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Abstract

We study the near horizon structure of Extremal Vanishing Horizon (EVH) black holes, extremal black 
holes with vanishing horizon area with a vanishing one-cycle on the horizon. We construct the most general 
near horizon EVH and near-EVH ansatz for the metric and other fields, like dilaton and gauge fields which 
may be present in the theory. We prove that (1) the near horizon EVH geometry for generic gravity theory 
in generic dimension has a three dimensional maximally symmetric subspace; (2) if the matter fields of the 
theory satisfy strong energy condition either this 3d part is AdS3, or the solution is a direct product of a 
locally 3d flat space and a d − 3 dimensional part; (3) these results extend to the near horizon geometry of 
near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry. We present some specific 
near horizon EVH geometries in 3, 4 and 5 dimensions for which there is a classification. We also briefly 
discuss implications of these generic results for generic (gauged) supergravity theories and also for the 
thermodynamics of near-EVH black holes and the EVH/CFT proposal.
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1. Introduction and motivation

Classification of solutions to Einstein gravity theory in diverse dimensions, coupled to various 
matter fields has been an active area of research for many years (basically since the conception of 
General Relativity); e.g. see [1–4]. Black holes constitute an important sector of these solutions 
and the corresponding classification and uniqueness theorems provide crucial pieces of informa-
tion for both classical and quantum aspects of black hole physics. Black hole solutions may be 
defined as space–times with event horizons or spacetimes with (null) closed trapped surfaces [1]. 
However, the more usual specification which is what we will use here, is stationary solutions 
with a compact, smooth Killing horizon. The Killing horizon is the null surface generated by the 
orbits of a Killing vector field ξH which becomes null at the horizon.

Extremal black holes are a special class of black holes which have vanishing surface gravity 
(where ξH also becomes the velocity vector of a geodesic congruence). In this case one can show 
that the horizon is degenerate (there is no bifurcate horizon) [5]. Extremal black holes have van-
ishing Hawking temperature and hence do not Hawking radiate; have the lowest possible mass 
with the given set of charges (as set by the extremality bound) and may hence be viewed as 
“ground states” of the non-extremal black holes in the same class. Moreover, in supersymmetric 
gravity theories, one may show that all supersymmetric (BPS) black holes are necessarily ex-
tremal. For these reasons extremal black holes have been studied extensively, especially, given 
their “stability” features [6,7]. They also provide a fruitful test ground for studying certain quan-
tum aspects of black holes, in particular black hole microstate counting [7,8].

Extremal black holes, also represent a very interesting feature: the near horizon geometry 
of generic extremal black holes give rise to a new class of (non-black hole) solutions and con-
tain a 2d maximally symmetric space (generically an AdS2 part). The Near Horizon Extremal 
Geometries (NHEG’s) have generically SL(2, R) × U(1)n isometry. There are powerful exis-
tence and uniqueness theorems about such solutions [9,10]. In particular, there are uniqueness 
theorems for 4d and 5d Einstein–Maxwell–Dilaton (EMD) theories and also for solutions with 
SL(2, R) × U(1)d−3 isometry in a generic d dimensional EMD theory [10,11]. Moreover, one 
can show that NHEG’s enjoy a variant of laws of black hole mechanics [12], the laws of NHEG 
dynamics [13].

The existence and uniqueness theorems for the NHEG mentioned above, crucially use strict 
smoothness of the horizon. There are, however, interesting subclass of extremal black holes 
which do not have smooth horizons. Among them, there is a special class, Extremal Vanishing 
Horizon (EVH) black holes, which have vanishing horizon area. Let us denote the horizon area 
by Ah and the Hawking temperature by T and consider a “near extremal” (T → 0) geometry. If 
going to extremal point is such that

Ah,T → 0
T

Ah

= finite (1.1)

and that vanishing of the horizon area comes from the vanishing of a single (compact) cycle on 
the horizon, we are dealing with an EVH black hole [14,15]. Various aspects of the specific, 
given EVH black holes, their near-horizon geometry and a possible dual 2d CFT picture for 
the corresponding excitations, dubbed as EVH/CFT proposal [14], has been analyzed in several 
earlier papers [16–26].

Through analysis of several examples of EVH black hole solutions in various theories in 
diverse dimensions, we have learned that
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1. In the near horizon geometry of EVH black holes we find a “pinching AdS3”, that is an 
AdS3/ZK orbifold with K → ∞ [20]. The near horizon EVH geometry exhibits (local) 
SO(2, 2) isometry.

2. In the near horizon geometry of “near-EVH” case, the pinching AdS3 is replaced by a “pinch-
ing BTZ” geometry. Analysis of the first law of black hole thermodynamics for near-EVH 
black holes is compatible with the appearance of pinching BTZ in their near horizon limit 
[14,15,22].

3. EVH black holes can appear in any dimension d ≥ 3. The simplest EVH black hole is mass-
less BTZ [20]. They may also appear in the asymptotic flat, asymptotic de Sitter or AdS 
spaces.

4. The Brown–Henneaux central charge associated with this AdS3 factor is proportional to 
Ah/T ratio in the EVH limit.

5. The near horizon limit of (near) EVH geometry is presumably a decoupling limit [14].
6. EVH black holes can be static or stationary. EVH black holes can be supersymmetric (in 

SUSY theories) [17,18]. Near-EVH black holes can be extremal.
7. Black rings can also become EVH, where they meet the corresponding black holes with the 

same charge [23].

Some of the above features, in particular items 1–3, seems to be quite generic and not limited 
to the specific examples studied. In this work we would like to explore how generic features 1–3 
are. In the 3d case the situation is easy to analyze, as we know the full set of (asymptotic AdS3) 
black hole solutions, the BTZ family [20]. In the 4d case, within Einstein–Maxwell–Dilaton 
theory, two of us [14], proved items 1–3. In fact, in that paper we also proved items 4, 5, that in 
the 4d case the near horizon limit is indeed a decoupling limit. In this work, we mainly focus on 
proving items 1–3 in generic Einstein–Maxwell–Scalar theories in diverse dimensions.

The organization of this paper is as follows. In Section 2, we adopt the Gaussian null coor-
dinates for a generic black hole geometry and work out the most general metric which exhibits 
(1.1), the “EVH ansatz”. In Section 3, we take the near horizon limit over the EVH ansatz and 
provide the near-horizon EVH (NHEVH) ansatz. In Section 4, we discuss general implications 
of Einstein equations and the smoothness of the energy momentum tensor on the near-horizon 
EVH ansatz. We also prove that for the matter fields satisfying strong energy conditions the 
near-horizon EVH geometries generically have an AdS3 throat. In Section 5, we strict ourselves 
to theories with scalar and Maxwell gauge fields and work out the most general ansatz for the 
scalar and gauge fields for an EVH solution. We show that energy momentum tensor for these 
theories fit well with the assumptions made in Section 4 and hence the theorems proved there ap-
ply for this class of theories. In Section 6, we consider the most general ansatz for the near-EVH 
geometries and repeat analysis of Section 4 for the near-horizon limit of near-EVH solutions. We 
prove that the AdS3 factor of the near-horizon EVH geometries is replaced with a BTZ for near-
EVH black holes. In Section 7, we discuss explicit NHEVH solutions in 3, 4 and 5 dimensions 
for which we have a full classification. Section 8 is devoted to the summary of our results and 
outlook.

