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Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains in-
cluding processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies
that bind DNA and the GluN2A and GIuN2B subunits of the N-methyl-p-aspartate receptor (NMDAR), termed
DNRADbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in
which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant ex-
Keywords: pansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reduc-
Lupus tions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when
DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated
neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable
to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult

Neuropsychiatric lupus
CA1 place cell
Hippocampus

Mouse lupus model is no longer present.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The autoimmune disease systemic lupus erythematosus (SLE) af-
fects multiple organs; most organ damage is initiated by autoantibody

Abbreviations: AP, alkaline phosphatase; BBB, blood-brain barrier; BDI, Beck depres-
sion index; CA1, cornus ammonis area 1 of the hippocampus; CNS, central nervous system;
CSF, cerebrospinal fluid; C3, C4, complements 3 and 4, respectively; DMARD, disease-
modifying drugs; DNRAD, anti-DNA antibody reactive to the GluN2A and GluN2B subunits
of the NMDAR; dsDNA, double stranded DNA; DWEYS, amino acid consensus sequence
(D/E, W, D/E, Y, S/G) for DNRAD binding; FA, Freund's adjuvant; HC, healthy control;
HEK-293T, human embryonic kidney 293 T cell; IgG, immunoglobulin G; i.p, intraperito-
neally; LPS, lipopolysaccharide; MAP, multi-antigenic polylysine backbone; NMDAR, N-
methyl-p-aspartate receptor; NOR, novel object recognition; NPSLE, neuropsychiatric
lupus; OPM, object place memory; SELENA, safety of estrogens in lupus erythematosus na-
tional assessment; SLE, systemic lupus erythematosus; SLEDAI, systemic lupus erythema-
tosus disease activity index; SLICCDI, systemic lupus international collaborating clinics
damage index.
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deposition that triggers subsequent inflammatory reaction (Tsokos,
2011). Neuropsychiatric lupus (NPSLE) refers to the neurologic mani-
festations of SLE that are present in 30-80% of patients (Nowicka-
Sauer et al.,, 2011). These symptoms develop insidiously, cause disabili-
ty, and significantly diminish quality of life (Appenzeller et al., 2009).
Impaired cognition is reported frequently in clinically stable SLE pa-
tients that do not have other NPSLE manifestations or inflammation in
the central nervous system (CNS) (Toledano et al., 2013). Despite the
high prevalence of cognitive dysfunction and emotional disturbance in
NPSLE patients, the wide array of symptoms attributable to NPSLE has
hampered mechanistic understanding.

When DNRADs access the brain through a damaged blood-brain bar-
rier (BBB) (Hirohata et al., 2014), they are likely to cause non-focal CNS
manifestations of NPSLE (reviewed in Diamond et al., 2013). Notably,
DNRADbs have been extracted from brain tissue of SLE patients (Kowal
etal., 2006) and elevated DNRADb titers in cerebrospinal fluid (CSF) asso-
ciate with NPSLE symptoms (Arinuma et al., 2008; DeGiorgio et al.,
2001; Lauvsnes and Omdal, 2012; Yoshio et al., 2006). DNRADbs bind a
consensus sequence (D/EW D/EY S/G, or DWEYS for short) present in
the extracellular domains of the GIuN2A and GIuN2B subunits

2352-3964/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(Paoletti, 2011). Mechanistic studies show that DNRADbs preferentially
bind the open configuration of the NMDAR, augment NMDAR-
mediated synaptic potentials, and, at higher concentration, trigger mito-
chondrial stress and apoptosis through binding specifically to GIuN2A-
containing NMDARs (Faust et al., 2010). DNRADs that have been isolated
from serum of SLE patients and intravenously transferred to mice lead
to death of hippocampal neurons and impaired memory flexibility
after the mice are given lipopolysaccharide (LPS) to impair the integrity
of the BBB within the hippocampus (Kowal et al., 2006).

We have developed an in vivo model in which BALB/c mice synthe-
size DNRADs following immunization with a configuration of the con-
sensus sequence multimerized on a polylysine backbone (termed
MAP-DWEYS), while BALB/c mice immunized with the polylysine back-
bone alone (MAP-core) do not (Kowal et al., 2004). This model allows us
to evaluate DNRADbs as causal agents of neuronal injury, independent of
other autoantibodies and the high levels of systemic inflammatory
mediators found in spontaneous mouse SLE models (Sakic, 2012). Cir-
culating DNRAbs cause no detectable brain pathology in MAP-DWEYS
immunized mice with an intact BBB. However, upon exposure to LPS,
mice have 20-25% loss of hippocampal neurons (occurring within the
first week post-LPS) and persistent memory impairment, assessed in
the T-maze and the Morris water maze (Kowal et al., 2004).

Here we show that SLE patients with high serum titers of DNRAbs
exhibit a selective impairment in spatial cognition compared to healthy
subjects. Moreover, DNRADbs in mice also lead to a selective spatial
memory impairment, associated with functional and structural abnor-
malities in the surviving hippocampal pyramidal neurons. These alter-
ations evolve after the DNRAbs are no longer detectable in brain tissue
and are sustained for months thereafter.

