When is the annihilating ideal graph of a zero-dimensional quasisemilocal commutative ring complemented?

S. Visweswaran*, Hiren D. Patel
Department of Mathematics, Saurashtra University, Rajkot, 360 005, India

Received 1 July 2013; received in revised form 13 June 2014; accepted 23 June 2014
Available online 1 August 2014

Abstract

Let R be a commutative ring with identity. Let $A(R)$ denote the collection of all annihilating ideals of R (that is, $A(R)$ is the collection of all ideals I of R which admits a nonzero annihilator in R). Let $A G(R)$ denote the annihilating ideal graph of R. In this article, necessary and sufficient conditions are determined in order that $A G(R)$ is complemented under the assumption that R is a zero-dimensional quasisemilocal ring which admits at least two nonzero annihilating ideals and as a corollary we determine finite rings R such that $A G(R)$ is complemented under the assumption that $A(R)$ contains at least two nonzero ideals.

Keywords: Annihilating ideal graph of a commutative ring; Complemented graph; Zerodimensional quasisemilocal ring; Special principal ideal ring

2010 Mathematics Subject Classification: 13A15

1. Introduction

The rings considered in this article are nonzero commutative rings with identity. Recall from [5] that an ideal I of a ring R is an annihilating ideal if there exists $r \in R \backslash\{0\}$ such that $\operatorname{Ir}=(0)$. As in [5], we denote by $A(R)$, the set of all annihilating ideals of R and by $A(R)^{*}$, the set of all nonzero annihilating ideals of R. In [5], the authors introduced the concept of annihilating ideal graph of R, denoted by $A G(R)$, which is defined as follows: $A G(R)$ is an undirected graph whose vertex set is $A(R)^{*}$ and two distinct vertices I and J are adjacent in this graph if and only if $I J=(0)$. Several graph theoretic properties of the annihilating ideal graph of any commutative ring with identity and their interplay with

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2014.06.001
the ring theoretic properties have been investigated in [5,6]. Moreover, the annihilating ideal graph of a commutative ring is also studied in [1,7]. In this article we determine necessary and sufficient conditions in order that $A G(R)$ is complemented under the assumption that R is a zero-dimensional quasisemilocal ring such that $A(R)^{*}$ contains at least two elements. As any finite ring is zero-dimensional and has only finitely many prime ideals, we answer the question of when $A G(R)$ is complemented for any finite ring R which admits at least two nonzero annihilating ideals as a corollary to the results proved in this article.

This article is motivated by the interesting theorems proved on the annihilating ideal graph of a commutative ring in [1,5-7], and moreover, we are very much inspired by the research article [2] in which the authors among other results determined necessary and sufficient conditions in order that $\Gamma(R)$ is complemented, where $\Gamma(R)$ is the zero-divisor graph of R.

It is useful to recall the following definitions from [2,11]. Let $G=(V, E)$ be a simple undirected graph. Let $a, b \in V$. We define $a \leq b$ if a and b are not adjacent and each vertex of G adjacent to b is also adjacent to a. We define $a \sim b$ if $a \leq b$ and $b \leq a$. Thus $a \sim b$ if and only if $\{c \in V \mid c$ is adjacent to a in $G\}=\{d \in V \mid d$ is adjacent to b in $G\}$. Let $a, b \in V$, $a \neq b$. We say that a and b are orthogonal, written $a \perp b$, if a and b are adjacent and there is no vertex c of G which is adjacent to both a and b. We say that G is complemented, if for each vertex a of G, there is a vertex b of G (called a complement of a) such that $a \perp b$. We say that G is uniquely complemented if G is complemented and whenever $a \perp b$ and $a \perp c$, then $b \sim c[2,11]$. By dimension of a ring, we mean its Krull dimension and we use the abbreviation $\operatorname{dim} R$ to denote the dimension of a ring R. A ring R is said to be quasilocal (respectively. quasisemilocal) if R has a unique maximal ideal (respectively, R has only finitely many maximal ideals). By a local (respectively, a semilocal) ring, we mean a Noetherian quasilocal (respectively, a Noetherian quasisemilocal) ring. Recall that a local ring (R, M) is said to be a special principal ideal ring (SPIR), if R is a principal ideal ring and M is nilpotent. Whenever a set A is a subset of a set B and $A \neq B$, we denote it symbolically by $A \subset B$.

It is also useful to recall the following definitions and results from commutative ring theory. Let R be a ring. Let M be a unitary R-module. By the set of zero-divisors of M as an R-module denoted by $Z_{R}(M)$, we mean $Z_{R}(M)=\{r \in R \mid r m=0$ for some $m \in$ $M, m \neq 0\}$. We denote $Z_{R}(R)$ simply by $Z(R)$. Recall from [8] that a prime ideal P of R is said to be a maximal N -prime of an ideal I of R, if P is maximal with respect to the property of being contained in $Z_{R}(R / I)$. It follows from [10, Theorem 1] that maximal N primes of (0) always exist and if $\left\{P_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of all maximal N-primes of (0) in R, then $Z(R)=\cup_{\alpha \in \lambda} P_{\alpha}$.

In Section 2, it is shown that $A G(R)$ is complemented for any reduced ring R which is not an integral domain. Let R be a ring which is not reduced. In Section 3, we state and prove several necessary conditions in order that $A G(R)$ is complemented. The main theorem proved in Section 4 is Theorem 4.8 which determines necessary and sufficient conditions in order that $A G(R)$ is complemented, where R is a zero-dimensional quasilocal ring which admits at least two nonzero annihilating ideals. In Section 5, we consider zero-dimensional quasisemilocal rings R with at least two nonzero annihilating ideals and in Theorem 5.6, necessary and sufficient conditions are determined in order that $A G(R)$ is complemented. In Section 6, we consider rings R which are not reduced and which admit only a finite number of maximal N -primes of (0). We denote the finite set of maximal N -primes of (0) in R by $\left\{P_{1}, \ldots, P_{n}\right\}$. We determine necessary and sufficient conditions in order that $A G(R)$ is
complemented under the additional hypothesis that $\cap_{i=1}^{n} P_{i}=\operatorname{nil}(R)$, where $\operatorname{nil}(R)$ denotes the nilradical of R (see Theorems 6.3 and 6.9).

2. A SUFFICIENT CONDITION UNDER WHICH $A G(R)$ IS COMPLEMENTED

The purpose of this section is to prove that if R is any reduced ring which is not an integral domain, then $A G(R)$ is complemented. We begin with the following lemma. This is an analogue to [2, Lemma 3.3]. Again we emphasize that all the rings considered in this article are commutative with identity.

Lemma 2.1. Let R be a ring. Let $I, J \in A(R)^{*}$. The following statements are equivalent:
(i) $I \perp J, I^{2} \neq(0)$, and $J^{2} \neq(0)$.
(ii) $I J=(0)$ and $I+J \notin A(R)$.

Proof. (i) \Rightarrow (ii) Since $I \perp J$, it is clear that $I J=(0)$. Suppose that $I+J \in A(R)$. Then there exists $a \in R \backslash\{0\}$ such that $a(I+J)=(0)$. Hence $a I=(0)$ and $a J=(0)$. Since $I^{2} \neq(0)$ and $J^{2} \neq(0)$, it follows that $R a \neq I$ and $R a \neq J$. Observe that the ideal $R a \in A(R)^{*}$ is such that $I(R a)=(0)$ and $J(R a)=(0)$. This is in contradiction to the hypothesis that $I \perp J$. Hence we obtain that $I+J \notin A(R)$.
(ii) \Rightarrow (i) If $I^{2}=(0)$, then from $I J=(0)$, it follows that $(I+J) I=(0)$. This contradicts the assumption that $I+J \notin A(R)$. Hence we obtain that $I^{2} \neq(0)$. Similarly, it follows that $J^{2} \neq(0)$. Now it is clear that $I \neq J$. Let K be an ideal of R such that $I K=(0)$ and $J K=(0)$. Then $(I+J) K=(0)$. Since $I+J \notin A(R)$, it follows that $K=(0)$. This proves that $I \perp J$.

Proposition 2.2. Let R be a reduced ring which is not an integral domain. Then $A G(R)$ is complemented. Moreover, $A G(R)$ is uniquely complemented.

Proof. Since R is not an integral domain, there exist $a, b \in R \backslash\{0\}$ such that $a b=0$. Note that $R a, R b \in A(R)^{*}$. Since R is reduced it follows from $a b=0$ with $a, b \in R \backslash\{0\}$ that $R a \neq R b$. Hence $\left|A(R)^{*}\right| \geq 2$.

