This is accompanied by intrinsic differences in O2
�$ production,

lipid peroxidation, DNA oxidation and Ca2+ accumulation

capacity (Sullivan et al., 2004).

Our finding that VDAC1 is one of the targets for misfolded

SOD1 within the nervous system raises substantial implications

for the mechanism underlying premature degeneration and

death of motor neurons. A variety of apoptotic stimuli are known

to trigger cell death by modulation of VDAC1 (Abu-Hamad et al.,

2008; Shoshan-Barmatz et al., 2006; Tsujimoto and Shimizu,

2002; Yagoda et al., 2007; Zaid et al., 2005; Zamzami and

Kroemer, 2003; Zheng et al., 2004), implicating VDAC1 as

a component of the apoptotic machinery. Although VDAC1

proteins have been reported to be dispensable for Ca2+ and

oxidative stress-induced permeability transition pore (PTP)

opening (Baines et al., 2007), siRNA-mediated reduction in

VDAC1 has supported VDAC1 as an indispensable protein for

endostatin-, cisplatin-, and selenite-induced oxidative stress

induced PTP opening and apoptosis (Tajeddine et al., 2008;

Tomasello et al., 2009; Yuan et al., 2008). Moreover, VDAC1

was recently shown to be involved in staurosporine- and
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ceramide-induced cell death downstream of BAD and BCL-XL

(Roy et al., 2009) and curcumin induced apoptosis by cooperat-

ing with Bax in the release of AIF from mitochondria (Scharstuhl

et al., 2009). Since VDAC1 is one of several targets for a choles-

terol-like small molecule (TRO19622) that can protect motor

neurons from SOD1 mutant-mediated death in culture and

modestly delay disease onset in SOD1 mutant mice (Bordet

et al., 2007), it now seems likely that its efficacy may be through

direct effect on VDAC1.

Finally, it is well established that although motor neurons are

the final targets in ALS, mutant damage within astrocytes and

microglia contributes to driving rapid disease progression (Beers

et al., 2006; Boillée et al., 2006a, 2006b; Clement et al., 2003;

Yamanaka et al., 2008a, 2008b). In this context, we show here

that little accumulation of misfolded SOD1 is found by disease

onset, but it is preferentially within motor neurons. However,

during disease progression a dramatic increase of misfolded

SOD1 is observed accumulated in other cells as well and prob-

ably extracellularly. Interestingly, mitochondrial dysfunction(s)

within mutant astrocytes has been reported to cause acute

motor neuron death in astrocyte-motor neuron cocultures (Cas-

sina et al., 2008) and astrocytes expressing mutant SOD1 have

been reported to induce mitochondrial dysfunction within motor

neurons (Bilsland et al., 2008). Coupling these findings with the

appearance of aberrant mitochondria within motor neurons in

multiple animal models of SOD1mutant mediated ALS (Bendotti

et al., 2001; Jaarsma et al., 2001; Kong and Xu, 1998; Wong

et al., 1995) and the association of mutant SOD1 with mitochon-

dria within affected tissues, we propose that misfolded SOD1

association directly with VDAC1 represents a primary event of

damage within motor neurons.
EXPERIMENTAL PROCEDURES

Transgenic Rats and Mice

Transgenic rats expressing hSOD1wt (Chan et al., 1998), hSOD1G93A (Howland

et al., 2002), and hSOD1H46R (Nagai et al., 2001) were as originally described.

All animal procedures were consistent with the requirements of the Animal

Care and Use Committee of the University of California.

Mice heterozygous for the mutant human SOD1G37R transgene

(LoxSOD1G37R) (Boillée et al., 2006b) were crossed with mice heterozygous

for a VDAC1 gene disruption (Weeber et al., 2002). Mice were genotyped by

PCR for the presence of the mutant SOD1 transgene (Williamson and Cleve-

land, 1999) and using a four-primer multiplex PCR for the presence of

VDAC1 (Weeber et al., 2002), as previously described.