2. General ansatz for stationary EVH black holes

Black hole solutions of a given theory of gravity are described by a set of parameters usually 
defined at the (outer) horizon, the horizon (thermodynamical) properties, like the surface grav-
ity or the Hawking temperature T and horizon angular velocity or electromagnetic potentials, 
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and the corresponding (thermodynamically conjugate) conserved charges, usually defined in the 
asymptotic region. There is also the entropy S which is a conserved charge defined at the (bi-
furcate) horizon. The horizon properties are fixed and well-defined once we choose a specific 
reference frame in the asymptotic region [12]. Each point in the black hole parameter space de-
fines a black hole solution and one may study limits over this parameter space. The EVH black 
holes, as defined through (1.1) limit over the parameter space, is the specific class we will focus 
on.

We would like to write down the most general form of EVH black hole metric. To this end, 
as has been shown and used in the case of extremal black holes [9,10], we also find it convenient 
to adopt the Gaussian null coordinates. For any stationary black hole, we can write the metric as 
[10]

ds2 = 2drdv + 2r fi (r, y)dvdyi − rF(r, y)dv2 + hij (r, y)dyidyj ,

i, j = 1,2, · · · , d − 2 , (2.1)

where N = ∂v is a Killing vector field which becomes null at the outer horizon located at r = 0; 
∂v is the vector field which creates the outer Killing horizon. The Gaussian null coordinates 
covers the region outside the Killing horizon and is constructed such that ∂r is a vector field 
which is null everywhere and that grv = 1. In fact, r coordinate in the Gaussian null coordinates 
is uniquely and covariantly fixed by the above requirements.

The Hawking temperature can be calculated using the surface gravity κ which is defined by

κNμ = Nν∇νNμ = −Nν∇μNν = −1

2
∇μ(N · N) . (2.2)

Taking μ = r component of above equation and recalling that Nr = grvN
v = grv = 1, N · N =

gvv , we get

κ = −1

2
∂rgvv

∣∣∣
r=0

=⇒ T = κ

2π
= F(r = 0, y)

4π
. (2.3)

Therefore, in the extremal limit F(r = 0, y) vanishes. Moreover, since surface gravity is a non-
negative constant over the Killing horizon, F(r = 0, y) ≥ 0 and is independent of y.

To implement the definition of EVH (1.1), we need to consider a “near-extremal” black hole 
and take the extremal limit. Let us parameterize out-of-extremality by a small positive parame-
ter ε. Assuming F(r, y) is an analytical function near the horizon, we can expand it to get

F(r, y) = εF (1) + rF (y) + · · · , (2.4)

where F (1) is a nonnegative constant (F (1) ≥ 0). Next, we need the horizon area Ah:

A(r) ≡
∫

const. r

√
det h dd−2y , Ah = A(r = 0) . (2.5)

Definition of the EVH black hole requires Ah ∼ ε → 0, while vanishing of Ah is due to a van-
ishing one-cycle at r = 0. That is, we require that hij has only one zero eigenvalue at r = 0. 
Let us denote the corresponding eigenvector by ∂φ , and decompose yi directions as (xa, φ), 
where a = 1, 2, · · · , d − 3. Assuming that φ is an isometry direction, the horizon metric h can 
be decomposed as

hij dyidyj = G(r, x)dφ2 + 2ga(r, x)dφdxa + γ̂ab(r, x)dxadxb, (2.6)
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where

ga|r=0 = εg(1)
a (xa), G|r=0 = ε2G(2)(xa) . (2.7)

The metric (2.1) together with (2.4), (2.6) and (2.7), in the ε → 0 limit, provides the metric 
ansatz for EVH black hole, which by construction satisfies (1.1). If this metric ansatz (possibly 
together with other matter field configurations) is a solution to (Einstein) equations of motion, 
we have an EVH black hole solution. Note that ε in this EVH black hole solution is one of the 
parameters of the black hole solution family (e.g. determining angular momentum or charge) and 
we get an EVH black hole at the specific ε = 0 point in the black hole parameter space. Here, we 
do not check if this EVH black hole ansatz provides a solution; we assume that the EVH black 
hole solution exists. What we will do next is to study the near horizon limit of this EVH black 
hole.

3. Near horizon limit of generic EVH black hole ansatz

For the black hole solutions defined by metric (2.1) and its EVH limit, horizon is located at 
r = 0. We therefore, define the near horizon EVH geometry through

r → λr, v → v

λ
, φ → φ

λ
, λ → 0 . (3.1)

With the above limit, a generic field of this solution �(r; x) will show a double expansion in 
powers of the “near-EVH” parameter ε and the near-horizon parameter λ:

�(r;x) = λs(�(0)(x) + rλ�(1)(x) + · · · )
= λs(�(0,0)(x) + ε�(0,1)(x) + rλ�(1,0)(x) + rλε�(1,1)(x) + · · · ), (3.2)

where the parameter s denotes the leading power in λ and can be different for different fields. As 
we will discuss in Section 5, the EVH conditions imply that for the scalar/dilaton fields s = 0; 
for Maxwell gauge fields, depending on the component, s can be −1, 0 or 1. For the metric 
components, as we will show below, in the Gaussian null coordinates, s can be 0, 1, 2.

Taking the above λ → 0 limit along with the EVH ε → 0 limit defined in the previous section, 
we get

ds2 = −r
( ε

λ
F (1) + rF

)
dv2 + 2r

( ε

λ
H(1) + rH

)
dφdv

+
(

ε2

λ2
G(2) + ε

λ
rG(1) + r2G

)
dφ2 + 2drdv + 2rfadxadv

+ 2
( ε

λ
g(1)

a + rga

)
dxadφ + γabdxadxb +O(λ, ε) , (3.3)

where γab(x) = γ̂ab(r = 0, x), and all the functions in the above metric are only functions of xa . 
In the above we have used the fact that all functions in the metric (2.1) around the horizon at 
r = 0 are smooth and analytic.

Equation (3.3) gives the most general near-horizon near-EVH metric, where proximity to the 
EVH is measured by ε and proximity to horizon by λ. Therefore, while we are taking ε, λ → 0
limit one can imagine three cases:

• ε
λ

� 1. This case corresponds to the near-horizon EVH (NHEVH) geometry. This is the case 
we analyze in Sections 4 and 5.
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• ε
λ

∼ 1, corresponds to near-EVH near-horizon limit. We view this case as “excitations” 
over the NHEVH geometry. This case has some parameters/functions more than the “back-
ground” NHEVH geometry. This is the case we analyze in Section 6.

• ε
λ
� 1 case would correspond to far from EVH case and we would not expect to get a well-

defined near-horizon geometry. So, we will exclude the case.

In this section and Section 4 we consider ε � λ and once we established the existence of the 
NHEVH geometry as a solution to a gravity theory, we study the ε ∼ λ case. For ε � λ we obtain 
the form of our near-horizon EVH (NHEVH) ansatz

ds2 = r2
[
−Fdv2 + Gdφ2 + 2Hdφdv

]
+ 2drdv + 2r

[
fadxadv + gadxadφ

]
+ γabdxadxb , (3.4)

where all unknown functions are only function of xa . Some remarks about the above NHEVH 
ansatz are in order:

1. ∂v is a Killing vector field which is null at r = 0 and is timelike elsewhere if F > 0.
2. Determinant of the above metric is proportional to −r2G. As we will see in the next section, 

this proportionality constant is positive and hence we learn that G(x) > 0. Also, ∂φ is a 
Killing vector and |∂φ|2 = r2G. Hence ∂φ remains spacelike everywhere.