Let $I \in A(R)^{*}$. Hence there exists $x \in R \backslash\{0\}$ such that $I x=(0)$. Let $J=\left((0):_{R} I\right)$. As any nonzero element of I annihilates J, it is clear that $J \in A(R)^{*}$. We assert that $I \perp J$. It is clear that $I J=(0)$. Hence in view of (ii) $\Rightarrow(\mathrm{i})$ of Lemma 2.1, it is enough to show that $I+J \notin A(R)$. Let $r \in R$ be such that $(I+J) r=(0)$. Then $I r=(0)$ and $J r=(0)$. Hence $r \in J$ and from $J r=(0)$, it follows that $r^{2}=0$. Since R is reduced, we obtain that $r=0$. This proves that $I \perp J$. Thus each $I \in A(R)^{*}$ admits a complement in $A G(R)$. This shows that $A G(R)$ is complemented.

We next verify that $A G(R)$ is uniquely complemented. Let $I \in A(R)^{*}$. Let $J_{1}, J_{2} \in$ $A(R)^{*}$ be such that $I \perp J_{1}$ and $I \perp J_{2}$. Since R is reduced, it follows that $A^{2} \neq(0)$ for any nonzero ideal A of R. As $I \perp J_{1}$ and $I \perp J_{2}$, we know from (i) \Rightarrow (ii) of Lemma 2.1 that $I+J_{i} \notin A(R)$ for $i=1,2$. Hence $\left(I+J_{1}\right) J_{2} \neq(0)$. This implies that $J_{1} J_{2} \neq(0)$ since $I J_{2}=(0)$. Let $K \in A(R)^{*}$ be such that K is adjacent to J_{2}. Then $K J_{2}=(0)$. From $I J_{1}=(0)$, it follows that $\left(I+J_{2}\right) K J_{1}=(0)$. As $I+J_{2} \notin A(R)$, it follows that $K J_{1}=(0)$. This proves that $J_{1} \leq J_{2}$. Similarly, using the facts that $I J_{2}=(0)$ and $I+J_{1} \notin A(R)$, it follows that $J_{2} \leq J_{1}$. Hence we obtain that $J_{1} \sim J_{2}$. This proves that $A G(R)$ is uniquely complemented.

3. SOME NECESSARY CONDITIONS IN ORDER THAT $A G(R)$ IS COMPLEMENTED, WHERE R is NOT A REDUCED RING

In this section we consider rings R such that the nilradical of R is nonzero. We use $\operatorname{nil}(R)$ to denote the nilradical of a ring R. The aim of this section is to determine some necessary conditions in order that $A G(R)$ is complemented. We begin with the following lemma.

Lemma 3.1. Let R be a ring. If $a \in R \backslash\{0\}$, then for any $b \in \operatorname{nil}(R), R a \neq R a b$.
Proof. If $R a=R a b$, then $a=r a b$ for some $r \in R$. This implies that $a(1-r b)=0$. Since $b \in \operatorname{nil}(R), 1-r b$ is a unit in R. Hence from $a(1-r b)=0$, it follows that $a=0$. This is a contradiction. Hence $R a \neq R a b$.

The following lemma is obvious.
Lemma 3.2. Let I be a nonzero nilpotent ideal of a ring R. Let n be the least integer $p \geq 2$ with the property that $I^{p}=(0)$. Then $I^{i} \neq I^{j}$ for all distinct $i, j \in\{1,2, \ldots, n\}$.

We next have the following lemma which shows that if $A G(R)$ is complemented, then $\operatorname{nil}(R)$ must be nilpotent.

Lemma 3.3. Let R be a ring. If $A G(R)$ is complemented, then $(\operatorname{nil}(R))^{4}=(0)$.
Proof. First we show that for any $a \in \operatorname{nil}(R), a^{4}=0$. Suppose that $a^{4} \neq 0$. Let n be the least integer $p \geq 5$ with the property that $a^{p}=0$. Since $A G(R)$ is complemented, there exists $I \in A(R)^{*}$ such that $R a^{n-3} \perp I$. It follows from Lemma 3.2 that $R a^{i} \neq R a^{j}$ for all distinct $i, j \in\{1,2, \ldots, n\}$. Hence in particular $R a^{n-1} \neq R a^{n-2}$. Thus there exists $j \in\{n-2, n-1\}$ such that $I \neq R a^{j}$. From $\left(R a^{n-3}\right) I=(0)$, it follows that $\left(R a^{j}\right) I=(0)$. Since $n \geq 5$, it is clear that $R a^{j} R a^{n-3}=(0)$. Hence the ideal $R a^{j}$ is adjacent to both $R a^{n-3}$ and I. This is impossible since $R a^{n-3} \perp I$. Therefore, for any $a \in \operatorname{nil}(R), a^{4}=0$.

Let $a, b, c \in \operatorname{nil}(R)$. We assert that $a^{2} b c=0$. Suppose that $a^{2} b c \neq 0$. As $A G(R)$ is complemented, there exists $I \in A(R)^{*}$ such that $R a^{2} \perp I$. From ($R a^{2}$) I=(0), it follows that $\left(R a^{2} b\right) I=\left(R a^{2} b c\right) I=(0)$. It follows from Lemma 3.1 that the ideals $R a^{2}, R a^{2} b$, and $R a^{2} b c$ are distinct. Hence either $I \neq R a^{2} b$ or $I \neq R a^{2} b c$. If $I \neq R a^{2} b$, then it follows from $a^{4}=0$ that $R a^{2} b$ is adjacent to both $R a^{2}$ and I. This is impossible since $R a^{2} \perp I$. Similarly, if $I \neq R a^{2} b c$, then we obtain that $R a^{2} b c$ is adjacent to both $R a^{2}$ and I. This is not possible since $R a^{2} \perp I$. Hence for any $a, b, c \in \operatorname{nil}(R), a^{2} b c=0$.

Let $a, b, c, d \in \operatorname{nil}(R)$. We claim that $a b c d=0$. Suppose that $a b c d \neq 0$. It follows from Lemma 3.1 that the ideals $R a, R a b c$, and $R a b c d$ are distinct. Since $A G(R)$ is complemented, there exists $I \in A(R)^{*}$ such that $R a \perp I$. It follows from $(R a) I=(0)$ that $(R a b c) I=(0)$ and $(R a b c d) I=(0)$. Observe that either $I \neq R a b c$ or $I \neq R a b c d$. Since $a^{2} b c=0$, $(R a)(R a b c)=(0)$ and $(R a)(R a b c d)=(0)$. If $I \neq R a b c$, then we obtain that $R a b c$ is adjacent to both $R a$ and I. This is impossible since $R a \perp I$. Similarly $I \neq R a b c d$ is also impossible. This proves that for any $a, b, c, d \in \operatorname{nil}(R), a b c d=0$.

This shows that $(\operatorname{nil}(R))^{4}=(0)$.
The following proposition provides some more necessary conditions on R if $(\operatorname{nil}(R))^{3} \neq$ (0) and $A G(R)$ is complemented.

Proposition 3.4. Let R be a ring such that $(\operatorname{nil}(R))^{3} \neq(0)$. If $A G(R)$ is complemented, then the following hold:
(i) $(\operatorname{nil}(R))^{i} \perp(\operatorname{nil}(R))^{3}$ for $i=1,2$.
(ii) $(\operatorname{nil}(R))^{3}=R x$ for any $x \in(\operatorname{nil}(R))^{3} \backslash\{0\}$.
(iii) $(\operatorname{nil}(R))^{2}=R y$ for any $y \in(\operatorname{nil}(R))^{2} \backslash(\operatorname{nil}(R))^{3}$.
(iv) $\operatorname{nil}(R)=R z$ for any $z \in \operatorname{nil}(R) \backslash(\operatorname{nil}(R))^{2}$.
(v) If I is any ideal of R such that $I \subseteq \operatorname{nil}(R)$, then $I \in\left\{(0), \operatorname{nil}(R),(\operatorname{nil}(R))^{2},(\operatorname{nil}(R))^{3}\right\}$ and so $I \in\left\{(0), R z, R z^{2}, R z^{3}\right\}$ for any $z \in \operatorname{nil}(R) \backslash(\operatorname{nil}(R))^{2}$.

Proof. Since $A G(R)$ is complemented, we know from Lemma 3.3 that $(\operatorname{nil}(R))^{4}=(0)$.
(i) Let $i \in\{1,2\}$. Thus $(\operatorname{nil}(R))^{i}(\operatorname{nil}(R))^{3}=(0)$. By hypothesis, $(\operatorname{nil}(R))^{3} \neq(0)$. Hence $(\operatorname{nil}(R))^{i}$ has a nonzero annihilator and so $(\operatorname{nil}(R))^{i} \in A(R)^{*}$. As $A G(R)$ is complemented, there exists $I \in A(R)^{*}$ such that $(\operatorname{nil}(R))^{i} \perp I$. Hence $(n i l(R))^{i} I=(0)$ and so it follows that $(\operatorname{nil}(R))^{3} I=(0)$. It is already noted that $(\operatorname{nil}(R))^{3}(\operatorname{nil}(R))^{i}=(0)$. Moreover, since $(\operatorname{nil}(R))^{3} \neq(0)$, we obtain from Lemma 3.2 that $(\operatorname{nil}(R))^{3} \neq(\operatorname{nil}(R))^{i}$. As $(\operatorname{nil}(R))^{i} \perp I$, the above arguments imply that $I=(\operatorname{nil}(R))^{3}$. This proves that $(\operatorname{nil}(R))^{i} \perp(\operatorname{nil}(R))^{3}$ for $i=1,2$.
(ii) Let $x \in(n i l(R))^{3} \backslash\{0\}$. As $(n i l(R))^{4}=(0)$, it follows that $R x(n i l(R))=(0)$ and $R x(\operatorname{nil}(R))^{3}=(0)$. We know from (i) that $\operatorname{nil}(R) \perp(\operatorname{nil}(R))^{3}$.