2. Materials and Methods
2.1. Human Subjects

The Institutional Review Board of the North Shore-LI] Health System
and Queens College approved the human study. Informed consent was
obtained from all subjects. SLE patients were at least 18 years old, ful-
filled the revised criteria for SLE (American College of Rheumatology,
1999), and had stable disease activity and medication doses for
4 weeks prior to screening (Table 1). Exclusion criteria, designed to
limit potentially confounding factors, included a history of neuropsychi-
atric impairment from any cause, cerebrovascular disease, current use of
anti-depressant, anti-psychotic or anxiolytic drugs or illicit drug use.
Importantly, none of the SLE patients met criteria for any NPSLE mani-
festations (American College of Rheumatology, 1999). Subjects were re-
cruited from the Rheumatology Clinic at the Feinstein Institute for
Medical Research, Jamaica Hospital in Queens, and Lenox Hill Hospital
in Manhattan. Healthy control (HC) subjects were recruited through
SLE patients that asked their friends to participate and through flyers
posted in posted in schools. Disease activity was assessed in all SLE sub-
jects, within 10 days of testing, with the Safety of Estrogens in Lupus Er-
ythematosus National Assessment and Systemic Lupus Erythematosus
Disease Activity Index (SELENA; SLEDAI) (Petri et al., 1999), as well as
the Systemic Lupus International Collaborating Clinics Damage Index
(SLICCDI) (Gladman et al., 1997). Neuropsychological assessment was
performed in a quiet room by one investigator (PW) who remained
blinded to DNRADb status of patients.

2.2. Animals and Behavioral Assessments

The Feinstein Institute Animal Care and Use Commiittee approved all
animal procedures. Female BALB/cJ mice (Jackson Labs, 8 weeks old)
were immunized, intraperitoneally (i.p.), with 100 pg (in 100 pL of sa-
line) of MAP-DWEYS (DNRAb + group, n = 10), or with the MAP-core
polylysine backbone (DNRAb — mice, n = 10), in complete Freund's ad-
juvant (FA), and twice more in incomplete FA as previously described

Table 1
Clinical characteristics of SLE patients.
Healthy SLE SLE P*
control DNRADb — DNRAb +
Number 27 27 22
Age (mean) 382 +116 435+96 40.5 +£ 9.7 0.287
Gender: female 100% 100% 100%
Ethnicity

African American 55.6% 77.8% 59.1%

Caucasian 22.2% 18.5% 13.6%

Hispanic 14.8% 3.7% 22.7%

Asian 3.7% 0 4.5%

Other 1.3% 0 0
Education (mean) 148 £ 184 14+21 12.8 + 2.1 0.056
BDI (mean) 28 +3.2 8.1+ 6.0 6.2+ 6.3 0.289
BDI: % with mild, moderate  3.7% 25.9% 18.2% 0.518

depression
Disease duration (years) 13.7 £ 86 13+94 0.772
Medications

Current prednisone 29+ 40 25+ 44 0.759

(mg per day)

Current DMARD use 59% 48% 0.445
SLEDAI (mean) 1.5+ 1.7 19+ 17 0.422
SLE damage index (mean) 085+ 14 1.0+12 0.686
Anti-dsDNA antibody 40.7% 63.6% 0.111

titer % high
C3 (mean) 109.2 £247 9914334 023
C4 (mean) 2404+ 11.0 17.7 £9.7 0.042
Anti-Ro antibody 48.1% 54.5% 0.656
Anti-ribosomal P antibody 14.8% 13.6% 0.907
ACL antibody (IgG or IgM) 0 4.5% 0.263

Data are mean + SEM, except where otherwise indicated. There were no clinical differ-
ences between the DNRAb + and DNRADb — groups in areas that may have confounded re-
sults of the cognitive task including age, education, disease activity, disease duration,
depression, medication use and other autoantibodies. * P values represent comparisons,
by t test, between the two SLE groups.

(Kowal et al., 2004). The animals for each group were chosen randomly,
based on litter. LPS (3 mg per kg) diluted in lactated Ringers (Escherichia
coli, 055:B5, Sigma-Aldrich, St. Louis, MO) was i.p. injected twice, 48 h
apart, at 4 weeks after the last immunization. Behavioral assessments
were conducted during the dark (active) cycle. Mice were initially sub-
jected to the object place memory (OPM) task (Faust et al., 2013) and
then the novel object recognition (NOR) task (Chang and Huerta,
2012). Mice were maintained on a reverse schedule of 12 h of darkness
(07:00 to 19:00) and 12 h of light, with ad libitum access to food and
water. Starting one week before testing, mice were handled for 5 days
in daily sessions of 5 to 10 min. Handling and subsequent experiments
were conducted during the dark period of their circadian cycle. Investi-
gators (TSH and PTH) were blinded to group allocation during the ex-
periments, but not during data analysis.

For the OPM task (Faust et al., 2013), the apparatus consisted of a
chamber with a square base (40 cm on the side) and 60-cm high walls
built of polyvinyl chloride. Three walls were opaque with black inserts,
while the fourth wall was transparent. A light bulb (50 W) of orange hue
illuminated the chamber from above. An infrared-sensitive camera above
the chamber was connected to the video input of the behavioral tracking
software (Ethovision XT8.5, Noldus, Wageningen, Netherlands), which
recorded the animal's position at 30 frames per second. DNRAb + (n =
10) and DNRAb — mice (n = 10) were transported inside their home
cages into the darkened experimental room and placed in the empty
chamber, one at a time, for 4 sessions (2 per day) of 15 min. On the
third day, mice were subjected to the OPM task, which consisted of a fa-
miliarization trial (T1), a sample trial (T2), and a choice trial (T3), inter-
spersed by 10-min delays that were spent in a highly habituated
holding chamber. For T1, animals were placed in the empty chamber for
15 min. For T2, mice explored the chamber for 5 min in the presence of
two identical objects, which were located in 2 of 4 possible sites at the
center of the NW, NE, SW or SE quadrants of the chamber. For T3,
which lasted 5 min, one object (chosen at random) remained in the
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familiar position while the second object was moved to a location that
was the center of the adjacent quadrant, 20 cm apart from its previous po-
sition. Object exploration was measured with a software algorithm
(Ethovision) that assigned a circular zone (diameter, 6.5 cm) around
each object and recorded the episodes in which the animal's snout was
in close proximity (<1 cm) to the object's periphery. We have previously
validated software-based methods for animal tracking (Chang and
Huerta, 2012). The number of visits and the times spent exploring each
object on T2 and T3 were used for statistical comparisons. For T2, an
exploration ratio was defined as the time exploring the right object (in ei-
ther NE or SE zone) divided by the sum of the times exploring both ob-
jects. For T3, an OPM ratio was defined as the time exploring the moved
object minus the time exploring the stable object over the sum of the
times exploring both objects.

