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Abstract

We prove the existence of a positive radial solution for the Hénon equation with arbitrary growth. The solution is found by means
of a shooting method and turns out to be an increasing function of the radial variable. Some numerical experiments suggest the
existence of many positive oscillating solutions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In 1982, W.-M. Ni wrote the first rigorous paper, [15], on an equation introduced ten years earlier by Hénon in [14]
as a model for mass distribution in spherically symmetric clusters of stars. This equation goes now under the name of
Hénon equation, and was originally coupled with Dirichlet boundary conditions:⎧⎨

⎩
−�u = |x|αup, in B1,

u > 0, in B1,

u = 0, on ∂B1,

(1)

where B1 = {x ∈ R
N | |x| < 1}, with N � 3, α > 0 and p > 1.

The existence of solutions to (1) for p < N+2
N−2 = 2∗ − 1 is a standard exercise in critical point theory that can be

solved by various simple approaches.
On the other hand, Ni’s main result states that (1) has (at least) one solution provided p < 2∗ − 1 + 2α

N−2 and thus
enlarges considerably the range of solvability beyond the classical critical threshold p = 2∗ − 1. It is also simple to
prove, by means of the Pohozaev identity, that for p � 2∗ − 1 + 2α

N−2 , problem (1) has no solution.

Thus for the Dirichlet problem (1) the picture is rather sharp: setting pα = 2∗ + 2α
N−2 , problem (1) is solvable if

and only if p < pα − 1. In the following we will call pα the Hénon critical exponent.
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The key observation in Ni’s work is the fact that the presence of the weight |x|α , which is radial and vanishes at
x = 0, allows one to gain compactness properties when one restricts the analysis to radial functions. Indeed, by means
of the pointwise estimate [15]

∣∣u(|x|)∣∣ � C
‖∇u‖2

|x|N−2
2

for almost every x ∈ B1, (2)

which holds true for any radial u ∈ H 1
0 (B1), one can easily prove that the embedding of H 1

0,rad(B1) into Lp(|x|α dx)

is compact precisely for p < pα − 1, and this is what one needs to prove existence of a solution to (1).
Quite recently, much attention has been devoted to symmetry-breaking issues, namely to the question of whether

least-energy solutions of (1) are radially symmetric functions (for example for large α). In their seminal papers [20,21],
Smets et al. proved that this is indeed false for α sufficiently large. In the last few years various aspects of the Hénon
equation have been analyzed, and the resulting literature is nowadays rather rich (see for example [4–10,17–19] and
references therein). All these papers concern the Dirichlet problem.

The Hénon equation just recently started to draw attention when coupled with Neumann boundary conditions. In
this case the problem reads⎧⎪⎪⎨

⎪⎪⎩

−�u + u = |x|αup, in B1,

u > 0, in B1,

∂u

∂ν
= 0, on ∂B1,

(3)

and has been studied in [13], where the authors proved some symmetry-breaking results by connecting the question
of symmetry of the ground states to the symmetry properties of extremal functions in some trace inequalities. In the
paper [13] of course it is assumed that p < 2∗ − 1, to use a variational approach in H 1(B1).

From the point of view of the mere existence of solutions for the Neumann problem (3), the situation presents both
analogies and discrepancies with respect to the Dirichlet problem. Indeed, also in the Neumann case it is very easy to
check that the problem admits at least one solution if p < 2∗ −1, and it has been proved in [13] that Ni’s result extends
to (3): by using an H 1 version of inequality (2), it is simple to prove that (3) admits at least one (radial) solution for
every p < pα − 1.

If one wishes to complete the picture of the solvability for (3) as a function of p, like in the Dirichlet case, one has
to face the fact that the Pohozaev identity gives no relevant information in presence of Neumann boundary conditions.
To our knowledge, it is not known whether the critical Hénon exponent serves as a threshold between existence and
nonexistence in (3).

The purpose of this note is to fill this gap, by looking for radial solutions of (3) without any limitation on p. Of
course without bounds on p we cannot make use of variational arguments, and we take instead an ODE viewpoint.
Our main result is the following.

Theorem 1. For every p > 1 and α > 0, problem (3) admits a strictly increasing radial solution.

