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SUMMARY

MicroRNAs (miRNAs) are small, noncoding RNAs
that inhibit translation and promote mRNA decay.
The levels of mature miRNAs are the result of
different rates of transcription, processing, and turn-
over. The noncanonical polymerase Gld2 has been
implicated in the stabilization of miR-122, possibly
through catalyzing 30 monoadenylation; however,
there is little evidence that this relationship is one
of cause and effect. Here, we biochemically charac-
terize Gld2’s involvement in miRNA monoadenyla-
tion and its effect on miRNA stability. We find that
Gld2 directly monoadenylates and stabilizes specific
miRNA populations in human fibroblasts and that
sensitivity to monoadenylation-induced stability
depends on nucleotides in the miRNA 30 end. These
results establish a mechanism of miRNA stability
and resulting posttranscriptional gene regulation.
INTRODUCTION

MicroRNAs (miRNAs) are 21- to 24-nt-long RNAs that are

involved in the posttranscriptional regulation of virtually all bio-

logical processes (Ambros, 2004). Through Watson-Crick

base-pairing with their 50 (seed) nucleotides to 30 untranslated
regions (30 UTRs), they inhibit translation, induce deadenylation

and destruction, or otherwise abrogate the expression of

mRNAs (Nottrott et al., 2006; Guo et al., 2010; Bazzini et al.,

2012). miRNAs are processed from primary transcripts (pri-miR-

NAs) into pre-miRNA stem-loop structures in the nucleus by Dro-

sha. After they are exported to the cytoplasm, the pre-miRNAs

are further processed into imperfect miRNA duplexes by the

RNase III enzyme Dicer. Finally, the inactive (passenger) strand

is destroyed and the mature (guide strand) miRNA is loaded

into what becomes an active Argonaute 2 (Ago2)-containing

RNA-induced silencing complex (RISC). Thus, the amounts of

mature miRNAs are the result of transcription, processing, and

turnover (Ambros, 2004; Bartel, 2004). In addition, various

RNA-binding proteins, such as hnRNP A1 (Guil and Cáceres,

2007), KSRP (Trabucchi et al., 2009), and TDP-43 (Buratti

et al., 2010; Kawahara andMieda-Sato, 2012), have been shown

to modulate the biogenesis of specific miRNAs. Several miRNA

30 modifications have been implicated in the regulation of miRNA
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turnover (Li et al., 2005; Horwich et al., 2007), and recent high-

throughput sequencing studies detected nucleotide additions

on miRNA 30 termini in animal cells (Wyman et al., 2011; Bur-

roughs et al., 2010). These additional one or (very rarely) two

nucleotides are not found in genomic sequences and are termed

nontemplated additions. One function of these extra nucleotides

is to modulate miRNAs’ ability to enter into RISC (Burroughs

et al., 2010), which in turn could modify their stability or ability

to regulate translation. The nontemplated 30 nucleotide additions
occur only on specific miRNAs and are cell-type and develop-

mental- or disease-state specific, suggesting that miRNA modi-

fications play an essential role in many biological processes

(Wyman et al., 2011).

Although the importance of regulated miRNA stability seems

self-evident, the mechanism(s) involved are generally unknown.

miR-382, a miRNA that contributes to HIV-1 provirus latency,

is particularly unstable, and mutational analysis has demon-

strated that substitutions in the last seven nucleotides increase

its stability (Bail et al., 2010). Similarly, the stability of the miR-

16 family is dynamically regulated throughout the cell cycle,

and the seed region and 30 nucleotides of one member of this

family, miR-503, are particularly important for controlling its

steady state levels (Rissland et al., 2011). Recent evidence

suggests that nontemplated 30 monoadenylationmay be a deter-

minant of miRNA stability; however, there is no direct evidence

that this is the case. In mouse liver and neonatal human fibro-

blasts, removal or depletion of Gld2 (also called PAPD4 or TU-

Tase2) results in a marked downregulation of mature miR-122,

but not its precursor (Katoh et al., 2009; Burns et al., 2011).