For the NOR task (Chang and Huerta, 2012), the apparatus consisted
of a chamber with a square base (30 cm on the side) and 80-cm high
walls made of white polyvinyl chloride. Each mouse had 4 familiariza-
tion sessions to insure full acclimation to the context. The NOR task
consisted of a sample trial (5 min), followed by delay (10 min), and a
choice trial (5 min). For the sample trial, mice explored the chamber
in the presence of two identical objects. After the delay, mice were
returned to the experimental chamber for a choice trial in which they
explored a triplicate copy of the sample object and a fresh object
(never encountered before). The number of visits and the times spent
exploring each object on sample and choice trials were used for statisti-
cal comparisons. For choice trials, an NOR ratio was defined as the time
exploring the novel object minus the time exploring the familiar object
over the sum of the times exploring both objects.

2.3. Biochemical Assays

The hippocampus was extracted from DNRAb + and DNRAb — mice
and ELISAs were performed for immunoglobulin G (IgG), albumin and
anti-DWEYS antibodies. In brief, both hippocampi were extracted
from perfused brain and a lysate was made by sonication using a 20:1
ratio of lysis buffer to brain tissue followed by centrifugation
(10,000 rpm, 30 min, 4 °C). For IgG, Costar half-volume plates (3690,
Corning, Tewksbury, MA) were coated with goat anti-mouse IgG (5 g
per mL, Southern Biotech, Birmingham, AL) in NaHCO5 (0.1 M, pH 8.6)
overnight at 4 °C. Following blocking with BSA/PBS (1%, 1 h, 37 °C),
the lysate and IgG standard (Southern Biotech) were incubated in
BSA/PBS (0.2%, 1 h, 37 °C). After PBS-Tween wash, alkaline phosphatase
(AP)-linked anti-mouse IgG (Southern Biotech) was added to BSA/PBS
(0.2%, 1 h, 37 °C) followed by AP substrate (Sigma-Aldrich).

For albumin, the Costar 3690 plates were coated with goat anti-mouse
albumin antibody (1 pug per mL, Bethyl, Montgomery, TX) in NaHCO3
(0.1 M, pH 8.6) overnight at 4 °C. The plates were processed as above
and incubated with albumin standard and lysates (1 h, 37 °C), followed
by incubation with goat anti-mouse albumin-biotinylated antibody
(Bethyl) at 1:2000 dilutions (1 h, 37 °C). The plates were washed
again with PBS-Tween, incubated with AP-conjugated streptavidin (SA,
1:2000 dilution, Southern Biotech) for 20 min at RT, and developed
with AP substrate.

ELISA for DWEYS was done in Costar 3690 plates (Corning) that
were dry coated with unlabeled SA (30 pg per mL, Southern Biotech)
in NaHCOs (0.1 M, pH 8.6) overnight at 37 °C. The plates were blocked
with BSA/PBS (1%, 1 h, RT) with gentle shaking, washed 1x with PBS-
0.05% Tween, and incubated with C-terminal biotinylated DWEYS
(5 g per mL, GenScript, Piscataway, NJ) in BSA/PBS (0.2%, 1 h, RT)
with shaking. They were washed 6 x with PBS-T followed by incubating
brain lysates in BSA/PB (0.2%, 1.5 h at RT, or overnight at 4 °C). The plates
were washed with PBS-T, incubated with AP-conjugated goat anti-
mouse IgG (1:2000, Southern Biotech) in BSA/PBS (0.2%, 1 h at RT)
with shaking, and developed with AP substrate.

To detect anti-DWEYS antibody in human serum, plates were coated
with the peptide, DIWVEYSVWLSN as described in Kowal et al. (2006).

Serum was tested for DWEYS binding at a 1:100 dilution. Normal values
were determined using 20 unselected control sera, within a 2 SD range.
HC sera were all within the normal range.

Real-time PCR was performed in hippocampal tissue from perfused
brains that were homogenized in Trizol (Life Technologies, Carlsbad,
CA). The RNA was purified according to manufacturer's protocol, and
it was DNase-treated (DNA-free DNA removal kit AM1906, Invitrogen).
Reverse transcription was performed with Superscript III (Invitrogen),
whereas real-time PCR was run with Roche's LightCycler 480 Probes
Master mix and Nos2 Tagman probe (MmO00440502_m1) on a
LightCycler 480 Il instrument (Roche, Basel, Switzerland). The results
were normalized by Polr2a probe (Mm00839493_m1).