Since $R x \neq(0)$ and $R x \neq \operatorname{nil}(R)$, we obtain that $R x=(\operatorname{nil}(R))^{3}$.
(iii) Let $y \in(n i l(R))^{2} \backslash(n i l(R))^{3}$. Since $(\operatorname{nil}(R))^{4}=(0)$, we obtain that $\operatorname{Ry}(n i l(R))^{2}=$ (0) and $\operatorname{Ry}(\operatorname{nil}(R))^{3}=(0)$. We know from (i) that $(\operatorname{nil}(R))^{2} \perp(\operatorname{nil}(R))^{3}$. As $R y \notin$ $\left\{(0),(\operatorname{nil}(R))^{3}\right\}$, it follows that $R y=(\operatorname{nil}(R))^{2}$.
(iv) Let $y \in(\operatorname{nil}(R))^{2} \backslash(\operatorname{nil}(R))^{3}$. Let $\phi: \operatorname{nil}(R) \rightarrow(\operatorname{nil}(R))^{3}$ be the mapping given by $\phi(a)=a y$ for any $a \in \operatorname{nil}(R)$. It is clear that ϕ is a homomorphism of R-modules. We assert that ϕ is onto. Let $b \in(\operatorname{nil}(R))^{3}$. Note that $(\operatorname{nil}(R))^{3}=\operatorname{nil}(R)(\operatorname{nil}(R))^{2}$. Since $(\operatorname{nil}(R))^{2}=R y$ by (iii), we obtain that $(\operatorname{nil}(R))^{3}=(n i l(R)) R y$. Hence $b=a y$ for some $a \in \operatorname{nil}(R)$. Hence $\phi(a)=a y=b$. This shows that ϕ is onto. We know from the fundamental theorem of homomorphism of modules that $\operatorname{nil}(R) / \operatorname{ker} \phi \cong(n i l(R))^{3}$ as R-modules. We know from (ii) that for any nonzero $x \in(\operatorname{nil}(R))^{3}, R x=(n i l(R))^{3}$. Hence it follows that for any $z \in \operatorname{nil}(R) \backslash \operatorname{ker} \phi, \operatorname{nil}(R) / \operatorname{ker} \phi=R(z+\operatorname{ker} \phi)$. We claim that $\operatorname{ker} \phi=(\operatorname{nil}(R))^{2}$. As $(\operatorname{nil}(R))^{4}=(0)$ and $y \in(\operatorname{nil}(R))^{2}$, it is clear that $(\operatorname{nil}(R))^{2} \subseteq \operatorname{ker} \phi$. Let $a \in \operatorname{ker} \phi$. Hence $(R a) R y=\operatorname{Ra}(\operatorname{nil}(R))^{2}=(0)$ and $\operatorname{Ra}(\operatorname{nil}(R))^{3}=(0)$. By (i), $(\operatorname{nil}(R))^{2} \perp(\operatorname{nil}(R))^{3}$. Hence we obtain that $R a \in\left\{(0),(\operatorname{nil}(R))^{2},(n i l(R))^{3}\right\}$. This implies that $a \in(n i l(R))^{2}$. Hence $\operatorname{ker} \phi \subseteq(\operatorname{nil}(R))^{2}$ and so $\operatorname{ker} \phi=(\operatorname{nil}(R))^{2}$.

Let $z \in \operatorname{nil}(R) \backslash(\operatorname{nil}(R))^{2}$. Hence $z \notin \operatorname{ker} \phi$. As is remarked in the previous paragraph, $\operatorname{nil}(R) / \operatorname{ker} \phi=R(z+\operatorname{ker} \phi)$. Hence it follows that $\operatorname{nil}(R)=R z+\operatorname{ker} \phi=R z+(n i l(R))^{2}$. Therefore, we obtain that $\operatorname{nil}(R)=R z+\left(R z+(\operatorname{nil}(R))^{2}\right)^{2}$. Now it is clear that $n i l(R)=$ $R z$ since $(\operatorname{nil}(R))^{4}=(0)$. Thus for any $z \in \operatorname{nil}(R) \backslash(\operatorname{nil}(R))^{2}, \operatorname{nil}(R)=R z$.
(v) Let I be any nonzero ideal of R such that $I \subseteq \operatorname{nil}(R)$. Since $(n i l(R))^{4}=(0)$, there exists $i \in\{1,2,3\}$ such that $I \subseteq(\operatorname{nil}(R))^{i}$ but $I \nsubseteq(\operatorname{nil}(R))^{i+1}$. Let $a \in I \backslash(\operatorname{nil}(R))^{i+1}$. Hence $a \in(\operatorname{nil}(R))^{i} \backslash(n i l(R))^{i+1}$. It follows from (ii), (iii), or (iv) that $(n i l(R))^{i}=R a$. As $a \in I$, we obtain that $(\operatorname{nil}(R))^{i} \subseteq I$ and so $I=(\operatorname{nil}(R))^{i}$. This shows that $\left\{(0), \operatorname{nil}(R),(\operatorname{nil}(R))^{2},(\operatorname{nil}(R))^{3}\right\}$ is the set of all ideals of R which are contained in $\operatorname{nil}(R)$. Let $z \in \operatorname{nil}(R) \backslash(\operatorname{nil}(R))^{2}$. Then from (iv), it follows that $\operatorname{nil}(R)=R z$ and so $\left\{(0), R z, R z^{2}, R z^{3}\right\}$ is the set of all ideals of R which are contained in $\operatorname{nil}(R)$.

We next consider rings R such that $(\operatorname{nil}(R))^{3}=(0)$ but $(\operatorname{nil}(R))^{2} \neq(0)$ and determine some necessary conditions in order that $A G(R)$ is complemented.

Proposition 3.5. Let R be a ring such that $(n i l(R))^{3}=(0)$ but $(\operatorname{nil}(R))^{2} \neq(0)$. If $A G(R)$ is complemented, then the following hold:
(i) $\operatorname{nil}(R) \perp(\operatorname{nil}(R))^{2}$.
(ii) $(\operatorname{nil}(R))^{2}=R x$ for any $x \in(\operatorname{nil}(R))^{2} \backslash\{0\}$.
(iii) If $a b \neq 0$ for some $a, b \in \operatorname{nil}(R)$, then $R a \perp(\operatorname{nil}(R))^{2}$ and $R b \perp(\operatorname{nil}(R))^{2}$.
(iv) If $z^{2} \neq 0$ for some $z \in \operatorname{nil}(R)$, then $\operatorname{nil}(R)=R a$ for any $a \in \operatorname{nil}(R) \backslash(\operatorname{nil}(R))^{2}$.
(v) If $z^{2}=0$ for each $z \in \operatorname{nil}(R)$, then $\operatorname{nil}(R)$ is not principal but there exist $a, b \in \operatorname{nil}(R)$ such that $\operatorname{nil}(R)=R a+R b$.

