The Coronary Vasculature and Cardiac Transplantation

Wednesday, March 22, 1995, 10:30 a.m.—Noon
Ernest N. Morial Convention Center, Room 14

The Effect of Prenatal Cyclopamine on Fetal Rabbit Growth and the Myocardial Beta Adrenergic Receptor-Cyclic AMP Pathway

Howard M. Stein, Leslie Blount
Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.

As the pediatric and adolescent survivors of organ transplantation reach reproductive age, there will be an increasing number of fetuses exposed to cyclosporine (CSA) throughout gestation. The effect of CSA on the developing fetus has received little attention. We studied the effect of prenatal CSA administration on fetal rabbit growth and the myocardial beta adrenergic receptor-cyclic AMP pathway.

Cyclosporine-Treated Piglets

Jeanine Fontaine.
Universite Libre de Bruxelles, Brussels, Belgium

Cyclosporine (CSA) treatment changes the myocardial beta adrenergic receptor-cyclic AMP pathway. Methods: Pregnant New Zealand white rabbits were treated either with subcutaneous CSA, 20 mg/kg twice weekly, or placebo, starting at 14 days gestation. At 29 days gestation (term 30 days), the fetuses were delivered by cesarean section. Maternal and fetal organs were weighed and myocardial tissue processed and stored. Beta adrenergic receptor numbers were determined by competitive binding assay using radiolabelled Dihydro-alpranolol. Cyclic AMP production was measured using radioenzymatic assay. Statistical comparisons utilized unpaired Student's t-test. Results: CSA administration did not alter maternal body weight or fetal growth in the rabbit pups, body, heart, lung and kidney weights were decreased to 75% of control (p < 0.0001). Liver weight was decreased further to 68% of control (p < 0.0001 compared to controls, p < 0.03 compared to body and other organ weight reductions). Despite the reduction in myocardial growth, beta adrenergic receptor numbers and cyclic AMP production were not different in the CSA treated group. Conclusions: Prenatal CSA administration results in asymmetric growth retardation in the rabbit fetus. The beta adrenergic receptor-cyclic AMP pathway does not appear to be altered. Speculation: because CSA is currently contraindicated during human pregnancy, the effects on the fetus deserve further study.

Coronary Vasomotor Responses in Cyclosporine-Treated Piglets

Guy Serenboom, Dmitri Brikkine, Philippe Unger, Beatrice Guillo, Jeanine Fontaine.
Universite Libre de Bruxelles, Brussels, Belgium

Chronic treatment with cyclosporine (CsA) seems to produce a decreased ability of the endothelium to secrete nitric oxide. However, its effect on the coronary arterial system remains controversial. Therefore, coronary arteries isolated from piglets treated for 3 weeks with CsA (10 mg/kg/day I.M.; group 1) were studied in organ baths and compared to those isolated from control animals (I.M. injections of the CsA solvent, group 2). On rings contracted with prostaglandin F2a (PGF2a), the endothelium-dependent relaxations to serotonin (5HT, 1 nM to 0.3 µM) in the presence of ketanserin 1 µM, bradykinin (BK, 1 nM to 0.1 µM), substance P (SP, 0.1 nM to 10 nM) and calcium ionophore (A23187, 1 nM to 1 µM) were assessed:

<table>
<thead>
<tr>
<th>Group</th>
<th>Area under curve (AUC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHT</td>
<td>BK</td>
</tr>
<tr>
<td>1 (n = 12)</td>
<td>479 ± 24*</td>
</tr>
<tr>
<td>2 (n = 12)</td>
<td>385 ± 22</td>
</tr>
</tbody>
</table>

mean ± SEM; *p < 0.02 vs group 2

the maximal relaxation was significantly decreased only for BK (76 ± 4% vs 92 ± 9%, % of PGF2a-induced plateau). Depolarization-induced contractions (KCl 90 mM) were similar in both groups whereas the acetylcholine (Ach)-induced contractions (1% of KCl 90 mM) were enhanced; the AUC in group 1 was 245 ± 51 versus 110 ± 15 in group 2 (P < 0.01). After mechanical removal of the endothelium, the increased responsiveness to Ach persisted in group 1. Thus, chronic exposure to CsA impairs receptor-mediated endothelium-dependent relaxations in coronary arteries and also produces functional changes in smooth muscle cells. These alterations may play a role in the occurrence of cardiac graft vasculopathy.