Gld2was first characterized in Caenorhabditis elegans as a cyto-

plasmic noncanonical poly(A) polymerase involved in germline

development (Wang et al., 2002). Its most well characterized

function is to polyadenylate mRNAs in oocytes and neurons,

thereby stimulating translation. In such cases, Gld2 is tethered

to the mRNA 30 end by an RNA-binding protein such as CPEB

or Gld3 (Barnard et al., 2004; Kim and Richter, 2006; Udagawa

et al., 2012; Wang et al., 2002). In mouse liver and human fibro-

blasts, Gld2 is thought to catalyze a 30 monoadenylation reac-

tion, thereby stabilizing miR-122 (Katoh et al., 2009; Burns

et al., 2011). In the fibroblasts, direct or indirect Gld2-stimulated

monoadenylation and stabilization of miR-122 elicit a downregu-

lation of CPEBmRNA expression, which in turn tempers CPEB’s

regulation of p53 mRNA polyadenylation-induced translation

(Burns et al., 2011).

In this study, we analyzed the involvement of Gld2-catalyzed

monoadenylation in miRNA stability. We demonstrate that Gld2
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Figure 1. Gld2 Monoadenylates miRNAs

(A) Western blot of Flag-Gld2 and catalytically inactive Flag-D125A-Gld2 ectopically expressed in fibroblasts. Actin served as a loading control.

(B) Immunoprecipitated Flag-Gld2 and Flag-D215A-Gld2 were used inmonoadenylation assays with miR-122, let-7a, andmiR-134 in the presence of a-32P-ATP.

A Flag immunoprecipitate from mock-transfected cells was used as a control. RNA molecular weight markers are shown on the left.

(C) Coomassie-blue-stained gel of recombinant Gld2 (left) and GST-Gld2 used in monoadenylation reactions with miR122 and a32-ATP (right).

(D) Semiquantitative RT-PCR of Gld2 and actin RNAs in control and Gld2 siRNA-depleted fibroblasts. The amount of depletion of Gld2 was �75%.

(E) In-vitro-transcribed 32P-pre-miR122was added to control or Gld2-depleted fibroblast extracts (t0) and incubated for 90min. The pre-miRNAwas processed to

mature (22 nt) and mature monoadenylated (23 nt) forms in the control extract, but only to the mature form (22 nt) in the Gld2-depleted extracts.

(F) Recombinant Gld2 was used in an in vitro adenylation reaction with miR-122 and varying amounts of competitor ATP and UTP. The histogram shows the

quantification of three replicate experiments (the bars refer to SEM and the asterisk refers to statistical significance, Student’s t test, p < 0.001).
adds a single nucleotide to the 30 end of specific miRNAs, show

directly thatmonoadenylation stabilizes and prolongs the activity

of some (but not all) miRNAs, and present data indicating that

sensitivity to monoadenylation-induced stability depends on

nucleotides at the 30 end of the miRNA. Finally, we present

evidence that maturemiRNA stability is the product of a complex

combinatorial control.

RESULTS

Gld2 Monoadenylates Small RNAs
To investigate Gld2 monoadenylation activity, we ectopically

expressed Flag-tagged Gld2 (wild-type [WT] or a catalytically

inactive mutant form, D215A) in human primary foreskin

fibroblasts (Figure 1A), followed by Flag immunoprecipitation

and incubation with single-stranded miRNAs in the presence

of a-32P-ATP. The RNA was then extracted and analyzed by

PAGE and phosphorimaging. Figure 1B shows that Gld2 mono-

adenylated miR-122, let-7a, and miR-134 to similar extents.

Cells that did not express ectopicGld2, or expressed the inactive
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D215A mutant form did not adenylate the RNAs. To assess

whether other RNAs can be monoadenylated by Gld2, we tested

random sequence RNA 18-, 21-, and 24-mers in assays identical

to those described above, and in each case, Gld2 monoadeny-

lated the RNAs (Figure S1). These data show that Gld2 monoa-

denylates miRNAs but, at least in vitro, does not distinguish

between them and other small RNAs.

miRNAs are extensively modified on their 30 ends (Burroughs

et al., 2010; Wyman et al., 2011), and thus it was formally

possible that a Gld2 coprecipitating protein monoadenylated

the miRNAs, or that the miRNAs were polyadenylated and

then trimmed to a single adenylate residue by a deadenylating

enzyme (Ameres et al., 2010; Han et al., 2011; Liu et al., 2011).