Proof. Since $(\operatorname{nil}(R))^{2} \neq(0)$ and $(\operatorname{nil}(R))^{3}=(0)$, it is clear that $\operatorname{nil}(R) \in A(R)^{*}$.
(i) By hypothesis, $A G(R)$ is complemented. Hence there exists $I \in A(R)^{*}$ such that $\operatorname{nil}(R) \perp I$. Hence $I(\operatorname{nil}(R))=(0)$. Therefore, $I(\operatorname{nil}(R))^{2}=(0)$. Since $(\operatorname{nil}(R))^{3}=(0)$, it follows that $(\operatorname{nil}(R))^{2} \operatorname{nil}(R)=(0)$. As $\operatorname{nil}(R) \perp I$ and $(\operatorname{nil}(R))^{2} \notin\{(0), \operatorname{nil}(R)\}$, we obtain that $(\operatorname{nil}(R))^{2}=I$. This proves that $\operatorname{nil}(R) \perp(\operatorname{nil}(R))^{2}$.
(ii) Let $x \in(\operatorname{nil}(R))^{2} \backslash\{0\}$. Since $(\operatorname{nil}(R))^{3}=(0)$, it follows that $R x(\operatorname{nil}(R))=(0)$ and $R x(\operatorname{nil}(R))^{2}=(0)$. We know from (i) that $\operatorname{nil}(R) \perp(\operatorname{nil}(R))^{2}$. As $R x \notin\{(0), \operatorname{nil}(R)\}$, we obtain that $R x=(\operatorname{nil}(R))^{2}$.
(iii) Let $a, b \in \operatorname{nil}(R)$ be such that $a b \neq 0$. Since $A G(R)$ is complemented, there exists $I \in A(R)^{*}$ such that $R a \perp I$. Hence $(R a) I=(0)$ and so $(R a b) I=(0)$. As $(\operatorname{nil}(R))^{3}=(0)$, we obtain that $(R a)(R a b)=(0)$. Thus the nonzero ideal Rab is such that $(R a)(R a b)=(0)$ and $(R a b) I=(0)$. Since $R a \perp I, R a b \in\{I, R a\}$. We know from Lemma 3.1 that $R a \neq R a b$. Hence $R a b=I$. Therefore, $R a \perp \operatorname{Rab}$. By (ii), $(\operatorname{nil}(R))^{2}=$ $R a b$. This proves that $R a \perp(\operatorname{nil}(R))^{2}$. Similarly, it follows that $R b \perp(\operatorname{nil}(R))^{2}$.
(iv) Suppose that there exists $z \in \operatorname{nil}(R)$ such that $z^{2} \neq 0$. Consider the mapping $\psi: \operatorname{nil}(R) \rightarrow(\operatorname{nil}(R))^{2}$ given by $\psi(y)=y z$ for any $y \in \operatorname{nil}(R)$. It is clear that ψ is a homomorphism of R-modules. Since $(\operatorname{nil}(R))^{2}=R z^{2}$ by (ii), it follows that ψ is onto. Hence we obtain from the fundamental theorem of homomorphism of modules that $n i l(R) / \operatorname{ker} \psi \cong(\operatorname{nil}(R))^{2}$ as R-modules. We know from (ii) that for any nonzero $x \in$ $(\operatorname{nil}(R))^{2}, R x=(n i l(R))^{2}$. Thus for any $a \in \operatorname{nil}(R) \backslash \operatorname{ker} \psi, \operatorname{nil}(R) / \operatorname{ker} \psi=R(a+\operatorname{ker} \psi)$. We claim that $\operatorname{ker} \psi=(\operatorname{nil}(R))^{2}$. Since $\operatorname{ker} \psi \subseteq \operatorname{nil}(R)$ and $(\operatorname{nil}(R))^{3}=(0)$, it follows that $(\operatorname{ker} \psi)(\operatorname{nil}(R))^{2}=(0)$. As $\operatorname{ker} \psi \subseteq\left((0):_{R} z\right)$, we obtain that $R z(\operatorname{ker} \psi)=(0)$. We know from (iii) that $R z \perp(\operatorname{nil}(R))^{2}$. Hence $\operatorname{ker} \psi \in\left\{(0), R z,(n i l(R))^{2}\right\}$. As $z^{3}=0$, $z^{2} \in \operatorname{ker} \psi$. Hence $\operatorname{ker} \psi \neq(0)$. Since $z \notin \operatorname{ker} \psi$, it is clear that $\operatorname{ker} \psi \neq R z$. Now it follows that $\operatorname{ker} \psi=(\operatorname{nil}(R))^{2}$. Let $a \in \operatorname{nil}(R) \backslash(\operatorname{nil}(R))^{2}$. Hence as is already observed in this proof we obtain that $\operatorname{nil}(R) /(\operatorname{nil}(R))^{2}=R\left(a+(n i l(R))^{2}\right)$. This shows that $n i l(R)=R a+(n i l(R))^{2}$. Hence $\operatorname{nil}(R)=R a+\left(R a+(n i l(R))^{2}\right)^{2}$. This implies that $\operatorname{nil}(R)=R a$ since $(\operatorname{nil}(R))^{3}=(0)$.
(v) Since $(\operatorname{nil}(R))^{2} \neq(0)$ and by assumption $z^{2}=0$ for each $z \in \operatorname{nil}(R)$, it is clear that $\operatorname{nil}(R)$ is not principal. As $(\operatorname{nil}(R))^{2} \neq(0)$, there exist $a, b \in \operatorname{nil}(R)$ such that $a b \neq(0)$. Consider the homomorphism of R-modules $f: \operatorname{nil}(R) \rightarrow(\operatorname{nil}(R))^{2}$ given by $f(z)=z b$ for any $z \in \operatorname{nil}(R)$. By (ii), $(\operatorname{nil}(R))^{2}=\operatorname{Rab}$. Hence it follows that f is onto. We assert that $\operatorname{ker} f=R b$. Since $\operatorname{ker} f \subseteq \operatorname{nil}(R)$ and $(\operatorname{nil}(R))^{3}=(0)$, it follows that $(\operatorname{ker} f)(n i l(R))^{2}=(0)$. As $\operatorname{ker} f \subseteq\left((0):_{R} b\right)$, it follows that $R b(\operatorname{ker} f)=(0)$. We know from (iii) that $R b \perp(\operatorname{nil}(R))^{2}$. Hence $\operatorname{ker} f \in\left\{(0), R b,(\operatorname{nil}(R))^{2}\right\}$. Since $b^{2}=0, b \in$
ker f and so $\operatorname{ker} f \neq(0)$. We know from Lemma 3.1 that $R b \neq \operatorname{Rab}$. Hence $b \notin(\operatorname{nil}(R))^{2}$. Hence we obtain that $\operatorname{ker} f \neq(\operatorname{nil}(R))^{2}$. Therefore, it follows that $\operatorname{ker} f=R b$. Now f is a homomorphism of R-modules from $\operatorname{nil}(R)$ onto $(\operatorname{nil}(R))^{2}$. Hence by the fundamental theorem of homomorphism of modules, it follows that $n i l(R) / \operatorname{ker} f \cong(n i l(R))^{2}$ as R modules. We know from (ii) that $(\operatorname{nil}(R))^{2}=R x$ for any nonzero $x \in(\operatorname{nil}(R))^{2}$ and as $a \notin \operatorname{ker} f$, it follows that $\operatorname{nil}(R) / \operatorname{ker} f=R(a+\operatorname{ker} f)$. This implies that $\operatorname{nil}(R)=$ $R a+\operatorname{ker} f=R a+R b$.

4. ZERO-DIMENSIONAL QUASILOCAL RINGS R SUCH THAT $\boldsymbol{A} \boldsymbol{G}(\boldsymbol{R})$ IS COMPLEMENTED

The aim of this section is to determine all zero-dimensional quasilocal rings R such that $A G(R)$ is complemented. We begin with the following lemma.

Lemma 4.1. Let R be a ring such that $\operatorname{dim} R=0$ and R is quasilocal with M as its unique maximal ideal. Suppose that $M^{3} \neq(0)$. Then the following statements are equivalent:
(i) $A G(R)$ is complemented.
(ii) $M^{4}=(0)$ and R is a SPIR.

Proof. (i) \Rightarrow (ii) By hypothesis, it is clear that M is the only prime ideal of R. Hence $M=\operatorname{nil}(R)$. Since $A G(R)$ is complemented by assumption, it follows from Lemma 3.3 that $M^{4}=(0)$. By hypothesis, $M^{3} \neq(0)$. Now it follows from Proposition 3.4(iv) that $M=R m$ for any $m \in M \backslash M^{2}$. As $M^{4}=(0), M^{3} \neq(0)$, and M is principal, it follows from the proof of (iii) \Rightarrow (i) of [3, Proposition 8.8] that $\left\{M=R m, M^{2}=R m^{2}, M^{3}=R m^{3}\right\}$ is the set of all proper nonzero ideals of R. Hence we obtain that R is a SPIR.
(ii) \Rightarrow (i) Now R is a SPIR with $M^{4}=(0)$ but $M^{3} \neq(0)$. Note that $\left\{M, M^{2}, M^{3}\right\}$ is the set of all nonzero proper ideals of R. Now it is clear that $A G(R)$ is a graph on three vertices $\left\{M, M^{2}, M^{3}\right\}, M \perp M^{3}$, and $M^{2} \perp M^{3}$. This proves that $A G(R)$ is complemented.

We next have the following lemma.
Lemma 4.2. Let R be a quasilocal ring with M as its unique maximal ideal. Suppose that $M^{3}=(0)$ but $M^{2} \neq(0)$. Then the following statements are equivalent:
(i) $A G(R)$ is complemented.
(ii) If $z^{2} \neq 0$ for some $z \in M$, then M is principal. If $z^{2}=0$ for each $z \in M$, then M is not principal but there exist $a, b \in M$ such that $M=R a+R b$.
(iii) $I \perp M^{2}$ for each nonzero proper ideal I of R with $I \neq M^{2}$.