For survival experiments, SOD1G37R, VDAC1+/� mice were always

compared with their contemporaneously produced SOD1G37R, VDAC1+/+

littermates. Time of disease onset was retrospectively determined as the

time when mice reached peak body weight, early disease was defined at the

time when denervation-induced muscle atrophy had produced a 10% loss

of maximal weight, and end-stage was determined by paralysis so severe

that the animal could not right itself within 20 s when placed on its side, an

endpoint frequently used for SOD1 mutant mice and one that was consistent

with the requirements of the Animal Care and Use Committee of the University

of California.
Subcellular Fractionation

Mitochondria were purified as previously described (Vande Velde et al., 2008).

Tissues were homogenized on ice in 5 volumes of ice-cold homogenization

buffer (HB) composed of 210 mMmannitol, 70 mM sucrose, 1 mM EDTA-(Tris)

and 10 mM Tris-HCl (pH 7.2). Homogenates were centrifuged at 1,0003 g for
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10min. Supernatants were recovered, and pellets were washed with½ volume

HB and centrifuged at 1,000 3 g. Supernatants were pooled and centrifuged

at 12,0003 g for 15 min to yield a crude mitochondrial pellet. The supernatant

was used to make cytosolic fractions by further centrifugation at 100,000 3 g

for 1 hr. The mitochondria were gently resuspended in HB and then adjusted

to 1.204 g/mlOptiprep (iodixanol) and loaded on the bottomof a polycarbonate

tube. Mitochondria were overlaid with an equal volume of 1.175 g/ml and

1.079 g/ml Optiprep and centrifuged at 50,0003 g for 4 hr (SW-55; Beckman).

Mitochondria were collected at the 1.079/1.175 g/ml interface and washed

once to remove the Optiprep. Optiprep stock solution was diluted in 250 mM

sucrose, 120 mM Tris-HCl (pH 7.4), 6 mM EDTA plus protease inhibitors.

For activity assays, spinal cords were homogenized in 5 volumes of ice-cold

homogenization buffer (HB) on ice. Homogenates were centrifuged at

1,000 3 g for 5 min. Supernatants were recovered and centrifuged again at

1,000 3 g for 5 min. Supernatants were centrifuged at 12,000 3 g for 10 min

to yield crude mitochondrial pellets. These mitochondria were gently resus-

pended in HB and then adjusted to 12% Optiprep (iodixanol) and centrifuged

at 17,000 3 g for 10 min (SW-55; Beckman). The majority of the myelin (at the

top of the sample) was removed and the mitochondria were washed once with

HB (without EDTA) to remove the Optiprep.

Liver was homogenized in 5 volumes of ice-cold homogenization buffer (HB)

on ice. Homogenates were centrifuged at 1,000 3 g for 5 min. Supernatants

were recovered, and centrifuged again at 1,000 3 g for 5 min. Supernatant

was centrifuged at 12,0003 g for 10 min to yield a crude mitochondrial pellet.

These mitochondria were resuspended in HB (without EDTA) and centrifuged

again at 12,0003 g for 10 min. The pellet was resuspended in a small volume

of HB without EDTA.

VDAC Channel Recording and Analysis

Reconstitution of VDAC into a planar lipid bilayer (PLB), single channel current

recording, and data analysis were carried out as previously described (Gincel

et al., 2001). Briefly, PLB were prepared from soybean asolectin dissolved in

n-decane (50 mg/ml). Only PLB with a resistance greater than 100 GU, were

used. Purified protein (about 1 ng) was added to the cis chamber. After one

or a few channels were inserted into the PLB, the excess protein was removed

by perfusion of the cis chamber with 20 volumes of a solution to prevent further

incorporation. Currents were recorded under voltage-clamp using a Bilayer

Clamp BC-525B amplifier (Warner Instrument Corp.). The currents were

measured with respect to the trans side of the membrane (ground). The

currents were low-pass, filtered at 1 kHz and digitized online using a Digidata

1200 interface board and pCLAMP 6 software (Axon Instruments, Inc.). Sigma

Plot 6.0 scientific software (Jandel Scientific) was used for curve fitting. All

experiments were performed at room temperature.

Please see Supplemental Information for the following experimental proce-

dures: Protein Purification, Immunoprecipitation, DSE2 antibodies, Immunos-

taining, Ca2+ and ADP Accumulation by Mitochondria, and Immunoblotting.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/j.

neuron.2010.07.019.
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