Prognostic Significance of Intimal Thickening Detected by Intracoronary Ultrasound in Heart Transplant Recipients

David Liang, Shao-Zhou Gan, Javier Botas, John Schroeder, Edwin L. Alderman, Richard L. Popp, Alan Yeung, Stanford University, Stanford, CA

Intracoronary ultrasound (ICUS) is a sensitive tool for the detection of intimal thickening in coronary arteries of heart transplant recipients. However, the prognostic significance of this intimal thickening has not been proven.

During a one year period, 90 transplant recipients had ICUS examination at the time of their annual angiogram. For each ICUS study an intimal index (II), defined as the ratio of the plaque area to the area within the media, was measured for the most diseased segment imaged. The angiogram at the time of ICUS was reviewed for the presence of visually apparent coronary artery disease (V-CAD). Those patients (n = 19) with V-CAD present at the time of ICUS were excluded from the study. The time since transplantation for the 71 pts without V-CAD ranged from 1 to 15 yrs, with a mean of 4.2 yrs and median of 3.9 yrs. The subsequent annual follow-up angiograms of the 71 patients without V-CAD at the time of ICUS were reviewed for the development of V-CAD. Mean duration of angiographic follow-up was 2.0 yrs (range 1–3 yrs).

V-CAD developed on follow-up angiograms in 13 of the 71 pts. Mean time to development of V-CAD was 1.5 yrs. Forty-six patients had Il < 0.3, 4 (8%) of whom subsequently developed V-CAD. Twenty-five patients had Il > 0.3, 9 (36%) of whom developed V-CAD. Odds ratio for future V-CAD between pts with Il < 0.3 and Il > 0.3 was 5.9 (95% CI 1.8 to 19.0, difference significant at p < 0.01 by Fisher's Exact test).

In a subgroup of 22 patients more than 5 years post-transplantation at the time of ICUS, 12 had Il < 0.3 and 10 had Il > 0.3. In this subgroup none of the 12 pts with Il < 0.3 developed V-CAD and only 1 of the 10 with Il > 0.3 developed V-CAD (difference not significant).

Conclusion — Among patients more than 1 year and less than 5 years post-transplantation without visually apparent angiographic coronary artery disease, the presence of moderate to severe intimal thickening by ICUS is predictive of the future development of angiographically apparent CAD. Intimal thickening as detected by ICUS is of prognostic significance in patients with angiographically silent transplant coronary artery disease.

Older Donor Age Predicts Increased Risk for Coronary Vasculopathy in the Year Following Transplantation: Serial Examination by Intravascular Ultrasound

E. Murat Tuzcu, Anthony C. De Franco, Ellen Mayer, David J. Moliterno, Robert E. Hobbs, Corrina Bost-Silverman, Robert W. Stewart, Patrick M. McCarthy, Skip Guyer, Steven E. Nissen.
The Cleveland Clinic Foundation, Cleveland, OH

Objectives: We have previously shown a high prevalence of transmission of atherosclerosis to recipients examined by intravascular ultrasound within a few weeks of transplantation. However, the effect of donor characteristics on progression of vasculopathy is uncertain.

Methods: We examined 22 patients by intravascular ultrasound within 1.0 ± 0.2 months after transplantation. Identical sites were imaged again at one year follow-up (12 ± 0.5 months) to determine donor-related factors associated with the development of intimal thickening during the first year. Intravascular imaging was performed in multiple coronary arteries (2.2 arterio-arterial patient) using a 3.5 Fr, 30 MHz probe. A core laboratory, blinded to patient identity and to time from transplantation, quantified minimum lumen diameter, plaque cross-sectional area, intimal thickness, and percent area reduction.

Results: Donor gender, hypertension and smoking did not predict progression of vasculopathy. Age was a strong predictor of measures of disease progression.

Conclusions: Recipients of older donor hearts develop more intimal thickening in the first year following transplantation. Longer follow-up will be required to prove that this increase in intimal thickness correlates with the subsequent development of severe vasculopathy. These findings have implications for donor organ acceptance criteria.