Proof. (i) \Rightarrow (ii) It is clear from the hypothesis that M is the only prime ideal of R. Hence $M=\operatorname{nil}(R)$. If $z^{2} \neq 0$ for some $z \in M$, then it follows from Proposition 3.5(iv) that M is principal. If $z^{2}=(0)$ for each $z \in M$, then it follows from Proposition 3.5(v) that M is not principal but there exist $a, b \in M$ such that $M=R a+R b$.
(ii) \Rightarrow (iii) Suppose that $z^{2} \neq 0$ for some $z \in M$. Then M is principal. As $M^{3}=(0)$, it follows from the proof of (iii) \Rightarrow (i) of [3, Proposition 8.8] that M and M^{2} are the only proper nonzero ideals of R. Hence in this case, $A G(R)$ is a graph with vertex set $\left\{M, M^{2}\right\}$ and $M \perp M^{2}$.

Suppose that $z^{2}=0$ for each $z \in M$. Then M is not principal but there exist $a, b \in M$ such that $M=R a+R b$. In such a case, $M^{2}=R a b$. Let $x \in M^{2}, x \neq 0$. Then $x=r a b$
for some $r \in R$. As $M^{3}=(0)$, it follows that r is a unit in R and so $M^{2}=R a b=R x$. Since $M^{3}=(0)$ but $M^{2} \neq(0)$, it is clear that each nonzero proper ideal is in $A(R)^{*}$. Let I be any nonzero proper ideal of R. If $I \subseteq M^{2}$, then as $M^{2}=R x$ for any $x \in I \backslash\{0\}$, it follows that $I=M^{2}$. Suppose that $I \nsubseteq M^{2}$. Let $z \in I \backslash M^{2}$. Since M is not principal but is generated by two elements, it is clear that $\operatorname{dim}_{R / M}\left(M / M^{2}\right)=2$. As $z+M^{2} \in M / M^{2}$ is nonzero, there exists $w \in M$ such that $\left\{z+M^{2}, w+M^{2}\right\}$ forms a basis of M / M^{2} as a vector space over R / M. In such a case, it follows that $M=R z+R w+M^{2}$. This implies that $M=R z+R w$ since $M^{3}=(0)$. As $z^{2}=w^{2}=0$, it follows that $M^{2}=R z w \subseteq I$ since $z \in I$. Note that $\operatorname{dim}_{R / M}\left(I / M^{2}\right)$ is either 1 or 2 . If $\operatorname{dim}_{R / M}\left(I / M^{2}\right)=1$, then $\left\{z+M^{2}\right\}$ forms a basis of I / M^{2}. This implies that $I=R z+M^{2}$ and so $I=R z$ since $M^{2}=R z w$. If $\operatorname{dim}_{R / M}\left(I / M^{2}\right)=2$, then it follows that $I / M^{2}=M / M^{2}$ and so $I=M$.

From the above discussion it is clear that if $z^{2}=0$ for each $z \in M$ and if I is any nonzero proper ideal of R, then either $I \in\left\{M, M^{2}\right\}$ or $I=R z$ for some $z \in I \backslash M^{2}$. Since $M^{3}=(0)$, it follows that $I M^{2}=(0)$ for each proper ideal I of R. Let $I \in A(R)^{*}$ be such that $I \neq M^{2}$. We verify that $I \perp M^{2}$. Since $I M^{2}=(0), I$ is adjacent to M^{2}. Let $J \in A(R)^{*}$ be such that $J \notin\left\{I, M^{2}\right\}$. Suppose that $J=M$. Then $I \neq M$ and so $I=R z$ for some $z \in I \backslash M^{2}$. Moreover, it is noted in the previous paragraph that $M^{2}=R z w$ for some $w \in M$. Hence we obtain that $M^{2} \subseteq I M=I J$. Similarly, if $I=M$, then $J \neq M$ and so $J=R z^{\prime}$ for some $z^{\prime} \in J \backslash M^{2}$ and $M^{2}=R z^{\prime} w^{\prime}$ for some $w^{\prime} \in M$. Therefore, $M^{2}=R w^{\prime} z^{\prime} \subseteq M J=I J$. Suppose that $I \neq M$ and $J \neq M$. Then there exist $z \in I \backslash M^{2}$ and $z^{\prime} \in J \backslash M^{2}$ such that $I=R z$ and $J=R z^{\prime}$. We claim that $I+J=M$. Indeed, if $I+J \neq M$, then $I+J=R y$ for some $y \in I+J$ with $y \notin M^{2}$. Now as $z, z^{\prime} \in M \backslash M^{2}, I=R z \subseteq R y$, and $J=R z^{\prime} \subseteq R y$, we obtain that $I=R z=R y=R z^{\prime}=J$. But this contradicts the assumption that $I \neq J$. Hence $R z+R z^{\prime}=I+J=M$. Therefore, $M^{2}=R z z^{\prime} \subseteq I J$. This shows that if $J \in A(R)^{*} \backslash\left\{M^{2}, I\right\}$, then $M^{2} \subseteq I J$ and so $I J \neq(0)$. This proves that $I \perp M^{2}$ for each $I \in A(R)^{*}$ with $I \neq M^{2}$.
(iii) \Rightarrow (i). Since $M^{3}=(0)$ but $M^{2} \neq(0)$, it is clear that $M \neq M^{2}$. Hence R admits at least one nonzero proper ideal which is different from M^{2}. Note that from the preceding observation (iii) \Rightarrow (i) follows immediately.

We next have the following lemma. We denote the characteristic of a ring R by $\operatorname{char}(R)$.
Lemma 4.3. Let R be a quasilocal ring with M as its unique maximal ideal such that $M^{3}=(0)$ but $M^{2} \neq(0)$. If $A G(R)$ is complemented and M is not principal, then $\operatorname{char}(R / M)=2$ and moreover, $\operatorname{char}(R) \in\{2,4\}$.

Proof. Assume that $A G(R)$ is complemented and M is not principal. It follows from the proof of (i) \Rightarrow (ii) of Lemma 4.2 that $z^{2}=0$ for each $z \in M$ and $\operatorname{dim}_{R / M}\left(M / M^{2}\right)=2$. Moreover, it is noted in the proof of (ii) \Rightarrow (iii) of Lemma 4.2 that for any nonzero $x \in M^{2}$, $M^{2}=R x$ and $I \perp M^{2}$ for each nonzero proper ideal I of R with $I \neq M^{2}$. We first verify that $\operatorname{char}(R / M)=2$. Suppose that $\operatorname{char}(R / M) \neq 2$. Then $2 \notin M$ and so 2 is a unit in R. Let $a, b \in M$ be such that $\left\{a+M^{2}, b+M^{2}\right\}$ forms a basis of M / M^{2} as a vector space over R / M. Consider the ideals $I_{1}=R(a+b)$ and $I_{2}=R(a-b)$ of R. From the choice of a, b, it is clear that I_{1} and I_{2} are nonzero proper ideals of R with $I_{i} \neq M^{2}$ for each $i \in\{1,2\}$. Note that $I_{1} \neq I_{2}$. For if $I_{1}=I_{2}$, then $2 b=(a+b)-(a-b) \in I_{1}$. This implies that $b \in I_{1}$ since 2 is a unit in R. Hence $b=r(a+b)$ for some $r \in R$. Therefore, $r a+(r-1) b=0$. This implies by the choice of a, b that $r \in M$ and $1-r \in M$. Hence $1=r+1-r \in M$. This
is impossible. Thus $I_{1} \neq I_{2}$. Now as $a^{2}=b^{2}=0$, it is clear that $I_{1} I_{2}=R\left(a^{2}-b^{2}\right)=(0)$. Moreover, as $M^{3}=(0)$, it is clear that $I_{2} M^{2}=(0)$. Thus $I_{1} I_{2}=I_{2} M^{2}=(0)$. This is impossible since $I_{1} \perp M^{2}$. Hence $\operatorname{char}(R / M)=2$. Now $2 \in M$ and as $z^{2}=0$ for each $z \in M$, it follows that $4=0$ in R. Therefore, $\operatorname{char}(R) \in\{2,4\}$.

We next provide some examples to illustrate Lemma 4.2.
Example 4.4. Let K be a field with $\operatorname{char}(K)=2$. Let $T=K[x, y]$ be the polynomial ring in two variables over K. Let $I=x^{2} T+y^{2} T$ and $R=T / I$. Then $A G(R)$ is complemented.

Proof. Let $N=x T+y T$. Note that $R=T / I$ is a local ring with $M=N / I$ as its unique maximal ideal. For an element $t \in T$, we denote $t+I$ by \bar{t}. Observe that $M=\bar{x} R+\bar{y} R, z^{2}=\overline{0}$ for each $z \in M, M^{2}=\overline{x y} R \neq(\overline{0})$, and $M^{3}=(\overline{0})$. Now it follows, from (ii) \Rightarrow (iii) of Lemma 4.2, that $J \perp M^{2}$ for each nonzero proper ideal J of R with $J \neq M^{2}$. This shows that $A G(R)$ is complemented.