24. Antibody Binding to Live Cells

Human embryonic kidney 293 T (HEK-293 T) cells were used for this
study. Human monoclonal antibodies G11 (DNRAb) and B1 (non-
NMDAR reactive) were analyzed for binding to the NMDAR on the cell
membrane of doubly transfected HEK-293 T cells (either GluN1-
GIuN2A or GluN1-GIluN2B), using a modified live cell-based immuno-
fluorescence assay (Mader et al., 2010). HEK-293 T cells transfected
with GIuN2A or GluN2B alone did not exhibit cell-surface expression
of GIuN2A or GluN2B protein. Cells were cultured in 96-well tissue cul-
ture plates in Dulbecco's modified Eagle's medium (DMEM, Invitrogen,
Waltham, MA) with fetal bovine serum (FBS, 10%), penicillin (50 IU
per mL), streptomycin (50 mg per mL), L-glutamine (2 mM), and
MK801 (10 uM, Tocris, Bristol, UK). After 24 h, cells were transfected
with lentiviral expression plasmids for human full-length Grini
(GIuN1), together with Grin2A (GluN2A), or Grin2B (GluN2B), ata 1:1
ratio (GluN1-GluN2A or GluN1-GIuN2B) using HD Transfection reagent
according to the manufacturer's instructions (Fugene 6 transfection re-
agent, Roche). Untransfected cells as well as single transfected cells
(GluN1, GIuN2A or GIuN2B) served as controls. Cells were washed
with PBS (10%) supplemented with FBS (10%), and stained with G11
(20 pg per mL) or B1 (20 pg per mL), and simultaneously with rabbit
polyclonal antibody directed to the extracellular domain of GIuN2A or
GIuN2B (0.1 pg per mL, Alomone Labs, Jerusalem, Israel). Antibody bind-
ing was detected with AlexaFluor 488 conjugated goat anti-human IgG
antibody, or Alexa 594 conjugated goat anti-rabbit IgG antibody, for
30 min. Controls included omitting one or both primary antibodies as
well as secondary antibodies. To demonstrate that G11 did not bind
polyclonal rabbit IgG, we incubated the cells with human monoclonal
antibody and rabbit polyclonal Glucose Transporter GLUT2 antibody
(Millipore, Billerica, MA) since GLUT2 is abundantly expressed on the
cell membrane of HEK-293 T cells.

2.5. Neuronal Recordings in Freely Behaving Mice

Two cohorts of mice were used in these studies; in the first cohort,
DNRAb + (n = 4) and DNRADb — (n = 4) mice were implanted with cus-
tomized multi-electrode arrays (Chang and Huerta, 2012; Faust et al.,
2013) and neural activity was recorded (as described below) before
and after LPS treatment, up to 4 weeks post-LPS. In the second cohort,
DNRAb + (n = 4) and DNRAb — (n = 3) mice were initially treated
with LPS, were implanted with arrays at 7 weeks post-LPS, and were
subjected to neural recordings at 8-9 weeks post-LPS.

Neural activity was recorded via a unitary gain headstage preamplifier
(HS-18, Neuralynx Bozeman, MT). Local field potentials were acquired at
a sampling rate of 3 kHz and band-pass filtered (0.1 Hz to 500 Hz) by a
Lynx-8 programmable amplifier (Neuralynx) on a personal computer
running acquisition software (Cheetah, Neuralynx). The same recording
system was used to acquire single units at a sampling rate of 30 kHz
and band-pass filter between 500 Hz and 9 kHz. Continuous local field po-
tentials and single unit data were analyzed using NeuroExplorer version 3
(NeuroExplorer, Littleton, MA), OfflineLineSorter (Plexon, Dallas, TX), and
Spike2 (Cambridge Electronic Design, Cambridge, UK) software packages.
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Two light-emitting diodes on the implanted electronic interface board
were used for tracking the location of the mouse in space at 30 frames
per sec by the acquisition software (Cheetah). To analyze single unit activ-
ity, putative single units in CA1 were amplitude thresholded and then
sorted with principal component analysis followed by manual cluster cut-
ting (OfflineLineSorter). Spike-related parameters such as spike width,
amplitude, shape, timing, and rate were used to subsequently categorize
units as putative CA1 pyramidal neurons or interneurons. Only CA1 pyra-
midal neurons were analyzed further. We constructed firing rate maps by
calculating the total number of spikes for each pixel and then dividing by
the dwell time for a particular session. Place cell field size was calculated
as at least 8 contiguous pixels that shared an edge and were at least 20% of
the peak-firing rate for that unit. For units displaying more than one place
field, the place field size was computed as the sum of the existing fields.
Spatial information was calculated by estimating the rate of information
I(R|X) between firing rate R and location X according to the formula
(Skaggs et al., 1993; Cacucci et al., 2008):

IR= D p(%:) (%) oz (f @)

in which p(x;) is the probability of the animal being at location x;; f(x;) is
the firing rate at location x;; F is the mean firing rate of the cell. The final
electrode positions were marked with electrolytic lesions (0.1 mA for
10 s) after the final recording session. Mice were then sacrificed and
their brain tissue was processed for Nissl staining. Recording sites were
reconstructed using a combination of electrophysiological markers, mi-
crodrive movement, and post-mortem histology.

2.6. Structural Analysis of Pyramidal Neurons

For Golgi staining, mice were anesthetized and perfused with hepa-
rinized saline and brains were immersed in equal parts of Solutions A
and B (FD Neuro Technologies FD Rapid GolgiStain Kit, Ellicott City,
MD), with a single solution change within 24 h. After two weeks, brains
were transferred into Solution C (2 days at 4 °C). Tissue was blocked and
cut on the cryostat in 100-pm sections and mounted onto gelatin-coated
microscope slides and stained with solution D. Slides were coverslipped
and allowed to dry flat in the dark for two weeks before analysis. To be
included in the data analysis of spines or dendritic arborization, a neu-
ron had to include basal dendrites, apical dendrites and a cell body.
The arbor needed to be distinguished visually from nearby neurons.
For the spine analysis, Z-stack (0.5-um separation) photomicrographs
were taken under 100 x oil magnification of the CA1 neurons (Axio-Im-
ager Z-1, Axio-Vision 4.7, Zeiss, Oberkochen, Germany). Images were
transferred to a software program (Neurolucida, MBF Bioscience,
Williston, VT) that displayed the Z-stack information so that the spines
on the dendrites were visualized, identified and counted. The program
generated the number of spines per unit length. A similar procedure
was employed for dendrite analysis; Z-stack mosaics (0.294 um?)
were collected, the files were transferred for analysis, and the tracing
of the dendritic arbor was quantified by Scholl analysis.

2.7. Statistical Analysis

We used Origin Pro (version 9, OriginLab, Northampton, MA) for all
statistical comparisons. ANOVA, Student's t test, and non-parametric
tests, such as Kruskal-Wallis ANOVA and Kolmogorov Smirnov test,
were used as indicated in the text. P < 0.05 was considered statistically
significant.