3. As a result of the near-horizon limit and in the Gaussian null coordinates we have employed, 
r dependence of all components of metric are fixed. In particular, metric has r2 terms (v, φ
part), r terms (the off-diagonal dvdxa, dφdxa terms) and the r independent pieces, γab and 
drdv terms.

4. As (3.1) indicates, if the original φ coordinate (which parameterizes the vanishing one-cycle 
of the EVH black hole) had 2π periodicity, the φ coordinate which appears in (3.4) has 2πλ

periodicity. Since we are assuming φ to be a Killing direction its periodicity does not appear 
in the discussions of the equations of motion (which are local). Nonetheless, once we want 
to compare the NHEVH solution with the original EVH black hole, to stress this reduced 
range of φ, we call φ as the pinching direction.

5. Determinant of the NHEVH ansatz is proportional to r2. This is compatible with our expec-
tations, and construction of the EVH geometry that the horizon area of the constant v part of 
metric is zero at r = 0.

6. The d − 3 dimensional part spanned by xa coordinates and the metric γab, will be denoted 
by γd−3. For EVH black holes, upon which we focus in this work, γd−3 has finite volume.

7. One may reduce the d dimensional Einstein Hilbert action over γd−3 and obtain a 3d gravity 
theory with some scalars and vector fields. We will comment more on this in the discussion 
section.

8. In the NHEVH ansatz we have used (and fixed) all diffeomorphisms along the 3d r, v, φ
directions. However, the 3d-foliation preserving diffeomorphisms; i.e. xa → ha(x

b), can 
still be used to simplify form of γab(x) metric.

4. Implications of Einstein equations for the NHEVH ansatz

In the previous section we gave the most general form of the near-horizon (near) EVH metric. 
In this section we impose the Einstein equations on this ansatz. We assume that the EVH black 
hole is a solution to Einstein equations
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Gμν + �gμν = 8πGNTμν (4.1)

where Tμν is the energy momentum tensor of the matter fields in our theory. We will use the 
units where 8πGN = 1. In this section, although we choose the gravity part of our action to be 
Einstein–Hilbert type, we do not make any specific choice for the matter part of the theory. Here, 
we first analyze generic properties and features of Tμν in the near horizon limit and study the 
implications of the smoothness of Tμν on the NHEVH solutions. Assuming specific behavior for 
some components of Tμν we show that the NHEVH solution has generically a 3d part which 
is locally maximally symmetric. We then prove that if Tμν satisfies strong energy condition the 
NHEVH solution should necessarily have an AdS3 throat, or takes the form of direct product of 
3d flat space and a d − 3 dimensional Euclidean space with finite volume R3 × γd−3.

4.1. Implications of smoothness of Tμν and Einstein equations

Lemma 1. Analyticity and finiteness of Tμν at the horizon in the Gaussian null coordinates imply 
Trr = Tra = 0.

Proof. In order r = 0 to be a smooth surface, Tμν components in the Gaussian null coordinates 
we have adopted should remain finite and analytic at the horizon (at r = 0). This implies that in 
the near-horizon limit (3.1) components of the energy momentum tensor should scale as

Trr ∝ λ−2 , Tra ∝ λ−1 ,

and all the other components are proportional to λ0 or positive powers of λ. The above in particu-
lar implies that Trr = T (x)/r2, Tra = Ta(x)/r in the near-horizon limit. Requiring that at r = 0
components of Tμν remain finite at r = 0 we learn that T (x) = Ta(x) = 0, or in other words, 
Trr , Tra are both vanishing. �

The above result is of course compatible with the explicit form of the energy–momentum 
tensors of Maxwell–Dilaton or Maxwell–Scalar theory given in (5.2), (5.5) and (5.8).

Lemma 2. Einstein equations for the NHEVH ansatz, regardless of the details of the matter 
fields, imply ga = 0 and fa = G−1∂aG ≡ 2∂aK . Therefore, NHEVH metric reduces to

ds2 = e−2K
[
ρ2(−F̃ dv2 + 2H̃dvdφ + dφ2) + 2dvdρ

]
+ γabdxadxb, (4.2)

where H̃ = e−2KH , F̃ = e−2KF and ρ = re2K .

Proof. From Lemma 1 and Einstein equations (4.1) and that in the Gaussian null coordinates 
grr = 0 we learn that

Grr = 0 , Gra = 0 . (4.3)

Moreover, from grr = 0, vanishing of Grr means Rrr = 0 and

Rrr = 1

2r2 det(g)

[
r2Gdet(γ ) + det(g)

]
. (4.4)

On the other hand, we know that det(g) = −r2 det(γ ) 
[
G − gagbγ

ab
]
. Then Rrr is simply writ-

ten as
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Rrr =
(

det(γ )

2 det(g)

)
gagbγ

ab . (4.5)

Since γab is a positive definite metric, vanishing Rrr yields ga = 0.
Noting that in the Gaussian null coordinates gra components of metric are zero, vanishing 

of ra components of the Einstein tensor implies vanishing of similar components of the Ricci 
tensor, Rra = 0. One may readily compute these components for the NHEVH ansatz (3.4) at 
ga = 0:

Rra = Gfa − ∂aG

2rG
. (4.6)

Rra = 0 then yields

fa = G−1∂aG ≡ 2∂aK . (4.7)

We note that G is a positive definite function and the above choice for K (and its real valued-ness) 
is made to enforce this fact. Given the above form for fa , one can remove the vxa components 
of metric by the following redefinition of the r coordinate

r → ρ = re2K . (4.8)

Therefore, regardless of the matter content of the theory and only based on the existence of EVH 
black hole solution and smoothness of Tμν components at the horizon, the most general NHEVH 
ansatz takes the form

ds2 = e−2K
[
ρ2(−F̃ dv2 + 2H̃dvdφ + dφ2) + 2dvdρ

]
+ γabdxadxb , (4.9)

where H̃ = e−2KH and F̃ = e−2KF . �
Lemma 3. For theories with Tφa = Tva = 0 over the NHEVH solution ansatz, H̃ and F̃ are 
constants.

Proof. Given the above NHEVH ansatz (4.9), we make the following two observations:

A. For class of theories for which Tva = 0 vanishes over the background NHEVH anstaz (see 
Section 5 for more discussions) Rva = 0, and

Rva = −3

2
ρ (H̃∂aH̃ + ∂aF̃ ) = 0. (4.10)

B. If Tφa components of energy momentum tensor vanish, then we learn that Rφa = 0. With the 
metric (4.9)

Rφa = 3

2
ρ ∂aH̃ = 0 =⇒ H̃ = const. (4.11)

Then Tφa = Tva = 0 and Einstein equations imply H̃ and F̃ are constant. �
In Section 5 we will show that the assumptions Tφa = Tva = 0 for the NHEVH solution ansatz 

indeed follows from the field equations of generic Einstein–Scalar–Maxwell gauge theories once 
we implement the smoothness condition at r = 0 and require having a well-defined near-horizon 
limit for the fill solution. We are now ready to note one of the main results of this paper.
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Theorem 1. The near-horizon geometry of any EVH black hole in Einstein gravity which matter 
fields have a finite and analytic energy momentum tensor Tμν at the horizon and Tφa = Tva = 0, 
is given by the following metric

ds2 = e−2K
[
A0ρ

2dv2 + 2dvdρ + ρ2dφ2
]
+ γabdxadxb, (4.12)

where A0 is a constant and the 3d (ρ, v, φ) part of the metric is maximally symmetric.