For any $n \geq 2$, we denote the ring of integers modulo n by \mathbf{Z}_{n}.
Example 4.5. Let $T=\mathbf{Z}_{4}[x, y]$ be the polynomial ring in two variables over \mathbf{Z}_{4}. Let $I=x^{2} T+(x y-2) T+y^{2} T$ and $R=T / I$. Then $A G(R)$ is complemented.

Proof. Let $N=2 T+x T+y T$. Observe that $R=T / I$ is a local ring with $M=N / I$ as its unique maximal ideal. For any $t \in T$, we denote $t+I$ by \bar{t}. Note that $M=\bar{x} R+\bar{y} R, z^{2}=\overline{0}$ for each $z \in M, M^{2}=\overline{2} R$, and $M^{3}=(\overline{0})$. Now it follows, from (ii) \Rightarrow (iii) of Lemma 4.2, that $J \perp M^{2}$ for each nonzero proper ideal J of R with $J \neq M^{2}$ and hence we obtain that $A G(R)$ is complemented.

Example 4.6. Let $T=\mathbf{Z}_{4}[x]$ be the polynomial ring in one variable over \mathbf{Z}_{4}. Let $I=x^{2} T$. Let $R=T / I$. Then $A G(R)$ is complemented.

Proof. Let $N=2 T+x T$. Note that the ring $R=T / I$ is local with $M=N / I$ as its unique maximal ideal. For any $t \in T$, let us denote $t+I$ by \bar{t}. Observe that $M=\overline{2} R+\bar{x} R, z^{2}=0$ for each $z \in M, M^{2}=\overline{2 x} R \neq(\overline{0})$, and $M^{3}=(\overline{0})$. It now follows, from (ii) \Rightarrow (iii) of Lemma 4.2, that $J \perp M^{2}$ for each nonzero proper ideal J of R with $J \neq M^{2}$ and therefore, we obtain that $A G(R)$ is complemented.

We make use of the following remark in the proof of Theorem 4.8.
Remark 4.7. Let R be a quasilocal ring with M as its unique maximal ideal. If $M^{2}=(0)$ but $M \neq(0)$, then $A G(R)$ is not complemented and indeed one of the following holds:
(i) M is the only element of $A(R)^{*}$ and hence $A G(R)$ is a graph on a single vertex.
(ii) $A(R)^{*}$ contains at least three elements and $A G(R)$ is a complete graph.

Proof. Suppose that M is principal. As $M^{2}=(0)$, it is clear that M is the only nonzero proper ideal of R. Since the nonzero ideal M annihilates M, it follows that $M \in A(R)^{*}$. Hence (i) holds. Note that as $A G(R)$ is a graph on a single vertex, it is not complemented.

Suppose that M is not principal. Since $M^{2}=(0)$, it is clear that M annihilates any proper nonzero ideal of R and hence $A(R)^{*}$ is the set of all proper nonzero ideals of R and moreover,
M can be regarded as a vector space over the field R / M. As M is not principal, it follows that $\operatorname{dim}_{R / M} M \geq 2$. Let $\{x, y\} \subseteq M$ be such that $\{x, y\}$ is linearly independent over R / M. Note that $R x, R y, R(x+y)$ are distinct elements of $A(R)^{*}$. Since $M^{2}=(0)$, we obtain that $I J=(0)$ for any $I, J \in A(R)^{*}$. Hence it follows that $A G(R)$ is a complete graph with at least three vertices and hence it is not complemented.

The following theorem characterizes when $A G(R)$ is complemented, where R is any zerodimensional quasilocal ring with $A G(R)$ admitting at least two vertices.

Theorem 4.8. Let R be a zero-dimensional quasilocal ring with M as its unique maximal ideal. Suppose that $A G(R)$ admits at least two vertices. Then $A G(R)$ is complemented if and only if (a) and (b) hold and moreover, either (c) or (d) holds, where (a), (b), (c), and (d) are given below:
(a) $M^{2} \neq(0)$.
(b) $M^{4}=(0)$.
(c) R is a SPIR.
(d) $z^{2}=0$ for each $z \in M, M$ is not principal but there exist $a, b \in M$ such that $M=R a+R b$.

Proof. We are assuming that $\operatorname{dim} R=0$ and R is quasilocal with M as its unique maximal ideal. Hence we obtain that $\operatorname{nil}(R)=M$.

Assume that $A G(R)$ admits at least two vertices and is complemented. It follows from Remark 4.7 that $M^{2} \neq(0)$. We obtain from Lemma 3.3 that $M^{4}=(0)$. If $M^{3} \neq(0)$, then it follows from (i) \Rightarrow (ii) of Lemma 4.1 that R is a SPIR. Suppose that $M^{3}=(0)$. If M is principal, then it follows from the proof of (iii) \Rightarrow (i) of [3, Proposition 8.8] that R is a principal ideal ring and hence R is a SPIR. If M is not principal, then we obtain from (i) \Rightarrow (ii) of Lemma 4.2 that $z^{2}=0$ for each $z \in M$ and there exist $a, b \in M$ such that $M=R a+R b$. Thus if $A G(R)$ is complemented, then (a) and (b) hold. Moreover, either (c) or (d) holds.

Conversely, assume that (a) and (b) hold and moreover, either (c) or (d) holds. Suppose that (c) holds. If $M^{3} \neq(0)$, then it follows from (ii) \Rightarrow (i) of Lemma 4.1 that $A G(R)$ is complemented. If $M^{3}=(0)$, then $A G(R)$ is a graph with vertex set $\left\{M, M^{2}\right\}$ and $M \perp M^{2}$. Hence $A G(R)$ is complemented. Suppose that (d) holds. Then it follows from (ii) \Rightarrow (i) of Lemma 4.2 that $A G(R)$ is complemented.

As an immediate consequence of Theorem 4.8, we have the following result.
Corollary 4.9. Let (R, M) be a finite local ring with $A G(R)$ admitting at least two vertices. Then $A G(R)$ is complemented if and only if (a), (b) of Theorem 4.8 hold and either R is a finite SPIR or (d) of Theorem 4.8 hold.

5. Zero-dimensional quasisemilocal rings \boldsymbol{R} SUCH That $\boldsymbol{A} \boldsymbol{G}(\boldsymbol{R})$ is COMPLEMENTED

The aim of this section is to determine zero-dimensional quasisemilocal rings R such that $A G(R)$ is complemented. We begin with the following lemma.

Lemma 5.1. Let R be a quasisemilocal ring with $\operatorname{dim} R=0$. Let $\left\{P_{1}, \ldots, P_{n}\right\}$ be the set of all maximal ideals of R. If $A G(R)$ is complemented, then there exist quasilocal rings $\left(R_{1}, M_{1}\right), \ldots,\left(R_{n}, M_{n}\right)$ with $M_{i}^{4}=(0)$ for each $i \in\{1, \ldots, n\}$ and $R \cong R_{1} \times \cdots \times R_{n}$ as rings.

Proof. Since $\operatorname{dim} R=0$ and R is quasisemilocal with $\left\{P_{1}, \ldots, P_{n}\right\}$ as its set of all maximal ideals, it is clear that $\left\{P_{1}, \ldots, P_{n}\right\}$ is the set of all prime ideals of R. Hence we obtain that $\operatorname{nil}(R)=\cap_{i=1}^{n} P_{i}$. Moreover, as $P_{i}+P_{j}=R$ for all distinct $i, j \in\{1, \ldots, n\}$, it follows from [3, Proposition 1.10(i)] that $n i l(R)=\cap_{i=1}^{n} P_{i}=\prod_{i=1}^{n} P_{i}$.

Suppose that $A G(R)$ is complemented. Then we obtain from Lemma 3.3 that $(\operatorname{nil}(R))^{4}=$ (0). Hence we obtain that $\prod_{i=1}^{n} P_{i}^{4}=(0)$. Since $P_{i}^{4}+P_{j}^{4}=R$ for all distinct $i, j \in$ $\{1, \ldots, n\}$, it follows from the Chinese remainder theorem [3, Proposition 1.10(ii) and (iii)] that the mapping $f: R \rightarrow R / P_{1}^{4} \times \cdots \times R / P_{n}^{4}$ given by $f(r)=\left(r+P_{1}^{4}, \ldots, r+P_{n}^{4}\right)$ is an isomorphism of rings. Let $i \in\{1, \ldots, n\}$ and $R_{i}=R / P_{i}^{4}$. It is clear that R_{i} is quasilocal with $M_{i}=P_{i} / P_{i}^{4}$ as its unique maximal ideal and $R \cong R_{1} \times \cdots \times R_{n}$ as rings. Moreover, it is obvious that M_{i}^{4} is the zero ideal of R_{i} for each $i \in\{1, \ldots, n\}$.