2.8. Role of Funding Sources

This research was funded by NIH grants (P01-Al073693 and PO1-
AI102852). The funding agency did not have any involvement in the

study design, data collection, data analysis, and the interpretation of re-
sults, nor in the writing or decision to submit the article.

3. Results
3.1. Impaired Spatial Cognition in SLE patients with DNRAbs

Because patients with elevated CSF titers of DNRAbs exhibit non-
focal neuropsychiatric symptoms (Arinuma et al., 2008; Fragoso-Loyo
et al., 2008; Gono et al., 2011; Yoshio et al., 2006), we asked whether
the failure to reliably identify a neuropsychiatric symptom that associ-
ates with elevated serum titers of DNRAbs might reflect a failure to pin-
point the cognitive domain most vulnerable to the autoantibodies. The
hippocampus is a critical brain substrate for spatial cognition, and neu-
roimaging studies have identified it as a pathological site in SLE
(Appenzeller et al., 2006; Ballok et al., 2004). Therefore, we asked
whether DNRAbs might specifically impair spatial memory. We recruit-
ed SLE subjects (n = 46), and a cohort of healthy control (HC) subjects
(n = 27), which were matched for age, sex, race, and education
(Table 1). For SLE patients, we used strict inclusion criteria; subjects
did not have active disease (flares), had similar disease duration, and
lacked a history of psychiatric episodes, neurologic diagnoses, or clinical
events that could confound neuropsychological testing. None were cur-
rently on anti-depressive medication. DNRADb titers were assayed in all
patients and were elevated in 22 of 49 SLE subjects (44%) consistent
with the reported incidence observed in previous studies (Hanly et al.,
2004).

Standardized batteries of neuropsychiatric assessments do not in-
clude a specific test for spatial recall; hence, we implemented a task
that assessed both object recognition and memory for spatial relations.
Subjects observed drawings of objects (arranged as 2 x 2 arrays) and,
immediately after viewing, were asked either an identification question
that did not address spatial relations (identification memory) or a ques-
tion about the spatial arrangement of the array (spatial memory;
Fig. 1A). For the former, they were asked whether a particular object
was present in the array; for the latter, they were asked about the spatial
relation between two objects in the array, i.e., whether an object was lo-
cated above, below, left, or right of another object. All groups performed
comparably in identification memory (Fig. 1B). While DNRAb — pa-
tients were comparable to the HC group in the spatial memory task,
DNRADb + patients performed significantly worse than the HC cohort
(Fig. 1B). Therefore, the data support the hypothesis that poor spatial
performance in DNRAb + patients is attributable to the presence of
those antibodies. Indeed, DNRAb + patients as a group performed
worse than DNRAb — patients in the spatial memory task except for
one poor-performing outlier in the DNRAb — cohort (Fig. 1C). It is im-
portant to note that the presence of circulating antibodies does not
mean they traverse the BBB to cause neuronal injury, which would ex-
plain the observations that not all DNRAb + patients displayed defective
spatial memory and that DNRAD titer in serum was poorly correlated
with degree of defect (data not shown).

3.2. Selective Impairment of Spatial Memory in DNRAb + Mice

While we had identified a DNRAb mediated spatial memory impair-
ment in mice (Kowal et al,, 2004), we had not shown that spatial mem-
ory was selectively vulnerable. Thus, we assessed DNRAb+ and
DNRAb — mice given LPS to cause antibody penetration into the hippo-
campus. At 8-weeks post-LPS, each animal was tested in the OPM task,
which measures spatial memory (Faust et al., 2013), and the NOR task in
which spatial relations are irrelevant to the exploration on a non-
familiar object (Chang and Huerta, 2012). DNRAb + mice (n = 10)
had equivalent scores to DNRAb — mice (n = 10) in the NOR task
(Fig. 2A, P = 0.83). In contrast, DNRAb 4 mice performed significantly
worse than DNRAb — mice in the spatial OPM task (Fig. 2B, P = 0.006).
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The sustained impairment in spatial memory might result from per-
manent exposure to DNRAbs, although the integrity of the BBB recovers
by 48 h of systemic LPS treatment (Laflamme et al., 2001) and negligible
IgG levels occur in the hippocampus by 1 week post-LPS (Kowal et al.,
2004). To address the possibility of lingering antibody, we developed a
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highly sensitive ELISA for DNRAbs and also measured albumin and IgG
in the hippocampus at several post-LPS time points. Equivalent amounts
of albumin and IgG were present in DNRAb+ and DNRAb — mice and
reached negligible levels by 14 days post-LPS (Fig. 2C). In contrast,
DNRAD reactivity was detected exclusively in hippocampal tissue of
DNRAb + mice at 24 h and 48 h post-LPS, and it was absent by
2 weeks post-LPS (Fig. 2D). Thus, the impairment in spatial memory
was present after specific antibody titers had declined to undetectable
levels.

We previously demonstrated by ELISA that DNRAbs bind GIluN2A
and GluN2B (DeGiorgio et al., 2001). To confirm that the DNRAb-
mediated pathology was secondary to the binding of DNRADbs to
NMDARs (expressed in the cell membrane), we developed a cell-
based assay and showed co-localization of G11 (human monoclonal
DNRAD cloned from a SLE patient) and rabbit GIuN2A (commercial an-
tibody to GIuN2A) in HEK-293 T cells transfected with GluN1 and
GIuN2A (Fig. 3A). Similarly, there was co-localization of G11 and rabbit
GluN2B in HEK-293 T cells transfected with GluN1 and GIuN2B (Fig. 3B).
To demonstrate that co-localization did not reflect the binding of G11 to
rabbit antibody, we stained untransfected HEK-293 T cells with both
anti-GLUT2 antibody and G11, and found that G11 did not bind to
untransfected cells (Fig. 3C). Thus, DNRAbs cross-react with surface
NMDARs containing GIuN2A or GIuN2B, confirming that the effects of
DNRADbs are mediated through NMDARs.