The preceding result shows that the uselessness of the Pohozaev argument for nonexistence of solutions is not a
technical obstruction, but reflects a completely different situation with respect to the Dirichlet problem. Though our
arguments are rather simple, we point out that it is rather difficult to find in the literature existence results for elliptic
equations without any growth condition; some exceptions, for singularly perturbed elliptic problems can be found for
example in [2,3].

Our main result can be easily extended to the more general problem⎧⎪⎪⎨
⎪⎪⎩

−�u + u = φ
(|x|)f (u), in B1,

u > 0, in B1,

∂u

∂ν
= 0, on ∂B1,

(4)

under suitable assumptions on φ and f , but always with no growth restrictions on f .
The last section of the paper contains some numerical experiments that suggest a rather surprising fact: there are

choices of N , α and p for which many (and possibly infinitely many) radial solutions of (3) seem to exist. We clearly
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state that this is only a numerical hint towards further research, since no rigorous proof has been written so far. By the
way, we believe that for any choice of the parameters, problem (3) has exactly one radial, increasing solution, but we
have to state this only as a

Conjecture. For every N � 3, α > 0 and p > 1, the only solution of (3) which is positive, radial and increasing is
that of Theorem 1.

The matter of uniqueness for radially symmetric solutions of semilinear elliptic equations on balls or annuli is a
classical and often overwhelmingly difficult issue. We refer to [12] and the references therein for a short summary of
known results. We have been unable to find uniqueness results in the literature, concerning nonautonomous equations
like (3) with a monotonically increasing dependence on |x|.

2. An existence result for the Hénon equation

A radial solution for (3) must solve the ODE problem⎧⎪⎪⎨
⎪⎪⎩

−u′′ − N − 1

r
u′ + u = rαup, in (0,1),

u > 0, in (0,1),

u′(0) = u′(1) = 0.

(5)

We observe that u′(1) = 0 corresponds to the Neumann boundary condition, while we require u′(0) = 0 to obtain
classical solutions. Since we do not impose any upper bound on p, variational techniques do not seem to be useful to
prove any existence result. For this reason we use a shooting method, which consists in finding γ > 0 such that the
solution uγ of the initial value problem⎧⎪⎪⎨

⎪⎪⎩
−u′′ − N − 1

r
u′ + u = rαup, in (0,1),

u > 0, in (0,1),

u(0) = γ, u′(0) = 0

(6)

satisfies u′
γ (1) = 0. Equation (6)1 can be written in the form

(
rN−1u′)′ = rN−1(u − rαup

)
, (7)

and it is quite natural to introduce the auxiliary function A(r) = rN−1u′(r). By the definition of A and (6), we deduce
that A(0) = 0 and that A increases strictly if and only if u(r) < c(r) where

c(r) = 1

rα/(p−1)
.

The curve c will play a crucial rôle in our discussion; its peculiarity is that it is asymptotic to the coordinate axes, i.e.

lim
r→0+ c(r) = +∞ and lim

r→+∞ c(r) = 0+. (8)

The next lemma is well known, see for example [11].

Lemma 1. For every γ > 0, problem (6) is uniquely solvable on [0,+∞). Its solution uγ is continuously differentiable
with respect to the initial value γ .

We begin now a qualitative study of solutions to (6), with the aim of proving the existence of (at least) an initial
datum γ̄ > 0 such that the corresponding uγ̄ matches the Neumann boundary condition at r = 1.

Take any γ > 0, and consider the solution uγ of (6). The corresponding auxiliary function Aγ (r) = rN−1u′
γ (r)

is strictly positive from r = 0 until uγ intersects the curve c, see (7). After the first crossing, the derivative of Aγ

becomes negative. Therefore there exists a zero of A′
γ , and the first intersection point

rγ := inf
{
r > 0

∣∣ A′
γ (r) = 0

} = inf
{
r > 0

∣∣ uγ (r) = c(r)
}
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between the graph of uγ and that of c is well defined. By definition, u′
γ (r) > 0 (at least) on the interval (0, rγ ). Let us

call Rγ the first nontrivial stationary point of uγ , namely

Rγ := inf
{
r > 0

∣∣ u′
γ (r) = 0

}
.

The next lemma states in particular that Rγ is well defined.

Lemma 2. For every γ > 0 we have rγ < Rγ < +∞.