Consequently, we incubated highly purified recombinant GST-

Gld2 (Figure 1C, left panel) with miR-122 and a32P-ATP and

then analyzed it for monoadenylation. Figure 1C (right panel)

shows that recombinant GST-Gld2, but not GST, catalyzed

the addition of a single adenylate residue to miR-122. These

data indicate not only that Gld2 monoadenylates miRNA but

that it does not require the tethering that is necessary for the
hors



enzyme to polyadenylate mRNA (Barnard et al., 2004; Wang

et al., 2002).

We also investigated whether Gld2 was required for pre-

miRNA processing as well as monoadenylation. Extracts from

human primary fibroblasts depleted of Gld2 (Figure 1D) were

incubated with 50 32P-ATP-labeled pre-miR-122 for 90 min, fol-

lowed by RNA extraction and analysis by denaturing PAGE.

Control extracts processed, albeit inefficiently, the labeled pre-

miRNA into two distinct mature miRNA species, 22 and 23 nt

long, respectively. Conversely, the Gld2-depleted extracts

producedmostly a single band of 22 nt (Figure 1E). These results

indicate that Gld2 does not affect pre-miR-122 processing but is

necessary for the 30 end monoadenylation that increases the

length of the mature miRNA from 22 to 23 nt.

It was formally possible that the additional 30 nucleotide in the

previous assay was not necessarily an adenylate residue.

Because deep-sequencing studies showed that the most preva-

lent miRNA additions were either one adenylate or one uridylate

residue (Burroughs et al., 2010; Wyman et al., 2011), we sought

to determinewhether the enzyme couldmonouridylate as well as

monoadenylate miRNAs. Recombinant Gld2 was incubated with

miR-122, a-32P-ATP, and increasing amounts of radioinert ATP

or UTP. The radioinert ATP competed more effectively with the

a-32P-ATP than radioinert UTP at all concentrations except the

highest one (Student’s t test, p < 0.001; Figure 1F). Therefore,

ATP is the preferred nucleoside triphosphate for Gld2 to modify

miRNA 30 ends; monouridylation may be catalyzed by a different

enzyme.

Monoadenylation Promotes miRNA Stability
Results from experiments using Gld2 knockout mouse liver (Ka-

toh et al., 2009) and Gld2-depleted human primary fibroblasts

(Burns et al., 2011) suggest that 30 monoadenylation stabilizes

miR-122; however, there is no direct evidence that this relation-

ship is one of cause and effect. To assess this possibility, we

transfected human fibroblasts with a radiolabeled miR-122 pre-

annealed duplex (see scheme in Figure 2D) that lacked or con-

tained a 30 adenosine on the leading strand. Such duplexes

resemble Dicer products with 50 phosphate and 30 hydroxyl

groups on both strands, and after removal and destruction of

the passenger strand feed the leading strand into RISC (MacRae

et al., 2007). We then extracted the RNA at different times and

examined it via denaturing PAGE. To minimize the dilution of

the miRNA with cell doublings, we plated transfected cells at

confluency and loaded the same amount of total RNA onto the

gel for each time point. 30 monoadenylated miR-122 had almost

twice the half-life (1.8-fold) compared with the nonmonoadeny-

lated form (�54 and �30 hr, respectively; Figure 2A). We also

incubated fibroblast cell extracts with the same miRNAs and

measured their stabilities. Although the miRNAs degraded

more rapidly than they did in intact cells, there was still a stabi-

lizing effect of the monoadenylate residue on miR-122 (�1.6-

fold, �2.4 hr versus �1.5 hr; Figure 2B). To assess whether 30

monoadenylation can stabilize any miRNA, we performed the

same in vitro assay with let-7a, which was selected at random.

Let-7a, which was very stable in the extracts compared with

miR-122 (t1/2 of �3 hr versus 1.5 hr) was unaffected by 30 mono-

adenylation (Figure 2C). These results show directly that 30
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monoadenylation increases the stability of miR-122 but has little

effect on inherently stable miRNAs such as let-7a.