3.3. Expansion of Place Fields in CA1 Place Cells of DNRAb + Mice

We sought to understand the neural substrate of the spatial impair-
ment caused by DNRADbs. It is well known that pyramidal neurons in the
CA1 region of the hippocampus display place cell activity, such that an
individual neuron fires intensely within a given area and remains silent
in the rest of the environment. The area of neuronal firing is termed the
place field (O'Keefe, 2007). Place fields are responsible for the formation
of spatial maps and show a maturation process that is dependent on
NMDARs (Ekstrom et al., 2001; Kentros et al., 1998; McHugh et al.,
1996). We, therefore, studied the place cell activity of CA1 neurons in
DNRAb + mice (n = 8) and DNRAb — mice (n = 7), prior to LPS admin-
istration and at various post-LPS time points (1, 2, 3, 4, 8, and 9 weeks).
Using multi-electrode arrays directed to dorsal CA1 (Fig. 4A), we record-
ed both single neuron activity and local field potentials in freely moving
mice within a square chamber. Because certain parameters of place cells
can vary along the hippocampal proximal-distal axis (Henriksen et al.,
2010), we ensured that electrode positions were comparable across all
the recorded mice.

Theta rhythm was not affected by DNRAb exposure (Fig. 4B and C),
demonstrating that the surviving CA1 neurons remained capable of en-
gaging in normal local field potential activity. Prior to LPS exposure,
place cells of DNRAb + and DNRAb — mice had comparable place field
sizes (Fig. 4D). At 1 week post-LPS, place field size was increased in
neurons of both DNRAb+ and DNRAb — mice. However, by 2 weeks
post-LPS, DNRAb + place cells showed even larger place field sizes com-
pared to pre-LPS values, while cells not exposed to DNRAb exhibited no
change in place field size from baseline (Fig. 4D-F). The expanded place
fields in hippocampal neurons of DNRAb + mice were sustained up to
9 weeks (Fig. 4E). Importantly, the peak firing rates of DNRAb + place

Fig. 1. Selective impairment of spatial memory in SLE patients with DNRAbs. (A) Schematic
of the task with drawings of objects presented as 2 x 2 arrays for 6 s, followed immediately by
an identification question or a spatial question. Subjects chose their answer by pressing a nu-
meric keyboard. (B) Accuracy of responses, plotted as distributions of cumulative probabili-
ties and box plots (insets, center dots represent the mean response), reveal no significant
differences between groups in the identification memory component of the task (top) but
marked differences between healthy controls (HC) and the DNRAb + patients in the spatial
memory component (bottom); * P < 0.05, t test. (C) Histograms for the accuracy of spatial
memory reveal that the DNRAb + group shows a clear distribution shift toward lower accu-
racy values (y2 = 2.93, P = 0.08, Kruskal-Wallis ANOVA), which becomes significant if the
worst performer in the DNRAb — group is ignored (P < 0.05, KWANOVA); n = number of
subjects.
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cells were not different between the pre-LPS and 8-week post-LPS time
points (t = 0.53, P = 0.59, t test), suggesting that the field size expansion
was not due to a post-LPS decrease in peak firing rate, which would have
allowed more pixels to be included in the definition of a field, thereby en-
larging its size. Analysis of spatial information, a measure of how well the
firing of place cells predicts the animal's location in space, was significant-
ly decreased in the post-LPS period for DNRAb + mice (Fig. S1). Thus,

A Recognition Task [ DNRAb- (n=10)
B DNRAb+ (n=10)
Sample L N
Al A2 Dela By |
T
o ]
Choice E 0:
x
el o 1
Z —
05 I |
B Sample Choice
Spatial Task
Sample e
Al A2 0.5—_« —|—
0 -
Choice © 4
s 0
A1 o -
e
0.5 | |
Sample Choice
© O DNRAb- @ DNRAb+
Albumin I9G
1507 = = O
c E 504
'513 ~4 ° ‘56 % ® o
g100 . g IINSE -
] . 5L
“%’50—05'b g E_,m—cg. d é' %!
2 o @v [$] i &
g ] 8 Q‘ g 0
© o- Q o4
| T T T
1 2 14 1 8 @2 @b
D Time (days post-LPS)
—_ * %
= 1 |
C 454 . .
S oo . © DNRAb-
] [
> = @ DNRAb+
& - .
5 1| 9%
(] 5
S5 .
8 9 Q
B B B o Dead
R I L ] T T
1 2 14

Time (days post-LPS)

A G11 Rabbit GIuN2A

Rabbit GIuN2B Merge

Rabbit GLUT2 Merge

Fig. 3. DNRAbs bind to NMDARs expressed in the cell membrane. The panels show the
binding of G11 (human monoclonal DNRAD cloned from a SLE patient) to transfected
HEK-293 T cells. (A) Left, GluN1-GIuN2A double transfected cells show clear surface bind-
ing of G11 (top, green signal, Alexa 488) but not B1, the control human antibody without
NMDAR binding (bottom). Middle, strong binding of rabbit anti-GluN2A antibody to sur-
face-expressed GluN2A (red signal, Alexa 594). Right, merged signal indicates that G11
binds to the GIuN2A-containing NMDARSs. (B) GIuN1-GluN2B double transfected cells
show a similar binding pattern for the GluN2B-containing NMDARs. (C) Binding of G11
to rabbit polyclonal antibodies was excluded by demonstrating that G11 does not bind
to the cell surface of HEK-293 T cells incubated with rabbit polyclonal GLUT2 antibody,
which abundantly binds to the cell surface of HEK-293 T cells (red staining). Bar, 30 pm.