In view of Lemma 5.1, in the rest of this section, we assume that $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a quasilocal ring with unique maximal ideal M_{i} such that $M_{i}^{4}=(0)$ for each $i \in\{1, \ldots, n\}$. We proceed to determine when $A G(R)$ is complemented. As Theorem 4.8 determines when $A G(R)$ is complemented in the case where R is a zero-dimensional quasilocal ring, we assume that R is not quasilocal. Hence $n \geq 2$.

Lemma 5.2. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}(n \geq 2)$, where $\left(R_{i}, M_{i}\right)$ is a quasilocal ring with $M_{i}^{4}=(0)$ for each $i \in\{1,2, \ldots, n\}$. If $A G(R)$ is complemented, then $M_{i}^{2}=(0)$ and M_{i} is principal for $i \in\{1,2, \ldots, n\}$; in the case where $M_{i} \neq(0), M_{i}=R_{i} x_{i}$ for any nonzero element x_{i} of M_{i}. Moreover, R_{i} has at most one proper nonzero ideal for each $i \in\{1,2, \ldots, n\}$.

Proof. Assume that $A G(R)$ is complemented. Suppose that $M_{i}^{2} \neq(0)$ for some $i \in$ $\{1,2, \ldots, n\}$. Consider the ideal $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ of R defined by $I_{i}=M_{i}^{2}$ and $I_{j}=R_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$. Since $M_{i}^{4}=(0)$, the ideal $J=J_{1} \times J_{2} \times \cdots \times J_{n}$ of R given by $J_{i}=M_{i}^{2}$ and $J_{j}=(0)$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$ is such that $I J=(0) \times(0) \times \cdots \times(0)$. Hence $I \in A(R)^{*}$. As $A G(R)$ is complemented, there exists $K \in A(R)^{*}$ such that $I \perp K$. Now it follows from $I K=(0) \times(0) \times \cdots \times(0)$ and $I_{j}=R_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$ that $K_{j}=(0)$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$. Note that $K_{i} M_{i}^{2}=(0)$. Observe that $J K=I K=(0) \times(0) \times \cdots \times(0)$. Since $I \perp K$ and $J \notin\{(0) \times(0) \times \cdots \times(0), I\}$, it follows that $J=K$. Hence we obtain that $I \perp J$. We next claim that $M_{i}^{3}=(0)$. Indeed, if $M_{i}^{3} \neq(0)$, then the ideal $A=A_{1} \times A_{2} \times \cdots \times A_{n}$ of R given by $A_{i}=M_{i}^{3}$ and $A_{j}=(0)$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$ is such that $A I=A J=(0) \times(0) \times \cdots \times(0)$ and $A \notin\{(0) \times(0) \times \cdots \times(0), I, J\}$. This is impossible since $I \perp J$. Thus $M_{i}^{3}=(0)$. Note that the ideal $B=B_{1} \times B_{2} \times \cdots \times B_{n}$ given by $B_{i}=M_{i}$ and $B_{j}=(0)$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$ of R is such that $I B=J B=(0) \times(0) \times \cdots \times(0)$ and $B \notin\{(0) \times(0) \times \cdots \times(0), I, J\}$. This cannot happen since $I \perp J$. Hence we obtain that $M_{i}^{2}=(0)$ for each $i \in\{1,2, \ldots, n\}$.

Let $i \in\{1,2, \ldots, n\}$. We next show that M_{i} is a principal ideal of R_{i}. If $M_{i}=(0)$, then it is clear that M_{i} is principal. Suppose that $M_{i} \neq(0)$. We show that $M_{i}=R_{i} x_{i}$ for any
nonzero $x_{i} \in M_{i}$. Consider the ideal $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ defined by $I_{i}=R_{i} x_{i}$ and $I_{j}=R_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$. Since $M_{i}^{2}=(0)$, the ideal $J=J_{1} \times J_{2} \times \cdots \times J_{n}$ of R given by $J_{i}=M_{i}$ and $J_{j}=(0)$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$ is such that $I J=(0) \times(0) \times \cdots \times(0)$. Hence $I \in A(R)^{*}$. Since $A G(R)$ is complemented, there exists $K \in A(R)^{*}$ such that $I \perp K$. From $I K=(0) \times(0) \times \cdots \times(0)$ and $I_{j}=R_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$, it is clear that $K_{j}=(0)$. Note that $K_{i} R_{i} x_{i}=(0)$. Hence $K_{i} \subseteq M_{i}$. As $M_{i}^{2}=(0)$, it is clear that $J K=(0) \times(0) \times \cdots \times(0)$. Thus $I K=J K=(0) \times(0) \times \cdots \times(0)$. Since $I \perp K$ and $J \notin\{(0) \times(0) \times \cdots \times(0), I\}$, it follows that $J=K$. Thus $I \perp J$. The ideal $A=A_{1} \times A_{2} \times \cdots \times A_{n}$ of R given by $A_{j}=(0)$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$ and $A_{i}=R_{i} x_{i}$ is such that $I A=J A=(0) \times(0) \times \cdots \times(0)$. Since $I \perp J$ and $A \notin\{(0) \times(0) \times \cdots \times(0), I\}$, it follows that $A=J$. Hence we obtain that $M_{i}=R_{i} x_{i}$.

Let $i \in\{1,2, \ldots, n\}$. If $M_{i}=(0)$, then R_{i} is a field and it has no proper nonzero ideal. If $M_{i} \neq(0)$, then it is noted in the previous paragraph that $M_{i}=R_{i} x_{i}$ for each nonzero $x_{i} \in M_{i}$. Hence we obtain that M_{i} is the only proper nonzero ideal of R_{i}. This proves that R_{i} has at most one nonzero proper ideal.

With R as in the statement of Lemma 5.2, the following lemma provides another necessary condition in order that $A G(R)$ is complemented.

Lemma 5.3. Let $n \geq 2$ and let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$, where $\left(R_{i}, M_{i}\right)$ is a quasilocal ring with $M_{i}^{4}=(0)$ for each $i \in\{1,2, \ldots, n\}$. If $A G(R)$ is complemented, then R_{j} is a field for some $j \in\{1,2, \ldots, n\}$.

Proof. Suppose that $A G(R)$ is complemented and R_{i} is not a field for each $i \in\{1,2, \ldots, n\}$. Hence $M_{i} \neq(0)$ for each $i \in\{1,2, \ldots, n\}$. Let $I=M_{1} \times M_{2} \times \cdots \times M_{n}$. We know from Lemma 5.2 that $M_{i}^{2}=(0)$ for each $i \in\{1,2, \ldots, n\}$. Hence it follows that $I \in A(R)^{*}$. Since $A G(R)$ is complemented, there exists an ideal $J=J_{1} \times J_{2} \times \cdots \times J_{n}$ of R such that $I \perp J$. From $I J=(0) \times(0) \times \cdots \times(0)$, it follows that $I_{i} J_{i}=(0)$ for any $i \in\{1,2, \ldots, n\}$. Hence $J_{i} \subseteq M_{i}$ and moreover, it follows from Lemma 5.2 that $J_{i} \in\left\{(0), M_{i}\right\}$ for each $i \in\{1,2, \ldots, n\}$. Since $I \neq J$ and $J \neq(0) \times(0) \times \cdots \times(0)$, it is clear that there exist distinct $r, s \in\{1,2, \ldots, n\}$ such that $J_{r}=M_{r}$ and $J_{s}=(0)$. Consider the ideal $K=K_{1} \times K_{2} \times \cdots \times K_{n}$ of R given by $K_{i}=(0)$ for all $i \in\{1,2, \ldots, n\} \backslash\{s\}$ and $K_{s}=M_{s}$. Note that the ideal K is such that $K \notin\{(0) \times(0) \times \cdots \times(0), I, J\}$ and $I K=J K=(0) \times(0) \times \cdots \times(0)$. This is impossible as $I \perp J$. Thus if $A G(R)$ is complemented, then R_{j} is a field for some $j \in\{1,2, \ldots, n\}$.

Let R be as in the statement of Lemma 5.2. The following lemma provides another necessary condition in order that $A G(R)$ is complemented.

Lemma 5.4. Let $n \geq 2$ and let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$, where $\left(R_{i}, M_{i}\right)$ is a quasilocal ring with $M_{i}^{4}=(0)$ for each $i \in\{1,2, \ldots, n\}$. If $A G(R)$ is complemented, then there exists at most one $i \in\{1,2, \ldots, n\}$ such that R_{i} is not a field.