We next examined whether the monoadenylation-enhanced

stability of miR-122 affects target mRNA expression. Human

fibroblasts were transfected with an imperfect duplex (the

same as before) containing adenylated or nonadenylated miR-

122 together with plasmids encoding Renilla luciferase mRNA

(as a control) and firefly luciferase mRNA appended with the

CPEB 30UTR, which harbors twomiR-122 sites (Figure 2D; Burns

et al., 2011). Although both nonadenylated and monoadenylated

miR-122 inhibited reporter expression to about the same extent

(�3-fold) at time 0 (24 hr posttransfection), by 48 hr the monoa-

denylated form was �2-fold more effective at inhibiting reporter

expression compared with the nonadenylated form (Figure 2E).

These data indicate that the enhanced stability of monoadeny-

lated miRNA results in reduced target mRNA expression.

Gld2 Depletion Reduces the 30 Monoadenylation and
Stability of Specific miRNAs
To determine whether miRNA monoadenylation and/or stability

ismediated byGld2 in vivo, we deep-sequenced libraries ofmiR-

NAs from control and Gld2-depleted fibroblasts. Of the 574

distinct miRNAs sequenced, 8.7% (n = 50) contained nontem-

plated 30 monoadenylate residues, which generally agrees with

other studies (Burroughs et al., 2010). Interestingly, 5.4% of

the miRNAs (n = 31) contained a single 30 uridylate residue,

and 3.5% (n = 20) contained either an adenylate or uridylate

residue (Figure 3A). We were unable to estimate either the frac-

tion of miRNAs that had two or more adenosines at their 30

ends, or shorter species (e.g., 19 or 20 nt) that harbored 30 non-
templated adenosines, because the discrepancy rate between

mature miRNA and genomic sequence at these positions fell

within the average mutation rate (<0.05%) found at other miRNA

nucleotide positions, which made potential nontemplated addi-

tions indistinguishable from sequencing errors. Upon Gld2

knockdown, 86% (n = 43 out of 50) of the miRNAs that were

monoadenylated in the control experienced a reduction of the

monoadenylated species (on average, a 2.1-fold decrease). As

a comparison, the uridylated miRNAs experienced an almost

equal increase or decrease (n = 14 and 16, respectively, out of

30; on average, a 1.07-fold reduction), indicating the importance

of Gld2 formonoadenylation but notmonouridylation (Figure 3B).

Surprisingly, the percentage of each miRNA species that was

monoadenylated was low, and ranged from <1% to 8.4%.

Even so, depletion of Gld2 caused a significant reduction

(Student’s t test, p = 0.016) in the percentage of these monoade-

nylated species from a mean value of 2.8% to 1.5% (Figure 3C).

A plot of the ratio of the number of miRNA reads in Gld2-

depleted cells to control cells versus the ratio of themonoadeny-

lated miRNA species in Gld2-depleted to controls cells (Fig-

ure 3D) shows a Spearman r coefficient of 0.03, which implies

no correlation between the two parameters. This observation

reveals that not all of the miRNAs with fewer monoadenylated

species after Gld2 depletion decreased in amount. Indeed, it

may be that only discrete miRNA subpopulations are monoade-

nylation sensitive, and/or that Gld2 depletion causes a change in

miRNA gene transcription or processing of sufficient magnitude

to override the monoadenylation stabilization effect. To assess
ports 2, 1537–1545, December 27, 2012 ª2012 The Authors 1539



A B C

D E

Figure 2. Monoadenylation Stabilizes miR-122

(A) Human primary fibroblasts were transfected with 32P-labeled miR-122 or miR-122A (monoadenylated) duplexes (depicted in [D]). Small RNAs were extracted

at the times indicated and resolved by urea-PAGE and quantified by phosphorimaging (two replicates; bars represent the SD). Ethidium-bromide staining of total

small RNAs at each time point is shown as the loading control.

(B and C) 32P-labeled miR-122 and miR-122A (B) or let-7a and let-7aA (C) duplexes were incubated with extracts from human primary fibroblast for the times

indicated. The RNA was then extracted and resolved, and quantified by urea-PAGE and phosphorimaging (two replicates; bars refer to the SD).