Merge

NR1-NR2A cells

9 9)

NR1-NR2B cells

O

HEK cells

Fig. 2. Mice with hippocampal exposure to DNRAbs show impaired spatial memory but nor-
mal object recognition. (A) Left, schematic of the novel object recognition (NOR) task com-
prising sample (5 min), delay (10 min), and choice (5 min) phases. A1 and A2 represent
identical objects, whereas B refers to a novel object. Right, both groups displayed a robust
bias for exploring the novel object during the choice phase. Data are mean 4= SEM. (B) Left,
schematic of the object place memory (OPM) task with sample (5 min), delay (10 min),
and choice (5 min) in which the A2 object is moved to a different location. Right, DNRAb —
mice explored the moved object preferentially, while DNRAb + mice did not. Data are
mean + SEM. (C) Left, concentration (conc.) of albumin within the hippocampus, extracted
at 1, 2 or 14 days post-LPS. Right, IgG concentration at different points after LPS treatment.
Bars represent the mean values. (D) Box plots for the titer of DWEYS-binding antibody
expressed as optical density; ns, non-significant; * P < 0.05, ** P < 0.01, ¢ test.
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Fig. 4. Place cells in the CA1 hippocampal region of mice with hippocampal exposure to DNRAbs show abnormally large place fields. (A) Left, schematic view of the placement of the multi-
electrode array in the dorsal CA1 region. Right, representative Nissl-stained section showing the lesions of the electrode tips in the cell body layer of CA1. (B) Left, representative local field
potentials from one of the electrodes displaying an oscillatory episode. Right, plot of power spectral density obtained from the local field potentials, indicating the band for theta frequency
(4-12 Hz, cyan). (C) Time course for the power of theta rhythm (mean + SEM) reveals no differences between DNRAb + and DNRADb — groups, up to 2 weeks post-LPS when values return
to baseline (F = 1.68, P = 0.25, ANOVA with repeated measures). (D) Representative firing rate maps, recorded 1 week pre-LPS and 4 weeks post-LPS, during 10-min sessions in an arena
(viewed from the top, 40 cm on the side). Color scale indicates frequency (Hz, spikes per second), in which red corresponds to the peak firing rate (numbers at lower left of each panel) and
blue to null firing. (E) Time course of place field sizes (mean + SEM) reveals a permanent enlargement in DNRAb + mice, up to 9 weeks post-LPS. ANOVA, for the post-LPS points, shows
that the groups are significantly different (F = 27.11, P < 0.0001). (F) Histograms for place field sizes of all place cells recorded in the pre-LPS and post-LPS periods. The DNRAb + group
shows a significant distribution shift toward larger field size values (D = 0.45, P < 0.0001, Kolmogorov-Smirnov test); n indicates number of cells.

exposure to DNRADbs led to a persistent expansion of place fields that
evolved even as DNRAbs were no longer present in the hippocampus,
and the reduced information content of post-LPS place cells in DNRAb +
mice could ultimately result in a depreciated spatial map.

3.4. Altered Dendritic Branching in Pyramidal Cells of DNRAb + Mice

NMDARSs are located primarily within the dendritic spines of neu-
rons. Decreases in the density of dendritic spines of hippocampal neu-
rons have been correlated with defective memory (Fiala et al., 2002).
To study if the functional impairment we observed in CA1 neurons cor-
related with structural lesions in dendrites, we assessed the number of
branches emanating from individual CA1 pyramidal neurons using
Scholl analysis (Fig. 5A). There was a loss of dendritic branches in the

DNRAD + group that became evident between 2 and 8 weeks post-
LPS, compared to neurons of DNRAb — mice (Fig. 5B). We also examined
dendritic processes in CA3 neurons, which project to CA1 neurons, and
again found a loss of branches in DNRAb + compared to DNRAb — mice
(Fig. 5C). This was a regionally restricted abnormality as neurons in
layer 4 of the parietal association cortex (Fig. 5C) and in the anterior
basolateral amygdala (data not shown) exhibited similar dendritic
branching in both cohorts. We next assessed the density of dendritic
spines in the apical dendrites of CA1 pyramidal cells (stratum radiatum
and stratum lacunosum moleculare) and found significantly fewer spines
in DNRADb + compared to DNRAb — mice (Fig. 5D). Thus, DNRAb expo-
sure caused a sustained morphologic change in hippocampal CA1 and
CA3 neurons providing a structural correlate for the enlarged place
field size and the impaired spatial memory.
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Fig. 5. Pyramidal neurons of mice with hippocampal exposure to DNRAbs show abnormal dendritic branching and spine density. (A) Traced drawings of representative Golgi-impregnated

CA1 pyramidal neurons from DNRAb —

(left) and DNRAb + (right) mice. (B) Scholl analysis depicts dendritic length as a function of distance from the soma. Left, both groups of mice have

comparable dendritic length at 2 weeks post-LPS (t = 0.5, P = 0.13, t test). Right, the DNRADb + neurons have significant dendritic loss at 8 weeks post-LPS (t = 7.9, P<0.0001, t test); n =
number of cells; 3 animals per group. (C) Left, CA3 pyramidal cells show significant loss of dendritic branches in the DNRAb + group at 8 weeks post-LPS (t = 7.1, P< 0.0001, ¢ test). Right,
neurons in the layer 4 of the parietal cortex have similar dendritic length in both groups at 8 weeks post-LPS (¢t = 0.01, P = 0.9, t test); n = number of cells; 3 animals per group. (D) Density
of synaptic dendritic spines (mean 4 SEM) in CA1 neurons is comparable for both groups at 2 weeks post-LPS (t = 0.05, P = 0.6, t test) but by 8 weeks post-LPS, the spine count in the
DNRAb + mice is significantly reduced (t = 7.86, P < 0.0001, t test); numbers in bars indicate dendritic trees counted; 3 animals per group.