Proof. Using Lemmas 1, 2, 3 and a shift in φ → φ − H̃v, the near horizon metric of an EVH 
black hole takes the form (4.12) where A0 = −(H̃ 2 + F̃ ). �

We would like to make some comments about the above metric:

I. The 3d (ρ, v, φ) part of metric depends only on a single constant A0.
II. At constant xa surfaces, the 3d (ρ, v, φ) part of (4.12) is a constant curvature, maximally 

symmetric space with Ricci scalar R = 6A0. Therefore, for negative A0 this 3d part is 
(locally) AdS3. For the special case of A0 = 0 this becomes a locally 3d flat space and if 
A0 > 0 we have a dS3.

III. In our original EVH black hole, we did not impose any condition on the topology of the 
d −2 dimensional horizon, while we required that the area of horizon is finite (and is indeed 
vanishing in the EVH limit). This in particular, means that γd−3 is expected to have finite 
volume.

IV. As we know from various explicit examples [21,22], e−2K may have zeros in some isolated 
points. At these points metric (4.12) (and possibly the γab metric) may have a curvature 
singularity. Note also that e−2K should remain everywhere finite as is implied by comment 
III. above.

V. One can show that the geometry (4.9) has three Killing vector fields, whose explicit form 
for A0 = 0 cases may be written as1

∂v ≡ −A0(L+ − L̃+), ∂φ ≡ √−A0 (L+ + L̃+) v∂v − ρ∂ρ + φ∂φ ≡ L0 + L̃0.

(4.13)

As discussed, appearance of the extra Killing vector field L0 + L̃0 in the NHEVH geometry 
is only based on the existence of the near horizon limit and is independent of imposing equa-
tions of motion or details of the theory and its dimension. This feature may be compared 
with a similar fact for the near-horizon extremal geometries [10], where in the near-horizon 
geometry and before imposing the equations of motion, the isometry from just ∂v is en-
hanced to ∂v, v∂v − r∂r .

VI. As we will demonstrate in Section 5, not only the metric but also the dilaton (5.3) and gauge 
field configurations (5.7) are invariant under the above Killing vectors.

VII. As discussed, if the two conditions Rva = Rφa = 0 are also met, we get three more Killing 
vectors, whose explicit form depends on A0. Together with (4.13), we have following six 
Killing vectors (for A0 = 0 cases)

1 A0 = 0 case corresponds to the three dimensional cone, defined by hypersurface ρ2 = x2 + y2 in a flat four dimen-

sional space with metric ds2 = 2dρdv + dx2 + dy2, where φ is angular coordinate in xy plane. The corresponding 
Killing vectors are ∂v, ∂φ, φ∂v + ∂φ

, v∂v − ρ∂ρ + φ∂φ, φ2∂v − 2∂ρ + 2φ
∂φ, 2vφ∂v − 2ρφ∂ρ + (φ2 + 2v )∂φ .
ρ ρ ρ
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L+ = − 1

2A0
∂v + 1

2
√−A0

∂φ, L̃+ = 1

2A0
∂v + 1

2
√−A0

∂φ

L0 = 1

2

(
v + φ√−A0

)
∂v − 1

2
ρ ∂ρ + 1

2

(
φ + √−A0v + 1

ρ
√−A0

)
∂φ,

L̃0 = 1

2

(
v − φ√−A0

)
∂v − 1

2
ρ ∂ρ + 1

2

(
φ − √−A0v − 1

ρ
√−A0

)
∂φ

L− = 1

2

(
φ + v

√−A0

)2
∂v −

(
1 − A0ρv + √−A0ρφ

)
∂ρ

+ 1

2ρ

(√−A0v + φ
)(

2 + √−A0ρφ − A0vρ
)

∂φ, (4.14)

L̃− = −1

2

(
φ − v

√−A0

)2
∂v+

(
1 − A0ρv − √−A0ρφ

)
∂ρ

+ 1

2ρ

(√−A0v − φ
)(

2 − √−A0ρφ − A0vρ
)

∂φ. (4.15)

The above six Killing vectors form the following algebra

[Li,Lj ] = (i − j)Li+j , [L̃i , L̃j ] = (i − j)L̃i+j . (4.16)

The isometry algebra is hence isomorphic to so(2, 2) � sl(2, R) × sl(2, R) algebra for A0 <

0, so(3, 1) algebra for A0 > 0 and iso(2, 1) algebra for A0 = 0.
The above enhancement of symmetries, from the two ∂v and ∂φ Killings of the original EVH 
black hole to the above six Killings is analogous to the situation in the extremal stationary 
black holes, where the timelike Killing vector is enhanced to three Killing vectors upon 
imposing (a part of) equations of motion [10].

VIII. It is well known that dealing with nonlinear differential equations, the symmetries of the 
source do not necessarily carry over to the metric solution in GR. Nonetheless, the converse 
is not true: symmetries of metric are necessarily symmetries of the source. Therefore, if the 
two conditions Rva = Rφa = 0 are met, the metric has six Killing vectors discussed above 
and hence, as we will explicitly see, the dilaton and gauge fields also exhibit the same 
symmetries.

IX. One may compute the Ricci curvature of metric (4.12) using a null-orthonormal frame for 
the near-horizon metric eA, where A = +, −, φ, a and

e+ = e−Kdv, e− = e−K(dρ + 1

2
A0ρ

2dv), eφ = e−Kρdφ, ea = êa (4.17)

where êa are vielbeins for the horizon metric γab and the entire space–time metric is g =
ηABeAeB = 2e+e− + eφeφ + eaea . The connection 1-forms which are defined by deA +
ωA

B ∧ eB = 0 turn out to be

ω+− = A0ρeKe+, ω+φ = A0ρeKeφ, ω+a = −∇aK e−

ω−φ = −eK

ρ
eφ, ω−a = −∇aK e+, ωφa = −∇aK eφ, (4.18)

and ωab = ω̂ab . The curvature two-form and the Riemann tensor are defined as �AB =
dωAB + ωAC ∧ ωC

B and �AB = 1
2RABCD eC ∧ eD . This can be used to evaluate Ricci tensor 

components:
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Rab = R̂ab − 3∇aK∇bK + 3∇a∇bK, (4.19)

where R̂ab is the Ricci curvature of metric γab and

Rμν =
[
e−2K

(
∇2K − 3(∇K)2

)
+ 2A0

]
g̃μν (4.20)

where g̃ is metric on the 3d part (A0ρ
2dv2 +2dvdρ +ρ2dφ2). The scalar curvature is given 

by

R = R̂ + 6A0e
2K + 6∇2K − 12(∇K)2 (4.21)

where R̂ is the scalar curvature of γab.

4.2. Implications of strong energy condition for NHEVH solution

We showed in the previous section, based on smoothness of Tμν and assuming vanishing of 
some components of energy–momentum tensor, that the near-horizon of an EVH black hole has 
a 3d maximally symmetric subspace. Our previous analysis, however, did not specify whether 
this 3d part is AdS3, R3 or dS3. In the following theorem we state implications of Strong Energy 
Condition (SEC) on the curvature of the 3d part.

Theorem 2. Strong energy condition implies the 3d part of near-horizon of an EVH black hole 
with non-positive cosmological constant � ≤ 0 is either AdS3 or flat. The flat case can only 
occur for � = 0 and the geometry is a direct product of R3 and a d − 3 dimensional space of 
finite volume.