Proof. Since the function Aγ steadily increases on (0, rγ ) and A(0) = 0, we deduce that Aγ (rγ ) > 0 and then that
u′

γ (rγ ) > 0. Hence rγ < Rγ . Let us show that Rγ < +∞. Assume, for the sake of contradiction, that Rγ = +∞. This
means that u′(r) > 0 for all r � rγ . Fix any R0 > rγ (of course u′

γ (R0) > 0) and choose δ such that

0 < δ <

(
uγ (R0)

c(R0)

)p−1

− 1.

This choice is possible since uγ increases strictly and c decreases strictly, so that uγ (R0) > c(R0). Therefore

rαup−1
γ (r) − 1 > δ > 0 for every r � R0. (9)

We now integrate (6)1 on the interval [R0,R], with R > R0; we have

0 = u′
γ (R) − u′

γ (R0) + (N − 1)

R∫
R0

u′
γ (r)

r
dr −

R∫
R0

uγ (r) dr +
R∫

R0

rαup
γ (r) dr

� −u′
γ (R0) −

R∫
R0

uγ (r)
[
1 − rαup−1

γ (r)
]
dr

and hence
R∫

R0

uγ (r)
[
rαuγ (r)p−1 − 1

]
dr � u′

γ (R0) < +∞

for every R > R0. However, thanks to (9), we obtain

lim
R→+∞

R∫
R0

uγ (r)
[
rαuγ (r)p−1 − 1

]
dr � lim

R→+∞(R − R0)γ δ = +∞,

a contradiction that concludes the proof. �
Lemma 3. There results u′′

γ (Rγ ) < 0.

Proof. Indeed, from Eq. (6) we obtain

−u′′
γ (Rγ ) = uγ (Rγ )

(
1 − Rα

γ up−1
γ (Rγ )

)
which is a positive quantity since uγ (Rγ ) > c(Rγ ). �
Lemma 4. There exists δ > 0 such that for every γ < δ there results Rγ > 1.

Proof. Lemma 1 implies that supr∈[0,1]|uγ (r)| < 1 for all γ sufficiently small. Therefore uγ lies below the curve c on
[0,1], since c decreases and c(1) = 1 independently of the parameters p and α. The claim follows from Lemma 2. �
Lemma 5. limγ→+∞ Rγ = 0.
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Proof. For the sake of contradiction we suppose that there exist δ > 0 and a sequence (γk)k , γk → +∞, such that
Rγk

� δ for every k. Since u′
γk

is strictly positive on (0, δ/2), the function Aγk
is strictly positive on (0, δ/2]. Hence,

for every k,

0 < Aγk
(δ/2) =

δ/2∫
0

A′
γk

(r) dr =
δ/2∫
0

rN−1uγk
(r)

(
1 − rαup−1

γk
(r)

)
dr �

δ/2∫
0

rN−1uγk
(r)

(
1 − rαγ

p−1
k

)
dr,

where the last inequality holds because uγk
(r) � γk on [0, δ/2]. Since γk → +∞, we can choose k0 such that, for

every k � k0, there results γ
−(p−1)/α
k < δ/2; for such values of k we can split the integral to obtain

0 <

γ
−(p−1)/α
k ∫

0

rN−1uγk
(r)

(
1 − rαγ

p−1
k

)
dr +

δ/2∫

γ
−(p−1)/α
k

rN−1uγk
(r)

(
1 − rαγ

p−1
k

)
dr

� uγk

(
γ

−(p−1)/α
k

) γ
−(p−1)/α
k ∫

0

rN−1(1 − rαγ
p−1
k

)
dr + uγk

(
γ

−(p−1)/α
k

) δ/2∫

γ
−(p−1)/α
k

rN−1(1 − rαγ
p−1
k

)
dr

= uγk

(
γ

−(p−1)/α
k

) δ/2∫
0

rN−1(1 − rαγ
p−1
k

)
dr.

Indeed uγk
increases and the quantity (1 − rαγ

p−1
k ) is positive on the interval (0, γ

−(p−1)/α
k ) and negative on the

interval (γ
−(p−1)/α
k , δ/2). Integrating we reach the contradiction

0 < u
(
γ

−(p−1)/α
k

)( δ

2

)N[
1

N
− γ

p−1
k

N + α

(
δ

2

)α]
< 0

whenever γk > (N+α
N

)1/(p−1)(δ/2)−α/(p−1), namely for γk large enough. �
We are now ready to state our main result.

Theorem 1. For every p > 1 and α > 0, problem (3) admits a strictly increasing radial solution.