(D) miR-122 and miR-122A duplexes used in (A) and (B), and Luciferase construct used in (E).

(E) Plasmids encoding firefly luciferasemRNA appendedwith the CPEB 30 UTR containing twomiR-122-binding sites (illustrated in [D]) andRenilla luciferase were

transfected into human fibroblasts alone or with miR-122 or miR-122A duplexes. Extracts prepared at the times indicated were analyzed for bioluminescence;

firefly activity was normalized to that ofRenilla activity. The values indicated are relative to control (nomiR-122) at (t0). The error bars are the SD of three replicates

(Student’s t test, *p < 0.01, **p < 0.001).
these possibilities, we selected 14 miRNAs that decreased in

amount as assessed by deep-sequencing read counts (and

confirmed by quantitative RT-PCR (qRT-PCR; not shown) and

experienced a reduction in monoadenylation upon Gld2 deple-

tion (shaded in the lower-left quadrant of Figure 3D) and

measured miRNA precursor levels (both pri-miRNA and pre-

miRNA). We then compared these values with mature miRNA

amounts and the fraction that was monoadenylated. We found

that the miRNAs fell into two categories. The first category is

exemplified by miR-34a and all of the miRNAs in the gray box

in Figure 4A. Here, Gld2 depletion that resulted in a decrease

of miRNA amounts was accompanied by similar reductions of

miRNA precursors (compare light gray bars of mature miRNAs

with dark gray bars of miRNA precursors). Using miRNA-34a

as an example, Gld2 depletion elicited a 75% reduction in mono-

adenylated species and a 25% reduction in the amount of

maturemiRNA. However, Gld2 depletion also elicited a reduction
1540 Cell Reports 2, 1537–1545, December 27, 2012 ª2012 The Aut
of miR34a precursor by �20%. Thus, the nearly parallel reduc-

tion of miR-34a precursor with mature miR-34a indicates that

Gld2 depletion most likely indirectly affected precursor levels,

such as by altering the translation of mRNA encoding an essen-

tial transcription or processing factor. Therefore, Gld2 depletion

probably had little effect on mature miR-34a stability.

Conversely, for other miRNAs such as miR-145 and let-7d

(and for all the ones in the red box in Figure 4A), mature miRNA

levels that were reduced upon Gld2 depletion did not reflect

a change in transcription and/or processing. Consider miR-145

as a specific example: Gld2 depletion elicited a�90% reduction

in mature miRNA, yet precursor levels not only did not decrease,

they increased �1.6-fold. Thus, in this case, the reduction of

mature miR-145 levels was accompanied only by a parallel

decrease in monoadenylated miR-145, suggesting that the

loss of monoadenylation was responsible for the instability of

the mature miRNA.
hors
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Figure 3. Gld2 Depletion Elicits Decreased

miRNA Monoadenylation

(A) Venn diagram and the percentage of mono-

adenylated (A) or monouridylated (U) species for

574 sequenced miRNA species in human primary

fibroblasts.

(B) Scatter plot of the fold change (log10) of mon-

oadenylated or monouridylated species for each

miRNA. The mean reduction of monoadenylated

species was 2.08-fold and that of monouridylated

species was 1.07-fold. The mean is indicated by

the large horizontal bars, and SDs are indicated by

the smaller bars (Student’s t test, p < 0.0001).

(C) Scatter plot of the percentage of mono-

adenylated species for each miRNA in non-

targeting or Gld2 siRNA-treated human primary

fibroblasts. The large horizontal bars represent

mean values and the smaller bars depict SDs

(Student’s t test, p = 0.016).

(D) Scatter plot of the change (log10) in mono-

adenylated miRNA species versus sequencing

read counts in control and Gld2-depleted fibro-

blasts. The shaded quadrant highlights miRNAs

that have fewer monoadenylated species and

a decreased read count upon Gld2 depletion.
To investigate whether monoadenylation indeed mediates the

stability of miR-145 and let-7d, but not miR-34a, we performed

in vitro assays as illustrated in Figure 2B. miR-34a was inherently

stable and the addition of a 30 monoadenylate residue had little

effect on its half-life. On the other hand, miR-145 and let-7d

were inherently unstable, and 30 monoadenylation enhanced

their stabilities (�3.5- and�2-fold, respectively). Taken together,

these results indicate that some (but not all) populations of

miRNAs are stabilized by 30 monoadenylation.