4. Discussion

This study shows that SLE patients carrying circulating DNRAbs dis-
play a selective impairment in spatial cognition. While SLE patients
commonly complain of problems with spatial navigation, such as not
knowing whether they are moving toward or away from home, or not
knowing if they are on their block or a block away, this study is unique
in that spatial performance has been explicitly tested and has been re-
lated to serology. Previous studies have demonstrated that DNRAbs
can be found in the CSF of SLE patients at concentrations capable of al-
tering the strength of murine NMDAR-mediated synaptic potentials
and causing excitotoxic neuronal death in mice in vivo, or death of
human NMDAR-expressing cell lines (DeGiorgio et al., 2001; Faust
et al., 2010; Fragoso-Loyo et al., 2008). Moreover, DNRAbs in the CSF
have been strongly associated with non-focal CNS disease (Arinuma
et al., 2008; Fragoso-Loyo et al., 2008; Gono et al., 2011; Yoshio et al.,
2006), while neuroimaging and neuropathologic studies of SLE patients
have identified the hippocampus as a region of frequent abnormality
(Appenzeller et al., 2006; Ballok et al., 2004).

This study shows that mice in which DNRAbs penetrate into the hip-
pocampus display a clear disruption in the CA1 place cell system, which
is a key part of the neural substrate for spatial navigation (O'Keefe,
2007). Also, some crucial properties of place cells are NMDAR-
dependent (Ekstrom et al., 2001; Kentros et al., 1998). Importantly,
the significant DNRAb-mediated expansion in place field size of CA1

neurons likely leads to a spatial map with lower resolution. Similar al-
terations in place cell firing have been described in a mouse model of
Alzheimer's disease (Cacucci et al., 2008), as well as mice with a
hippocampal-specific deletion of the gene encoding GluN1 (McHugh
et al,, 1996). Since NMDARs are located in dendritic spines, we also an-
alyzed CA1 dendrites and confirmed reduced number of dendritic
branches and dendritic spines in CA1 neurons. A similar abnormality
was seen in the CA1-projecting CA3 neurons that may reflect direct ex-
posure to DNRADs or alternatively, retrograde damage to the Schaffer
commissural collateral CA3 axons that project to CA1 neurons (Wang
et al., 2012). Surprisingly, both functional and structural neuronal dam-
age evolved after the inciting trigger was no longer present, and
persisted for at least 2 months after the BBB breach. This slow evolution
of dysfunction is consistent with the clinical data on NPSLE. Changes in
cognitive function are insidious and most commonly do not occur con-
current with flares in disease activity or with overt evidence of CNS in-
flammation (Shimojima et al., 2005).

SLE-prone mice, such as the NZB/W and MRL/Ipr strains, have been
previously studied and show a marked impairment in spatial memory
that develops once both autoantibodies and inflammatory cytokines
are elevated (Sakic, 2012). Thus, the contribution of a specific antibody
subset cannot be assessed in these mice. We found that mice with hip-
pocampal exposure to DNRAbs were not impaired in the NOR task. By
contrast, hippocampal exposure to DNRAbs correlates with spatial
memory impairment in four distinct assessments: the T-maze, the
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Morris water maze, the clock maze, reported previously (Kowal et al.,
2004, 2006), and the OPM task described here. Since SLE patients carry-
ing elevated titers of DNRAbs exhibited impaired spatial memory com-
pared to HC subjects, the mouse model appears to be a valid model for
NPSLE. Changes in dendritic complexity in hippocampal neurons have
been reported in a model of anti-phospholipid syndrome, although
the mechanism for neuronal destruction in unknown (Frauenknecht
et al.,, 2014). There are numerous brain-reactive antibodies in SLE
(Yaniv et al., 2015). It will be important to determine how each might
contribute to manifestations of NPSLE.

Several reports have implicated antibodies that react with the
NMDAR in limbic encephalitis characterized by psychosis, seizures and
diminished wakefulness (Dalmau et al,, 2011). The antibodies associated
with this condition bind to the GIuN1 subunit, do not cross react with
DNA, and cause receptor internalization in vitro. Whether the decreased
density of NMDAR that can be induced in vitro by the GluN1 binding-
antibodies also occurs in vivo and whether this relates to the clinical
symptoms remain open questions. Interestingly, these ant-GluN1 anti-
bodies can be found in 10% of healthy individuals (Hammer et al., 2014).
Moreover, studies in which these antibodies were transferred into mice
show they cause no brain injury unless there is a loss of BBB integrity
(Hammer et al., 2014). This model is therefore, comparable to our own
except that anti-NMDAR antibodies binding to the GIuN1 subunit cause
seizures and affect imbalance rather than cognitive disorders in mice.

These results extend our mouse model of DNRAb-mediated brain
dysfunction, and validate its utility as a model of NPSLE. The murine
studies allowed us to pursue an understanding of DNRAb-mediated
changes in neuronal physiology and structure that is not accessible in
human studies, such as post-mortem analyses of brain pathology, as
many additional brain insults may contribute to post-mortem patholo-
gy. Our study provides the insight that DNRAb-mediated damage is an
evolving process that involves both functional and structural changes
in surviving neurons, and suggests that there may be a therapeutic win-
dow that is longer than the period of BBB compromise. It remains to fu-
ture studies to determine if the pathology reflects neuron-intrinsic
events secondary to DNRADb exposure or is a consequence of microglia
activation. Furthermore, by utilizing a psychometric task, we show
that DNRAb + patients exhibit a selective impairment in recalling spa-
tial relations. The identification of pathogenic mechanisms and appro-
priate neuropsychiatric assessments through the exploration of
models such as ours is key to designing strategies for neuroprotection
in NPSLE patients.

Research in context

Chang et al. show that DNRADbs, lupus antibodies that bind DNA and
the GIuN2A-GIuN2B subunits of NMDAR, cause selective impairment of
spatial memory in patients and mice. Mouse studies reveal structural
and functional deficiencies in CA1 place cells that might represent the
neural correlate of the spatial impairment.
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