Proof. We have seen that the first critical point Rγ of uγ is larger than 1 for small values of γ , and smaller than 1
for large values of γ . Consider the map F : (0,+∞) × (0,+∞) → R defined by F(γ, r) = u′

γ (r). We have that
F(γ,Rγ ) = 0, and Lemma 3 implies that

∂2F(γ,Rγ ) = u′′
γ (Rγ ) < 0.

The Implicit Function Theorem shows that γ 	→ Rγ is a continuous and even differentiable function. Therefore, there
exists γ̄ such that Rγ̄ = 1. This means that uγ̄ is a radial solution of the Neumann problem (3). �
Remark 1. When p satisfies the condition

p − 1 <

√
(N − 2)2 + 4 − (N − 2)

2
α, (10)

the Maximum Principle shows that every radial solution for the problem (3) can change its monotonicity at most once,
since it can intersect the curve c at most twice. Indeed, computing

−c′′(r) − N − 1
c′(r) + c(r) = (p − 1)2r−2−α/(p−1)

[
rα + α(N − 1)(p − 1) − α(α + p − 1)

2

]
,

r (p − 1)
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it is easy to see that since r ∈ [0,1], condition (10) implies that c is a subsolution for the operator −�+I . Furthermore,
a positive solution u for (3) is a supersolution for the same operator. Therefore w = u − c is a supersolution that
vanishes when u intersects c. From the Maximum Principle we deduce that w can vanish at most twice.

3. A generalization

Theorem 1 can be adapted to problem (4) by imposing some suitable assumptions of the functions φ and f . First
of all, both functions φ and f are defined (and continuous) on [0,+∞), since we are looking for positive radial
solutions; furthermore we require:

(h1) φ is increasing, φ(0) = 	 � 0 and limr→+∞ φ(r) = κ ∈ [l,+∞];
(h2) the function s 	→ f (s)/s is strictly increasing;
(h3) lims→+∞ f (s)

s
= 1

	
(= +∞ if 	 = 0);

(h4) lims→0+ f (s)
s

= 1
κ

(= 0 if κ = +∞).

Under conditions (h1)–(h4) the equation u/f (u) = φ(r) defines implicitly a continuous curve u = ξ(r) which plays
the same rôle as the curve c in the previous section. Indeed if we call H(u) = u/f (u), then ξ(r) = H−1(φ(r)), which
decreases since H−1 decreases and φ increases. Furthermore ξ is asymptotic to the coordinate axes. Indeed from (h3)
we get

lim
r→0+ ξ(r) = lim

r→0+H−1(φ(r)
) = lim

u→l
H−1(u) = +∞,

similarly, from (h4),

lim
r→+∞ ξ(r) = lim

r→+∞H−1(φ(r)
) = lim

u→k
H−1(u) = 0.

We can now proceed exactly as in Section 2 defining the auxiliary function A and the points rγ , Rγ . Lemmas 2–5 can
be proved also in this setting with minor changes. We then obtain the required generalization:

Theorem 2. Let φ, f : [0,+∞) → R be continuous functions. If assumptions (h1)–(h4) are satisfied then problem (4)
admits a strictly increasing radial solution.

Remark 2. Our assumptions are clearly satisfied by nonlinearities with arbitrarily fast growth at infinity, like f (s) =
exp(s) − 1, or f (s) = exp(γ sq) − 1 for γ > 0 and q > 1. This latter case is particularly interesting, because it
corresponds to Trudinger–Moser type problems without any restriction on q and γ . Though in this paper we work in
dimension N � 3, it is immediate to check that our results hold also for N = 2, which is the case of the Trudinger–
Moser problem.

Of course, (h3) requires 	 = 0, i.e. φ(0) = 0. Similarly, a nonlinearity that is superlinear at zero forces κ to be
infinite. Also, we notice that homogeneity of φ plays no role, as long as φ satisfies the above assumptions; for example
φ(r) = rα + rβ , with α, β > 0, is an admissible function.

Remark 3. It is proved in [1] that in dimension N � 3, for any p > 1 and for large values of R, the problem⎧⎨
⎩

−�u + u = up for |x| < R,

∂u

∂ν
= 0 for |x| = R,

does not have any positive radial solution whose derivative changes sign. We could not find any similar statement for
a nonlinearity like |x|αup .

