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sNN = 2.76 TeV. Jets are clustered from charged particles
measured in the central tracking detectors: Inner Tracking System (ITS) and Time Projection
Chamber (TPC). This ensures a uniform acceptance in full azimuth and |η| < 0.9 with high
tracking efficiency.
For the clustering of jet candidates the anti-kT algorithm [1] with resolution parameters

R = 0.2 and R = 0.3 is used. We subtract from each jet candidate event-by-event the average
background. The minimum pT of the jet constituents is 0.15 GeV/c. All jets with a jet axis within
|η| < 0.5 are considered for this analysis. The kT algorithm [2] is used to obtain a collection of
background clusters in each event from which the average transverse momentum per unit area ρ
is calculated by taking the median of (pT,j/Aj) (where A j is the area of the background cluster)
of all kT clusters. To reduce the contribution from true hard jets the two leading kT clusters are
excluded from the calculation of ρ. The estimated background momentum ρ · A is subtracted
from the reconstructed pT of each anti-kT jet candidate in the event [3, 4].

Jets are a powerful tool to study the properties of the medium created in heavy-ion collisions.
The kinematic properties of the jets reflect the kinematic properties of the original hard partons
from the hard process. It is expected that the kinematic properties of jets are modified in the
presence of a medium. The challenge in heavy-ion collisions is to disentangle the jet fragments
originating from hard scatterings from the very large background due to soft processes.
This analysis uses data collected by the ALICE experiment in the heavy-ion run of the LHC

in the fall of 2010 with an energy √
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sNN = 2.76 TeV. Jets are reconstructed from charged particles
using the anti-kT jet algorithm. The transverse momentum of tracks is measured down to 150
MeV/c which gives access to the low pT fragments of the jet. The background from soft particle
production is determined for each event and subtracted. The remaining influence of underlying
event fluctuations is quantified by embedding different probes into heavy-ion data. The recon-
structed transverse momentum spectrum is corrected for background fluctuations by unfolding.
We observe a strong suppression in central events of inclusive jets reconstructed with radii of 0.2
and 0.3. The fragmentation bias on jets introduced by requiring a high pT leading particle which
rejects jets with a soft fragmentation pattern is equivalent for central and peripheral events.

We report a measurement of transverse momentum spectra of jets detected with the ALICE de-
tector in Pb-Pb collisions at √
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Point-to-point fluctuations of the background are quantified by placing random cones in the
measured Pb–Pb events and by embedding high pT probes [5]. The reconstructed transverse mo-
mentum precT of the embedded probe in the heavy-ion environment is compared to the embedded
transverse momentum pprobeT by calculating the difference: δpT = precT − ρ · Ajet − pprobeT . Fluctu-
ations of the background depend strongly on the multiplicity, jet area (or radius) and minimum
pT of the jet constituents pconstT . Background fluctuations have a large impact on the measured jet
spectrum due to the finite probability for large positive flucuations. The width of the background
fluctuations, σ(δpT), for 10% most central events and pconstT > 0.15 GeV/c is 4.47 GeV/c for
R = 0.2 jets and 7.15 GeV/c for R = 0.3 jets. Background fluctuations are corrected for statisti-
cally via unfolding. Combinatorial jets consisting of a random collection of particles which do
not originate from a hard process are removed in the unfolding by not constraining the region
below pmeasuredT = 30 GeV/c with measured data. In addition, jet spectra are also extracted by
requiring a minimum pT of the leading track in the jet. The requirement of a high pT leading
track removes a large part of the combinatorial jets in the sample while introducing a bias to
harder fragmentation. Jets with a soft fragmentation pattern are removed from the sample when
a high pT leading track is required.

Results

(b) Centrality 50 − 80%
Figure 1: Inclusive jet spectra with no requirement on the leading track and jets with a leading track of at least 5 and 10
GeV/c.

Jet spectra are unfolded using a χ2 minimization method which minimizes the difference
between the unfolded spectrum convoluted with the response matrix (the refolded spectrum) and
the measured spectrum. The χ2 function used in this analysis is:

χ2 =
∑
refolded

(
yrefolded − ymeasured
σmeasured

)2
+ β

∑
unfolded

⎛⎜⎜⎜⎜⎝d2 log yunfolded
d log p2T

⎞⎟⎟⎟⎟⎠
2

, (1)

in which y is the yield of the refolded, measured, or unfolded jet spectrum and σmeasured the
statistical uncertainty on the measured jet spectrum. The first summation term of equation 1 gives
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the χ2 between the refolded spectrum and the measured jet spectrum and the second summation
term regularizes the unfolded solution favoring a local power law.
The response matrix includes the smearing of the measured background fluctuations and

detector effects which are determined from event and detector simulations [6]. When a leading
track in the jets is required, a small bias due to collective flow is introduced: the average pT
density ρ of the full Pb–Pb events is at maximum 3 GeV/c smaller than the local pT density in
the region of the event where a jet with a high pT track is present. For the cross-section of jets
with radius R = 0.2 this effect is negligible and no extra correction is required. For central events
the correction applied on the jet yield is a factor 1–2.
The corrected jet spectra with jet radius R = 0.2 are presented in Figure 1 for central (0-10%)

and peripheral collisions (50-80%) [7]. For both centrality classes the unbiased and leading track
pT biased spectra are shown. Requiring a leading high pT track in the jet does not modify the jet
sample at high pT while, as expected, at low pT the jet yield is reduced.

Figure 2: Jet nuclear modification factor RCP for inclusive jet spectra with no requirement on the leading
track and jets with a leading track of at least 5 and 10 GeV/c.

Figure 2 shows the nuclear modification factor of jets, RCP, in central collisions with respect
to peripheral collisions. A strong suppression which does not depend on the leading track re-
quirement is observed. The fragmentation bias due to the leading track requirement of pT > 5
and pT > 10 GeV/c is observed to be similar in central and peripheral collisions for pchT,jet > 30
GeV/c. The strong jet suppression, RCP � 0.4, implies that the full jet energy is not captured by
jet reconstruction in heavy-ion events. This is consistent with out-of-cone radiation induced by
the interaction of the parton with the dense medium.
Figure 3 shows that the ratio between the measured jet spectra without a leading track re-

quirement for radii of R = 0.2 and R = 0.3 is consistent with jet production in vacuum for central
and peripheral events. No sign of a modified jet structure is observed between radii of 0.2 and
0.3 in the ratio of the cross sections. The measured ratio of cross sections in Pb–Pb collisions is
compared to the JEWEL jet quenching MC [9, 10] in Figure 4. A good agreement is observed
between the energy loss implementation of JEWEL and the charged jet results from ALICE.
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Figure 3: Ratio between measured cross-sections with radii R = 0.2 and R = 0.3 in Pb–Pb collisions for central and
peripheral events compared to generator level PYTHIA [8]

Figure 4: Ratio between measured cross-sections with radii R = 0.2 and R = 0.3 PbPb compared to JEWEL energy loss
MC.
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