Proof. We start with a generic theory independent analysis of the equations of motion. To this 
end, let us recall that d dimensional Einstein equations (4.1) may be written as

Rμν − 2�

d − 2
gμν = Tμν − 1

d − 2
T gμν . (4.22)

Next, we note the SEC implies

(Tμν − 1

d − 2
T gμν)t

μtν ≥ 0 (4.23)

for any (future-oriented) time-like vector field tμ.
Assuming SEC, we then need (Rμν − 2�

d−2gμν)t
μtν ≥ 0. Recalling (4.20), SEC implies2

∇2K − 3(∇K)2 − 2�

d − 2
+ 2A0e

2K ≤ 0 . (4.24)

Now, consider the integral below∫
γd−3

dd−3x
√

detγ e−αK

(
∇2K − 3(∇K)2 − 2�

d − 2
+ 2A0e

2K

)
≤ 0

2 Note that (4.24) is a necessary, but not necessarily sufficient, condition for SEC.
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for an arbitrary real, α ≥ 3. Integrating by-part we obtain3∫
γd−3

dd−3x
√

detγ e−αK

[
(α − 3)(∇K)2 − 2�

d − 2
+ 2A0e

2K

]
≤ 0 (4.25)

Therefore, SEC implies

A0 < 0, unless when ∇aK = 0 and � = 0, where A0 = 0 is also possible. (4.26)

That is, if ∇aK = 0, for � ≤ 0, we will always get a space which is a warped product of an AdS3
with γd−3. If ∇aK = 0 (i.e. a constant warp factor) then we have the option of getting 3d flat 
space A0 = 0, only if � ≥ 0. Therefore, within the assumptions of our theorem A0 = 0 may only 
be allowed for � = 0 case. For generic � > 0 the above analysis does not yield a restriction on 
the sign of A0. �
5. Near horizon limit and matter fields

To prove our Theorems 1, 2 and in particular Lemma 3, we made an assumption on the 
energy–momentum tensor of the matter present in the NHEVH solution, namely Tva = Tφa = 0. 
Here, we show that these assumptions are indeed an outcome of smoothness and equations of mo-
tion of the fields other than the metric in the NHEVH solution. In this section we study behavior 
of other fields in the near-horizon EVH limit. As we saw in the previous section, requiring the 
metric and other fields (physical observables) at the horizon to be smooth and to admit smooth 
r → 0 limit, imposes strong conditions on the form of the metric. In this section we explore 
implications of similar requirements on the other fields in the problem.

We consider Einstein–Maxwell–Scalar-� theory in generic dimension. The scalar sector may 
be dilaton fields (with a shift symmetry) or scalars with a potential. The gauge field part in odd 
dimensions may also include a Chern–Simons term. Our analysis is hence quite generic and in-
cludes the bosonic part of all gauged or ungauged supergravities with U(1) gauge symmetry. The 
black holes we consider are generically solutions to Einstein–Maxwell–Dilaton-� (EMD-�) the-
ory or the gauged supergravity theories, where we have some Maxwell fields coupled to scalars 
with potential terms. Let us consider the generic action of the form

L = 1

2
(R − 2�) − 1

2
gμνGIJ(�)∂μ�I ∂ν�

J − V (�I ) − ec
p
I �I Fp

μνF
p
αβgμαgνβ

+LCS (5.1)

where GIJ is metric on the space of dilaton/scalar fields (which is taken to be positive definite), 
V (�) is the potential for scalar fields, Fp

μν = ∂[μA
p
ν] denotes the field strength of gauge fields 

Ap , and LCS denotes a possible Chern–Simons term which may exist in odd dimensions.
Let us start with the contribution of the cosmological constant term to the energy–momentum 

tensor:

T �
μν = −�gμν , (5.2)

and hence for the metric ansatz (3.4), T �
rr = T �

ra = 0.

3 Here we have used the fact that although the d − 3 space with γab can have curvature singularity, it has a finite 
volume and in fact 

∫ √
detγ e−cK for any c ≥ 0 is finite and positive. We have also used the point that one may drop the 

“surface integral” 
∫
γd−3

dd−3x∇a(
√

detγ γ ab∇be−βK) for β ≥ 1. This latter is based on the fact that γd−3 is a finite 
volume space and non-compactness (punctures) it might have is coming at points e−K may vanish.
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5.1. Dilaton/scalar fields

An EVH black hole solution to (5.1) involves scalar fields where �I = �I (r; x), where we 
already used invariance under ∂v , ∂φ diffeomorphisms, Lv�I = Lφ�I = 0. Upon taking the near 
horizon limit (3.1), we learn that for NHEVH solution ansatz

�I = �I (x
a) . (5.3)

It is clearly seen that the above form for the scalar fields, being independent of r, v, φ, is explicitly 
invariant under the six Killing isometries of the 3d part.

The equation of motion and the energy–momentum tensor for the scalar fields are

1√−g
∂μ(

√−ggμνGIJ(�)∂ν�
J )

= 1

2
gμν ∂GJK

∂�I

∂μ�J ∂ν�
K + ∂V

∂�I

+ ca
I eca

I �I F a
μνF

a
μν (5.4)

T �
μν = GIJ(�)∂μ�I ∂ν�

J − 1

2
gμν GIJ(�)gαβ∂α�I ∂β�J − V (�)gμν (5.5)

One can readily see that with (5.3), the T �
μν components with μ or ν = r, v, φ are proportional to 

the metric gμν . In particular, one can also see that

T �
rr = 0 , T �

ra = 0 , T �
va ∝ fa , T �

φa ∝ ga, (5.6)

where ga and fa are respectively related to the off-diagonal gφa and gva components of the 
metric (3.4). Therefore, a generic scalar theory in the near-horizon EVH geometry satisfies the 
assumptions of Lemmas 1, 2 and 3, and hence Theorem 1 of previous section.

5.2. Gauge fields

Requiring the gauge field one-form Ap , (1) to be ∂v, ∂φ invariant, i.e. LvA
p = LφAp = 0 and, 

(2) to have a well-defined near horizon limit (3.1), one learns that the most general near-horizon 
gauge field ansatz takes the form

Ap = rep(x)dv + 1

r
hp(x)dr + rbp(x)dφ + A

p
a (x)dxa . (5.7)

The gauge field energy–momentum tensor is

T A
μν = 2ec

p
I �I

(
Fp

μαF
p
νβgαβ − 1

4
gμν(F

p
αβ)2

)
. (5.8)

Requiring smoothness of T A
μν components, we can restrict the gauge field ansatz more. In partic-

ular, using (5.7) and metric given by (3.4), we have

T A
rr = (bp)2 gφφ + 2bp ∂ah

p

r
gφa + ∂ah

p∂bh
p

r2
gab , (5.9)

which is the norm of the spacelike vector (0, 0, bp, ∂ahp

r
). As implied by Lemma 1, T A

rr should 
vanish at r = 0 and hence bp(x) = 0 and ∂ah

p = 0.4 Having these two conditions, one can readily 

4 Note that gφφ ∝ 1/r2 and gφa ∝ 1/r .



S. Sadeghian et al. / Nuclear Physics B 900 (2015) 222–243 235
see that T A
ra vanishes too. Therefore, the Lemma 1 of the previous section is explicitly verified 

for Maxwell gauge fields. Gauge field ansatz, up to possible gauge transformations, becomes

Ap = rep(x)dv + A
p
a (x)dxa . (5.10)

The gauge field equations of motion are

1√−g
∂μ(

√−ggμα ec
p
I �I Fp

αν) + δLCS

δA
p
ν

= 0, (5.11)

ν = r component of above equations leads to ep(x) = 0. After setting ep to zero in (5.10), one 
finds5

T A
rr = 0 , T A

ra = 0 , T A
va ∝ fa , T A

φa ∝ ga, (5.12)

where ga and fa are respectively related to the off-diagonal gφa and gva components of the 
metric (3.4). Therefore, the Maxwell gauge fields in the near-horizon EVH limit also satisfy the 
assumptions of Lemmas 1, 2, 3 and hence Theorem 1 follows for them.