Monoadenylation-Mediated Stabilization of Specific
miRNAs Depends on Nucleotides in the 30 End
What distinguishes stable from unstable miRNAs, and does

monoadenylation increase the half-life of the ones that are

unstable? The nine let-7 family members offer an interesting

group of miRNAs with which to address these questions. The

data in Figure 2C show that let-7a is stable and is unaffected

by the addition of a 30 monoadenylate residue. The data in

Figures 4A and 4B demonstrate that let-7i, let-7d, and miR-98

are unstable and, at least for miR145 and let-7d, 30 monoadeny-

lation enhances stability. An alignment of all the let-7 family

members shows that some that are not affected by monoadeny-

lation (e.g., let-7f) share 100% identity with let-7a in the last 10 nt.

Conversely, members that are stabilized by monoadenylation

(e.g., let-7d, let7i, and miR-98) carry single or multiple base

substitutions compared with let-7a in the last 10 nt (Figure 4C).
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To test whether we could predict stabili-

zation of miRNAs by monoadenylation

based on sequence divergence from let-

7a, we analyzed additional members of

the let-7 family in the in vitro stability

assay. We chose let-7e, which would be

predicted to be stable and unaffected by
monoadenylation because it is identical to let-7a in the last 10

nt, and let-7b, which has two transitions (fromA to G) at positions

17 and 19, and would be predicted to be unstable but stabilized

by monoadenylation. Figures 4D and 4E show that these predic-

tions were borne out: let-7e was stable in the assay irrespective

of 30 monoadenylation, whereas the unstable let-7b was stabi-

lized by monoadenylation both in vitro and in vivo. These results

suggest that, at least for let-7 family members, specific nucleo-

tides outside of the seed region are important for monoadenyla-

tion sensitivity and stability.

DISCUSSION

The levels of maturemiRNAs are the products of tightly regulated

transcription, nuclear and cytoplasmic processing, and turnover

(Thomson et al., 2006). Although previous observations have

shown that Gld2 depletion reduces miRNA monoadenylation in

various cell types (Burroughs et al., 2010; Wyman et al., 2011),

the importance of this enzyme for miRNA stability has only

been inferred (Burns et al., 2011; Katoh et al., 2009). Here, we

present direct evidence that Gld2-catalyzed 30 monoadenylation

is one mechanism that controls the stability of specific mature

miRNA subpopulations. Although mature miRNAs are thought

to be generally stable as a result of their partnering with Argo-

naute (Diederichs and Haber, 2007; Pasquinelli, 2012), recent

studies indicate that their turnover is a far more complex affair.
cember 27, 2012 ª2012 The Authors 1541
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Figure 4. Monoadenylation Stabilizes Specific miRNAs

(A) Histogram comparing the changes from control levels (black bar, set at one in all cases) of pre-miRNAs (dark gray), mature miRNAs (light gray), and

monoadenylated species (red) upon Gld2 depletion. Pre-miRNA levels were quantified by qRT-PCR and are presented as the mean ± SEM from three inde-

pendent experiments. Mature miRNA levels and monoadenylated species were computed from deep-sequencing data as described in the Experimental

Procedures. Boxed in gray are miRNAs whose changes in mature levels upon Gld-2 depletion parallel the changes in their precursor forms. Boxed in red are

miRNAs whose change in mature levels by Gld2 depletion is not reflected by parallel changes in their precursor forms. Asterisk indicates passenger strand.

(B) Quantification of in vitro miRNA stability assays (performed and quantified as in Figure 2B) of miR-34a, miR-145, let-7d, and their corresponding mono-

adenylated forms.