4. Some numerical results

This section is devoted to the description of some numerical experiments. Such results are purely numerical and
non-rigorous; the purpose of the authors is, on one hand, to give some examples of the existence result proved in
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Table 1

N α p γ

5 1.0816
3 3 11∗ 0.9710

15 0.9487

3 1.3739
4 5 8∗ 1.0306

12 0.9872

4 1.3102
5 9 25/3∗ 1.0632

12 1.0147

11/4 1.2175
10 5 5∗ 1.0688

10 1.0105

50 20 1.0485
10 100 50 1.0114

200 50 1.0135

Section 2. On the other hand we want to point out some features of interest in the behavior of the solutions for the
shooting problem (6) when γ diverges to +∞. These numerical experiments seem to indicate that the structure of the
set of radial solutions of problem (3) is still far to be understood, and deserves further study.

4.1. The monotone solution

The monotone solution for the Hénon equation corresponds to a choice of the parameter γ such that the first
maximum point Rγ of the solution of the shooting equation coincides with 1.

In Table 1 we have collected some values of γ , depending on N , α and p, for which |Rγ − 1| < 10−6. The starred
values of p are the Hénon critical exponents, that is p = pα −1. In the first four rows of the table, we fix the dimension
N and the exponent α and we choose three values of p: subcritical, critical and supercritical. We observe that γ seems
to be a decreasing function of p.

In the last row we have investigated the behavior of γ as α becomes larger and larger while p has a supercritical
value. The numerical results seem to show that γ continues to lie near 1. This is probably due to the fast convergence
of Rγ to 0 as γ → +∞, see Lemma 5.

4.2. Numerical evidence of oscillating solutions

We have considered so far the existence of a radial solution with Neumann boundary conditions with the first
stationary point at 1. Recalling Ni’s results about the existence of oscillating radial solutions for some elliptic problem
on R

n (see [16]) we now investigate the existence on non-monotone solutions for our problem. We address two natural
questions. Can the shooting solution, which is defined on the whole interval [0,+∞), have stationary points different
from Rγ ? Can we choose α, p, and γ such that one of such points coincides with 1? Although we do not have any
rigorous proof of these facts, some numerical experiments show that the answers to these questions strongly depend
on the parameters α and p, so that it seems very unlikely to obtain a single general result.

Fix for instance N = 4 and α = 5. The critical Hénon exponent pα − 1 is in this case p = 8. For such values of
the parameters, the monotone solution corresponds to γ ≈ 1.034. If we compute the solution on a larger interval we
observe that it oscillates. Let us call Rn

γ the nth stationary point of this solution. Lemma 5 suggest that, as γ → +∞,

Rn
γ decreases also for n > 1; for this reason we increase γ in order to obtain Rn

γ = 1 for some n > 1. To obtain R2
γ ≈ 1

we need to choose γ ≈ 155, while for R3
γ ≈ 1, a value of γ ≈ 2584 will do (see Fig. 1). These cases point towards

the possibility of the coexistence of multiple radial positive solutions. Rather surprisingly this interesting behavior
gently disappears when p becomes supercritical. Indeed the oscillations become less and less sharp as p increases
and disappear when p is greater than some p̄ (in the described case p̄ ≈ 16). This behavior is illustrated in Fig. 2 and
it suggests a strong difference with the autonomous case studied by Ni in [16].
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Fig. 1. The three plots represent the shooting solution to problem (6), corresponding to different values of γ , when N = 4, α = 5 and p = 8
(critical). In the horizontal axis the radial variable r varies to the interval [0,10]. In the figure above-left we choose γ = 1.034 and we obtain
the first stationary point Rγ ≈ 1; above-right, when γ ≈ 155, the second stationary point approximates 1. If γ ≈ 2584 the third stationary point
satisfies R3

γ ≈ 1. In the second and third picture, the first maximum point Rγ is not printed in order to obtain a reasonable scaling, and we just plot
the solution for r > 0.2.

Fig. 2. In the picture we compare the plots of the shooting solutions when N = 4, α = 5 and γ = 1.034, when p varies from the critical Hénon
exponent p = 8 to some supercritical values. In the horizontal axis the radial variable r varies in the interval [0,10]. When p is critical the numerical
solution oscillates sharply; as p increases the oscillations become weaker and weaker and they disappear when p > 16.
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