It is worth noting that we did not employ scalar field equation of motion to show it is inde-
pendent of r, v and φ but for gauge field, equations of motion are needed. Instead of equations 
of motion, however, we could also use invariance of gauge fields under Killing vectors of metric 
(3.4). All in all, for the most general NHEVH gauge field ansatz, ep(x), bp(x) and ∂ah

p in (5.7)
should vanish and hence we remain with

Ap = A
p
a (xb)dxa, Fp = F

p
abdxa ∧ dxb . (5.13)

One can readily check that the gauge field given above is compatible with the gauge field equa-
tions of motion (5.11), with the metric (4.12) and dilaton (5.3).

In summary, the most general ansatz for the NHEVH solutions of the theory (5.1) in any 
dimension is given through (4.12), (5.3) and (5.13).

5.3. More on Einstein equations

To fully specify the solution we need to impose and solve the rest of equations of motion. This 
involves scalar and gauge field equations of motion (5.4) and (5.11) and the Einstein equations:

Rμν = 2

d − 2

(
� + V (�) − 1

2
ec

p
I �I (Fp)2

)
gμν + GIJ(�)∂μ�I ∂ν�

J

+ 2ec
p
I �I Fp

μαF
p
νβgαβ, (5.14)

where we used (5.5) and (5.8). For the dilaton and gauge field ansatz given in previous sections, 
we find

Rμν =

⎧⎪⎪⎨
⎪⎪⎩

2
d−2 [� + V (�) − 1

2 ec
p
I �I (Fp)2]gμν, μ, ν = ρ,v,φ

2
d−2 [� + V (�) − 1

2 ec
p
I �I (Fp)2]γab

+ GIJ(�)∂a�
I ∂b�

J + 2ec
p
I �I F

p
acF

p
bdγ cd, μ, ν = a, b

(5.15)

where (Fp)2 = F
p
acF

p
bdγ cdγ ab ≥ 0. As expected and argued in the previous section, the above 

is of course compatible with the 3d part being a maximally symmetric space. In this work we do 

5 Note that in the Gaussian null coordinates (3.4) rr and ra components of metric are zero.
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not intend to make classification of the NHEVH solutions. This question has been dealt with in 
[14] in four dimensions and partially in [27] in five dimensions.

We also comment that, as it is readily seen, the theory (5.1) satisfies the strong energy con-
dition (4.23) for theories with V (�) ≤ 0. This is of course compatible with the well known fact 
about the ungauged and gauged supergravity theories, that they satisfy the strong energy con-
dition. For these cases our Theorem 2 of Section 4.2 is applicable; in this class of theories if 
V (�) + � ≤ 0, the 3d part is either AdS3 or 3d flat space. Next, we explore the 3d flat case 
(which is a much more restrictive case).

On the existence of ∇aK = 0 solutions. The 3d part of equations of motion for this case implies 
that

1

2
ec

p
I �I (Fp)2 = � + V (�) . (5.16)

The above has solutions only when � + V (�) ≥ 0, and for � + V (�) = 0 case we are forced to 
turn off the gauge fields. The d − 3 dimensional part of the equations of motion,

Rab = GIJ(�)∂a�
I ∂b�

J + 2ec
p
I �I F

p
acF

p
bdγ cd, (5.17)

then implies the d − 3 dimensional part of metric should have a positive definite Ricci scalar. For 
� + V (�) = 0 case, Fab = 0 and hence the solution may only exist if Rab = GIJ(�)∂a�

I ∂b�
J

and ∇2�I = ∂IV (�) have simultaneous solutions.
An interesting case is Einstein vacuum solutions, when gauge field and dilatons are turned off. 

This implies � +V (�) should be necessarily zero and the d −3 dimensional part should be Ricci 
flat. Tμν = 0 obviously satisfies strong energy condition. For d = 4, 5, 6, d −3 dimensional Ricci 
flatness implies vanishing of the Riemann curvature and hence the whole space is (locally) flat 
and there are no nontrivial solution for d ≤ 6. For d ≥ 7 we have other options, as Ricci flatness 
in d − 3 ≥ 4 does not imply vanishing curvature. For d ≥ 7 vacuum solutions with A0 = 0 can 
hence be classified through Euclidean, compact Ricci flat d − 3 dimensional geometries. We, 
however, note that such geometries may not be related to any (EVH) black hole solution in the 
near horizon limit.

More on A0 ≤ 0, AdS3 case. This case is more generic as generic field configurations in our the-
ory satisfy SEC and ∇aK = 0. We will review several examples in this class in Section 7. These 
solutions generically come from known EVH black hole solutions in the near horizon limit. It is 
worth noting that, since in our near-horizon limit (3.1) we also scale φ, if viewed as near-horizon 
limit of EVH black hole solutions, the AdS3 factors are “pinching AdS3” geometries.

6. Near-horizon near-EVH geometries

So far, using Einstein field equations in the presence of non-positive cosmological constant, 
we have proved that for an EVH black hole the near-horizon geometry has an AdS3 throat or a 
3d flat spacetime. However, in Section 3 and in particular in (3.3), we discussed the most general 
form of near-horizon “near-EVH” geometry which has several extra functions compared to the 
EVH case. In this section we show that similar analysis as made in Section 4, leads to the fact that 
in cases with AdS3 throat the near-horizon near-EVH geometry should be the same geometry as 
in the EVH case, with the AdS3 part replaced with a BTZ black hole. For the cases where the 3d 
part is (locally) flat we show that the 3d part of the near-EVH geometry corresponds to a particle 
of a given mass and angular momentum.
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Theorem 3. The 3d part of near horizon of a near-EVH black hole with non-positive cosmo-
logical constant is either a (pinching) BTZ black hole or a rotating massive particle on the flat 
spacetime.

Proof. We note that both sides of the Einstein equations (4.1) may be expanded in powers of 
α ≡ ε/λ, as in (3.2). The leading order equations in powers of ε/λ does not involve near-EVH 
parameters and hence they lead to the previous results, i.e.

ga = 0, fa = ∂aG

G
, H = H̃G, F = F̃G , (6.1)

where F̃ , H̃ are constants. Moreover, we know that F (1) is a non-negative constant recalling the 
fact that Hawking temperature is a constant over the horizon (cf. discussions in Section 2). Upon 
the coordinate transformation r → ρ = e2Kr as before, (G ≡ e2K ), we find the most general 
form of the near-EVH metric

ds2 = e−2K
[
−ρ(ρF̃ + αF (1))dv2 + 2ρ(H̃ρ + αH(1))dvdφ

+ [(ρ + αR)2 + α2J ]dφ2 + 2dvdρ
]
+ 2α g(1)

a dxadφ + γabdxadxb . (6.2)

The above metric has d more unknown functions H(1), R, J and g(1)
a (and a constant F (1)) 

compared to the EVH case (4.9). Of course as expected in α = 0 we recover the NHEVH ansatz 
(4.9).