(legend continued on next page)
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For example, miRNAs in neurons turn over much faster than in

other cells, and in retinal neurons the miR-183/96/182 cluster,

miR-201, and miR-211 decay with particular alacrity during

dark adaptation (Krol et al., 2010), which may indicate that

turnover rates of specific miRNAs are modified by metabolic

cues. Similarly, in mouse embryo fibroblasts, several members

of the miR-16 family are extraordinarily unstable, and their

instability allows precise and coordinated cell-cycle transitions

through derepression of specific mRNAs (Rissland et al.,

2011). With this study, we show that the same species of

miRNAs are not homogeneous within cells, and that subpopu-

lations have unique stabilities that depend on their state of

30 monoadenylation. This stabilization effect by nontemplated

monoadenylation also occurs in plants, where replacement of

the 30 nucleotide with an adenine results in reduced miRNA

decay (Lu et al., 2009). Clearly, monoadenylation is one of

multiple combinatorial determinants of miRNA stability. Indeed,

our results were similar to those of Rissland et al. (2011) and

Bail et al. (2010), who found that miRNA 30 nucleotides are

important for specific miRNA stability.

Our results also raise a number of questions concerning

monoadenylation: When does monoadenylation occur during

miRNA biogenesis, how does the modification increase miRNA

stability, and how are specific miRNAs selected for monoadeny-

lation? Although recent studies found mono- and oligonucleoti-

dylation of pre-miRNAs (Heo et al., 2012), the fact that we

observed modifications on miRNAs derived from both 50 and 30

miRNA precursor arms implies that monoadenylation occurs

after Dicer cleavage. Whether this modification occurs before

or after themiRNA is loaded into RISC is an unresolved question.

One model posits that miRNA stability is mediated by target

mRNA and Argonaute association (Pasquinelli, 2012). Because

30 UTRs are enriched in uridylate residues (Corà et al., 2007),

it is possible that the 30 adenylate base-pairs with a uridine,

thereby reinforcing the Argonaute-miRNA-target ternary com-

plex association and reducing accessibility to 30-> 50 exonucle-
ases. This model could also explain the partial penetrance of

the 30 monoadenylation stabilizing effect, in that other target

mRNAs may not have a corresponding uridylate to which the

adenylate may base-pair. Recent evidence suggests that

extensive miRNA-substrate complementarity activates miRNA

tailing and trimming (Ameres et al., 2010); however, the preva-

lence and physiological relevance of this phenomenon have

not yet been established. Another possibility is that monoadeny-

lated miRNAs constitute an inactive pool of molecules that can

eventually be shortened and reactivated by a currently unknown

trimming enzyme. This model would reconcile our findings with

those of Burroughs et al. (2010), who observed a reduction of

adenylated miRNAs in Ago2 complexes.

Because it contains no RNA-binding domains, Gld2 requires

an RNA-binding partner such as CPEB or Gld3 to act on specific

mRNAs (Kim and Richter, 2006; Wang et al., 2002); similarly,
(C) Alignment of the let-7 family members. Nucleotides in red are divergent from

monoadenylation, and miRNAs in green are family members that are stabilized b

(D) In vitro miRNA stability assays of let-7e and let-7b and their corresponding m

(E) In vivo miRNA stability assays of let-7e and let-7b and their corresponding m

(F) Loading controls (ethidium-bromide staining of small RNAs) corresponding to
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Gld2 could employ an as yet unidentified adaptor RNA-binding

protein to recognize specific miRNAs. However, the fact that

only one adenylate is added instead of a long poly(A) tail

suggests that the Gld2-miRNA interaction may be an ephemeral

one. Congruous with this observation is the lack of interaction

between Gld2 and protein RISC components (Burroughs et al.,

2010). Alternatively, monoadenylation may occur indiscrimin-

ately among miRNAs unless other molecules deny Gld2 access

to certain free 30 ends.
Interestingly, some of the miRNAs that were stabilized by

Gld2 monoadenylation, such as let-7 family members and miR-

145, are reduced in certain cancers (Volinia et al., 2012; Farazi

et al., 2011). A gene expression meta-analysis showed that

Gld2 is downregulated in several cancers compared with healthy

tissues (Rhodes et al., 2007), suggesting that the loss of this

enzyme could be involved in the initiation or propagation of

malignancies.
EXPERIMENTAL PROCEDURES

Monoadenylation Assays

Fibroblasts were electroporated (Amaxa; LONZA) with a Flag3X-CMV26-Gld2,

inactive Gld2 (D215A), or empty expression plasmid according to the manu-

facturer’s instructions. Immunoprecipitation experiments were carried out

following the procedure of Peritz et al. (2006) with the following modifications:

(1) M2 anti-Flag (Sigma)-coated Dynabeads (Invitrogen) were used instead

of agarose beads, and (2) washes with lysis buffer containing 1 M urea

were omitted. After the final wash, the beadswere resuspended and incubated

in 13 adenylation buffer containing 20 mM Tris-HCl (pH 7.5), 50 mM KCl,

25 mM MnCl2, 50 mg/ml BSA, 0.53 U/ml, 2.47 kBq/ml [a-32P]ATP (Katoh

et al., 2009). After 30 min, the RNA was phenol-chloroform extracted, ethanol

precipitated, and resolved by urea-PAGE. In other cases, �5 mg of GST-Gld2

was used in the same conditions as above. The radioactive signals were

quantified using a Storm phosphorimager (Amersham).

Pre-miRNA Processing Assay

Control or Gld2-depleted cells were lysed in 50 mM Tris-HCl, pH 8.0, 150 mM

NaCl, 0.1% NP-40, 13 cOmplete protease inhibitors (Roche), and 10%

glycerol. For each reaction, 50 mg of extract was used together with in vitro

T7-synthesized and a-32P-UTP-labeled pre-miR-122 according to Ishizuka

et al. (2006). The RNA was extracted and precipitated before and after

90 min of incubation, and resolved by urea-PAGE and phosphorimaging.

miRNA Stability Assays

Guide strands were T4 polynucleotide kinase (New England Biolabs) 50 labeled
with g32P-ATP according to standard protocols and then precipitated and

quantified. miRNA duplexes were annealed by incubating equimolar amounts

of labeled guide with radioinert passenger strands in Tris-EDTA buffer at 95�C
for 2 min, and then used at room temperature.

For the transfection-based stability assay shown in Figure 2A, miRNA

duplexes (�10 pmol) were electroporated into nearly confluent cells and

harvested at the times indicated. Small RNAs were extracted with TRIzol

(Life Technologies), precipitated, and then resolved by urea-PAGE.

For the in vitro stability assays, miRNA duplexes were incubated with 110 ml

of master mix containing �40 pmol duplexes and 200 mg of extract prepared

as described above for the pre-miRNA processing assay. Then 25 ml aliquots
those in let-7a, miRNAs in blue are family members that are not stabilized by

y monoadenylation.

onoadenylated forms.

onoadenylated forms.

same samples denoted in (E).
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were removed at the times indicated, and RNA was extracted, precipitated,

and resolved by urea-PAGE and phosphorimaging.

Luciferase Assay

The luciferase constructs described in Burns et al. (2011) together with miR-

122 or miR-122A, or no miRNA were electroporated into fibroblasts according

to the manufacturer’s protocol (Amaxa; LONZA). The cells were harvested at

the times indicated and extracts were prepared bymeans of a Dual-Luciferase

Assay (Promega) according to the manufacturer’s instructions. Luminescence

was measured with an Infinite Reader (Tecan). Firefly activity was normalized

to Renilla activity to control for electroporation efficiency.

Small RNA Cloning and Bioinformatic Analysis

Small RNA libraries were prepared as described in Gu et al. (2009). Human

genome GRC37.65 and miRBase release 18 were used as genomic and

miRNA annotation databases, respectively. Custom PERL scripts were used

to ‘‘de-barcode’’ the sample and remove the 50 and 30 linkers. Bowtie (Lang-

mead et al., 2009) 0.12.7 with parameters -v 3 -a–best–strata -m 200 was

used to map deep-sequence reads to the genome. Total count linear scaling

was used as a normalization method for differential miRNA analysis. Matches

were assigned to miRNA loci plus 4 nt upstream and downstream to allow for

nontemplated nucleotide addition analysis; only loci with at least 500 matched

reads were considered. The mutation rates for each miRNA nucleotide posi-

tion ±4 nt was computed. Divergent nucleotides at position +1 over the WT

were calculated with custom PERL scripts available upon request.

See Extended Experimental Procedures for additional details.
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