Since |∂φ |2 > 0 and that determinant of metric has a definite sign, J ≥ 0 and (ρ + αR)2 +
α2J > α2γ abg

(1)
a g

(1)
b where γ ab is inverse of metric γab.

As in the EVH case, to determine or restrict the other unknown functions in the near-EVH 
metric, we impose Einstein equations. These equations should be valid for any value of α param-
eter, as long as α � 1. As argued in Section 4, smoothness of energy–momentum tensor in the 
near-horizon limit implies Trr = Tra = 0. These conditions remain true for near-EVH case and 
therefore we have Rrr = Rra = 0. A direct computation of the Ricci reveals that

Rrr = Rra = 0 ⇒ J = γ abg(1)
a g

(1)
b . (6.3)

With the above, (6.2) may be written as

ds2 = e−2K
[
−ρ(ρF̃ + αF (1))dv2 + 2ρ(H̃ρ + αH(1))dvdφ + (ρ + αR)2dφ2 + 2dvdρ

]
+ γab(dxa + αg(1)adφ)(dxb + αg(1)bdφ) , (6.4)

where g(1)a = γ abg
(1)
b .

As in the EVH case, Tva = 0 implies Rva = 0. Next, we note that in the EVH case, as can be 
directly seen from (3.4), ∂φ is a Killing vector which is hypersurface orthogonal on the horizon 
of the original EVH black hole, i.e. at codimension two constants v and r = 0 surfaces, ∂φ is 
transverse to the constant φ surfaces. Hereafter, we assume that this property remains in the 
near-EVH case. This assumption, which is justified through many examples of EVH black holes 
in five or six dimensions, implies g(1)

a = 0. With this assumption, Tφa = 0 implies Rφa = 0, and 
therefore,

Rva = 0, Rφa = 0 ⇒ F̃ ,H (1), H̃ , R = const. (6.5)
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With the above assumptions, we obtain a metric with five constants and the unknown functions 
K , γab to be determined by the remaining Einstein equations. One of the five constants may be 
removed by a coordinate transformation φ → φ + cv, with a constant c. We note that the 3d 
ρ, v, φ part is not a maximally symmetric space, unless the constants are related in a specific 
way. Such relations come from components of the Einstein equations along the 3d part, especially 
recalling that for the class of theories discussed in Section 5 the energy–momentum tensor along 
the 3d part is proportional to its metric. Explicitly, we get maximally symmetric 3d space if

H(1) = 2H̃R , F (1) = 2F̃R. (6.6)

With the above, the Ricci curvature of the near-EVH metric equals that of the EVH metric, and 
is given through (4.20) and (4.19). As in the EVH case, if the matter fields satisfy strong energy 
condition, we deal with two options:

• If A0 = −(F̃ + H̃ 2) = 0, we have a (locally) flat 3d space. After the shift ρ → ρ − αR and 
φ → φ − H̃v, and then rescaling v → (αH̃R)−1v, φ → (αH̃R)−1φ and ρ → (αH̃R)ρ the 
geometry takes the form

ds2 = e−2K

[
dv2 + 2

H̃
dvdφ + ρ2dφ2 + 2dvdρ

]
+ γabdxadxb , (6.7)

where if the φ direction in the original near-EVH black hole had a [0, 2π ] range, the φ
coordinate in the above metric is ranging over [0, 2παH̃Rλ]. One can readily see from 
discussions of previous sections that (6.6) arises from the equations of motion in the EMD-�
theory. In fact, with (6.6), the 3d part of metric is locally flat and denotes a particle of a given 
mass and angular momentum proportional to H̃ [28].

• If A0 = −(F̃ + H̃ 2) < 0, then we have a locally AdS3 space, with metric

ds2 = e−2K
[
−F̃ ρ(ρ + 2αR)dv2 + 2H̃ρ(ρ + 2αR)dvdφ

+ (ρ + αR)2dφ2 + 2dvdρ
]
+ γabdxadxb. (6.8)

The above denotes a (pinching) BTZ, recalling that φ ∈ [0, 2πλ], with inner and outer hori-
zon radii r± and AdS3 radius � (cf. (7.1))

�2 = − 1

A0
, r+ = αR , H̃ = r−

�r+
. � (6.9)

To summarize, the near-horizon near-EVH geometries (6.7) and (6.8) are solutions to the same 
theories as the NHEVH geometry (4.12). One may then relate the mass and angular momentum 
of the 3d part in either of the above geometries to the mass and angular momentum perturba-
tions of the near-EVH black hole from the EVH point (before taking the near-horizon limit). 
In other words, if one views the near-EVH black holes as excitations around EVH black hole, 
then the information about these near-EVH black holes appears as mass and angular momen-
tum of the corresponding 3d geometries after taking the near horizon limit. This point has been 
demonstrated through several examples of EVH black holes, some of which may be found in our 
reference list and needs further study to which we hope to return in upcoming works.
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7. Examples of EVH black holes and their near horizon geometries

There are several examples of EVH black holes in different dimensions. In four dimensions 
it has been shown that EMD theory admits EVH black hole solutions and their near horizon 
geometry always has an AdS3 geometry [14], in accord with our general theorems in this work. 
The effect of higher dimensional correction has been studied in [24]. Several examples of four 
and higher dimensional EVH black holes have been studied and their near horizon geometry 
analyzed and in all these examples appearance of (pinching) AdS3 or (pinching) BTZ for the 
near-EVH case has been ubiquitous [17–19,21–23,25,26]. In this section we briefly review some 
of these known solutions.

7.1. EVH-BTZ black hole solutions in three-dimensions

Let us start with three dimensional Einstein theory with negative cosmological constant and 
the black hole solution there, the BTZ black hole [29]. To take the EVH limit, we first write BTZ 
solution in the Gaussian null coordinate system:

ds2 = − r(r + 2r+)(r2+ − r2−)

�2r2+
dv2 + 2drdv − 2r(rr− + 2r+r−)

�r+
dvdϕ + (r + r+)2dϕ2 .

(7.1)

The inner and outer horizons are located at r = −(r+ − r−) and r = 0, respectively. Hawking 
temperature and the entropy are

TH = r2+ − r2−
2πr+�2

, SBH = 2πr+
4G3

(7.2)

where G3 is Newton coupling constant in three dimensions and cosmological constant is 
� = −6�−2. If we define r± = ρ±ε and take ε → 0 limit, BTZ entropy and temperature van-
ish while their ratio remains finite and hence in this limit we are dealing with an EVH BTZ black 
hole [20]. The near-horizon limit involves scaling radial coordinate as r = λρ and taking λ → 0. 
The near-horizon EVH limit is obtained when ε � λ � 1:

ds2 = −
(

ρ2+ − ρ2−
�2ρ2+

)
ρ2dν2 + 2dρdν − 2ρ−

�ρ+
ρ2dνdχ + ρ2dχ2, v = ν

λ
, ϕ = χ

λ
, (7.3)

which is a pinching AdS3 with radius �. The near horizon near-EVH limit is obtained when 
λ � ε:

ds2 = −ρ(ρ + 2ρ+)(ρ2+ − ρ2−)

�2ρ2+
dν2 + 2dρdν − 2ρ(ρρ− + 2ρ+ρ−)

�ρ+
dνdχ

+ (ρ + ρ+)2dχ2 , (7.4)

which is (pinching) BTZ black hole solution, written in Gaussian null coordinate system. We 
note that χ coordinate is pinching i.e. χ ∈ [0, 2πλ].

7.2. Four dimensional EVH black hole in EMD theory

Near horizon structure of generic EVH black hole solution in EMD-theory in four dimensions 
has been studied in [14], for 4d heterotic theories in [25,26] and for U(1)4 gauged supergravity 
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theory in [18]. It has been shown that any EVH black hole in this theory, if it exists, has the 
following near horizon geometry

ds2 = R2| sin θ |
(

ds2
AdS3

+ 1

4
dθ2

)
(7.5)

where R is a constant determined by charges carrying by the black hole and ds2
AdS3

is a metric 
on the pinching AdS3 space which can be written as (7.3) in Gaussian null coordinate system. 
We note that there is no vacuum solution of the form (7.5) and one should have specific profile 
of the dilaton fields [14,27]. It has also been shown that this three dimensional part of the metric 
is replaced by pinching BTZ black hole solution (7.4) when we take near-horizon limit of a 
near-EVH black hole solution. These are all in accord with our general discussions of previous 
sections.

7.3. Five dimensional EVH black holes

Five dimensions is the lowest dimension which we can find EVH black hole in the vacuum 
Einstein theory. It has been shown in [16,21] that EVH conditions are met for single spin extremal 
Myers–Perry black holes [30] or for single spin extremal black rings [23]. In the near-horizon 
limit the EVH hole and ring become identical and have the metric [23]

ds2 = R2 cos2 θds2
AdS3

+ R2(cos2 θ2 + tan2 θdψ2) (7.6)

where R is proportional to the (non-zero) angular momentum of the original black hole or black 
ring solution.

It is also worth mentioning the EVH black hole solutions in U(1)3 five dimensional gauged 
supergravity which is studied in [21,22]. Their near horizon geometry is given by [27]

ds2 = Hθ

[
R2ds2

3 + a2

�θ

(dθ2 + H 3
0

H 3
θ

�2
θ

�2
0

sin2 θ cos2 θdψ2)

]
, (7.7)

with

�θ = (1 − a2

�2
cos2 θ) , Hi = cos2 θ + s2

i , Hθ = H
1
3

1 H
1
3

2 H
1
3

3 , (7.8)

where constants pi and R2 are related to a and si as

R2 = a2

1 + a2

�2 (s2
1 + s2

2 + s2
3 + 1)

, p2
i = 2a4s2

i (s2
i + 1)(1 + a2

�2 s2
i )

[1 + a2

�2 (1 + s2
1 + s2

2 + s2
3)]3

. (7.9)

In [27] a classification of four and five dimensional solutions with local SO(2, 2) isometry was 
provided. These solutions, given our theorems in this work, would hence yield a classification of 
the NHEVH solutions in these dimensions.

8. Discussion and outlook

In this work we analyzed a particular class of solutions to generic Einstein gravity theories 
in diverse dimensions. We proved two theorems stating that near horizon limit of Extremal Van-
ishing Horizon (EVH) black holes generically contain an AdS3 throat. Although our general 
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theorems also allow for having a 3d flat space part in the geometry, in the previously studied 
examples of EVH black holes we do not have such solutions. In our analysis we assumed that the 
original EVH black hole solution exists but did not fully specified that solution. In our analysis 
(cf. Section 2) we only used very general properties of such solutions. It is likely that not having 
3d flat cases in explicit examples is another general feature which bears upon more details of the 
theory in question. It would be interesting to explore this direction.

In our analysis in Sections 2, 3 we introduced two parameters ε, λ; ε parameterizes “near-
EVH-ness” while λ measures how close to the horizon we are. We only considered cases where 
we remained “close to EVH” while taking the near-horizon λ → 0 limit and excluded ε/λ � 1. In 
our analysis, imposing the EVH condition (1.1), we tied together the way vanishing temperature 
(extremality) and vanishing horizon area happen, and measured both with the same parameter ε. 
One may try to perform this analysis in a more general setup by disentangling these two; e.g. one 
may take T ∼ ε → 0 while Ah ∼ εk with k ≥ 0. In this way we can distinguish three more cases: 
k = 0 (and in fact for more general 0 ≤ k < 1 case), we just recover the usual extremal black 
holes; for k = 1 we obtain our EVH analysis and for k > 1 we encounter new cases. For each 
of these cases, we still have the option to choose how ε and the near-horizon parameter λ scale 
with respect to each other. If we choose 0 ≤ k < 1 and ε/λ � 1, it is straightforward to see that 
one recovers the usual results of near-horizon extremal geometries [10] and for the same values 
of k, if ε/λ ∼ 1, the AdS2 factor in the near-horizon extremal geometry is replaced by an “AdS2

black hole” (i.e. a geometry with metric −(r2 − r2
0 )dt2 + dr2

r2−r2
0

). Among interesting questions 

which may then arise in this setup is the orders of limits issue. For example, one may start with 
a given k < 1, take the near horizon limit and then take k → 1 limit. That is, we first take the 
near-horizon extremal limit and then take the EVH limit. It can be checked (following our gen-
eral analysis of Sections 2, 3, or working through specific examples [20,21]) that the resulting 
geometry is not the same as what we have for the EVH or near-EVH case. In particular, we do 
not see a locally AdS3 throat. Understanding this more general case with parameter k involved 
(including k > 1 case) is an interesting direction for future studies.

Given the generality of the theorems we proved, one may also push for classification and 
uniqueness theorems for the near-horizon EVH solutions. Some first steps in this direction has 
been taken in [14,27]. This is another question we hope tackle in our future studies.

In this work we focused on addressing some issues regarding EVH black holes and their 
near horizon limit from in a GR solution viewpoint. As a completion of the current study one 
should also analyze various charges associated with different EVH solutions and explore the 
counterparts of Smarr relation or first law for this class of solutions. Similar steps for the extremal 
black holes were taken in [15,13].

In four dimensional EVH cases it was shown that the near horizon limit is indeed a decoupling 
limit [14] and appearance of AdS3 throat motivated proposing an EVH/CFT proposal, according 
which the near horizon EVH black hole is dual (in the sense of AdS/CFT) to a 2d CFT at the 
Brown–Henneaux central charge. As first check for the EVH/CFT one may relate the near-EVH 
excitations, which appear as BTZ black holes in the near horizon limit, to thermal states in the 
dual CFT. It is desirable explore the EVH/CFT for specific examples and in particular understand 
the “pinching” feature. Some proposals for the latter was presented in [20]. As another techni-
cally important step in this direction is related to the near-EVH analysis of Section 6. There we 
assumed the off-diagonal components of metric g(1)

a to be zero; their vanishing, while compatible 
with all equations of motion and in accord with various known EVH examples, did not directly 
come out of the equations of motion. In order to establish near horizon limit as a decoupling limit 
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for the near-EVH case it is crucial to show g(1)
a = 0 as a generic outcome of equations of motion 

or some energy conditions.
In our analysis and proof of our theorems, especially Theorem 2, we assumed that the γd−3

part has finite volume. Nonetheless, there are examples of “EVH black branes” [31] where in the 
near horizon limit we find AdS3 throats. For these cases one needs to replace horizon area Ah in 
the definition (1.1) by the entropy density of the solution. It would be interesting to extend our 
theorems for such cases.

Finally, we would like to point out that the near-horizon EVH solutions, and in light of the 
theorems we proved, may provide convenient reduction ansatzs to three dimensions. This point 
was used to construct AdS3 or dS3 solutions within eleven, ten or lower dimensional supergravity 
theories [32]. It would be nice to see if similar ideas could be useful in constructing dS4 solutions 
in string theory.
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