Proof. Suppose that $A G(R)$ is complemented and there exist distinct $s, t \in\{1,2, \ldots, n\}$ such that R_{s} and R_{t} are not fields. Hence $M_{s} \neq(0)$ and $M_{t} \neq(0)$. We know from Lemma 5.3 that there exists $j \in\{1,2, \ldots, n\}$ such that R_{j} is a field. It is clear that $j \notin\{s, t\}$. Consider the ideal $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ of R given by $I_{i}=R_{i}$ for all $i \in\{1,2, \ldots, n\} \backslash\{s, t\}$,
$I_{s}=M_{s}$, and $I_{t}=M_{t}$. We know from Lemma 5.2 that $M_{s}^{2}=(0)$ and $M_{t}^{2}=(0)$. Moreover, $R_{i}(0)=(0)$ for all $i \in\{1,2, \ldots, n\} \backslash\{s, t\}$. Hence we obtain that $I \in A(R)^{*}$. Since $A G(R)$ is complemented, there exists an ideal $J=J_{1} \times J_{2} \times \cdots \times J_{n}$ of R such that $I \perp J$. Thus $I J=(0) \times(0) \times \cdots \times(0)$. Therefore, $I_{i} J_{i}=(0)$ for each $i \in\{1,2, \ldots, n\}$. By the choice of I, it is clear that $J_{i}=(0)$ for all $i \in\{1,2, \ldots, n\} \backslash\{s, t\}$. Moreover, as we know from Lemma 5.2 that M_{s} (respectively M_{t}) is the only proper nonzero ideal of R_{s} (respectively R_{t}), it follows that $J_{s} \in\left\{(0), M_{s}\right\}$ and $J_{t} \in\left\{(0), M_{t}\right\}$. Since J is a nonzero ideal of R, we must have either $J_{s}=M_{s}$ or $J_{t}=M_{t}$. Without loss of generality, we may assume that $J_{s}=M_{s}$. Note that the ideal $K=K_{1} \times K_{2} \times \cdots \times K_{n}$ of R given by $K_{i}=(0)$ for all $i \in\{1,2, \ldots, n\} \backslash\{t\}$ and $K_{t}=M_{t}$ is such that $K \notin\{(0) \times(0) \times \cdots \times(0), I, J\}$ and $I K=J K=(0) \times(0) \times \cdots \times(0)$. This is impossible since $I \perp J$. Thus if $A G(R)$ is complemented, then there exists at most one $i \in\{1,2, \ldots, n\}$ such that R_{i} is not a field.

With R as in the statement of Lemma 5.2, the following lemma gives another necessary condition in order that $A G(R)$ is complemented under the additional assumption that R is not reduced.

Lemma 5.5. Let $n \geq 2$ and let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$, where $\left(R_{i}, M_{i}\right)$ is a quasilocal ring with $M_{i}^{4}=(0)$ for each $i \in\{1,2, \ldots, n\}$. Suppose that R is not reduced. If $A G(R)$ is complemented, then $n=2$.

Proof. Suppose that $A G(R)$ is complemented and $n \geq 3$. We are assuming that R is not reduced (that is, R has nonzero nilpotent elements). Hence there exists at least one $i \in\{1,2, \ldots, n\}$ such that R_{i} is not a field. Note that by Lemma 5.4, such an i is necessarily unique. Fix $j \in\{1,2, \ldots, n\}$ with $j \neq i$. Consider the ideal $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ of R given by $I_{i}=M_{i}, I_{j}=R_{j}$, and $I_{k}=(0)$ for all $k \in\{1,2, \ldots, n\} \backslash\{i, j\}$. Note that $M_{i} \neq(0)$ and by Lemma 5.2, $M_{i}^{2}=(0)$. Hence it is clear that $I \in A(R)^{*}$. Since $A G(R)$ is complemented, there exists $J=J_{1} \times J_{2} \times \cdots \times J_{n}$ of R such that $I \perp J$. From $I J=(0) \times(0) \times \cdots \times(0)$, it follows that $I_{s} J_{s}=(0)$ for all $s \in\{1,2, \ldots, n\}$. Since $I_{i}=M_{i}$, it follows that $J_{i} \subseteq M_{i}$ and as $I_{j}=R_{j}$, we obtain that $J_{j}=(0)$. Since $n \geq 3$, there exists $k \in\{1,2, \ldots, n\} \backslash\{i, j\}$. As R_{k} is a field, it follows that $J_{k} \in\left\{(0), R_{k}\right\}$. Consider the ideal $A=A_{1} \times A_{2} \times \cdots \times A_{n}$ of R given by $A_{i}=M_{i}, A_{j}=(0), A_{k} \in\left\{(0), R_{k}\right\} \backslash\left\{J_{k}\right\}$, and $A_{s}=(0)$ for all $s \in\{1,2, \ldots, n\} \backslash\{i, j, k\}$. Note that $A I=A J=(0) \times(0) \times \cdots \times(0)$ but $A \notin\{(0) \times(0) \times \cdots \times(0), I, J\}$. This is impossible since $I \perp J$. Thus if R is not reduced and $A G(R)$ is complemented, then $n=2$.

Let R be a zero-dimensional quasisemilocal ring admitting more than one maximal ideal. The following theorem determines necessary and sufficient conditions in order that $A G(R)$ is complemented.

Theorem 5.6. Let R be a quasisemilocal ring which is not quasilocal and let $\operatorname{dim} R=0$. Then the following statements are equivalent:
(i) $A G(R)$ is complemented.
(ii) Either $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings, where $n \geq 2$ and F_{i} is a field for all $i \in\{1,2, \ldots, n\}$, or $R \cong S \times F$ as rings, where (S, M) is a SPIR with $M \neq$ (0) but $M^{2}=(0)$ and F is a field.

Proof. (i) \Rightarrow (ii) Let n be the number of maximal ideals of R. Since R is not quasilocal, it follows that $n \geq 2$. We know from Lemma 5.1 that $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ as rings, where $\left(R_{i}, M_{i}\right)$ is a quasilocal ring with $M_{i}^{4}=(0)$ for each $i \in\{1,2, \ldots, n\}$. If $M_{i}=(0)$ for each $i \in\{1,2, \ldots, n\}$, then R_{i} is a field for each i and hence with $F_{i}=R_{i}$, we obtain that $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings. Suppose that R_{i} is not a field for at least one $i \in\{1,2, \ldots, n\}$. We know from Lemma 5.4 that such an i is necessarily unique. Now R is not reduced. Hence we obtain from Lemma 5.5 that $n=2$. Thus $R \cong R_{1} \times R_{2}$ as rings, where we may assume that R_{1} is not a field and R_{2} is a field. We know from Lemma 5.2 that $M_{1}^{2}=(0)$ and $M_{1}=R_{1} x_{1}$ for any nonzero $x_{1} \in M_{1}$. Hence M_{1} is the only nonzero proper ideal of R_{1}. Thus $\left(R_{1}, M_{1}\right)$ is a SPIR with $M_{1} \neq(0)$ but $M_{1}^{2}=(0)$. Hence with $S=R_{1}, M=M_{1}$, and $F=R_{2}$, we obtain that $R \cong S \times F$ as rings, where (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$ and F is a field.
(ii) \Rightarrow (i) Suppose that $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings with $n \geq 2$ and F_{i} is a field for all $i \in\{1,2, \ldots, n\}$. Note that R is reduced and hence we obtain from Proposition 2.2 that $A G(R)$ is complemented. Indeed $A G(R)$ is uniquely complemented.

Suppose that $R \cong S \times F$ as rings, where (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$ and F is a field. Let $T=S \times F$. Note that M is the only nonzero proper ideal of S. Hence $A(T)^{*}=\{(0) \times F, M \times(0), M \times F, S \times(0)\}$. It is easy to verify that $(0) \times F \perp M \times(0), M \times F \perp M \times(0)$, and $S \times(0) \perp(0) \times F$. This shows that $A G(T)$ is complemented. As $R \cong T$ as rings, we obtain that $A G(R)$ is complemented. Observe that (0) $\times F \perp M \times(0)$ and $(0) \times F \perp S \times(0)$. As $M \times F$ is adjacent to $M \times(0)$ but $M \times F$ is not adjacent to $S \times(0)$, it follows that $A G(T)$ is not uniquely complemented. Hence we obtain that $A G(R)$ is not uniquely complemented.

The following corollary determines when $A G(R)$ is complemented, where R is a finite semilocal ring which is not local.

Corollary 5.7. Let R be a finite semilocal ring which is not local. The following statements are equivalent:
(i) $A G(R)$ is complemented.
(ii) Either $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings for some $n \geq 2$, where F_{i} is a finite field for $i=1,2, \ldots, n$, or $R \cong S \times F$ as rings, where (S, M) is a finite $S P I R$ with $M \neq(0)$ but $M^{2}=(0)$ and F is a finite field.

Proof. The proof of this corollary follows immediately from Theorem 5.6. Note that the finiteness assertion of F_{i} for $i=1,2, \ldots, n, S$, and F in (ii) follow since R is a finite ring.

6. RINGS R WITH ONLY FINITELY MANY MAXIMAL N-PRIMES OF (0) SUCH THAT $A G(R)$ IS COMPLEMENTED

Let R be a commutative ring with identity which is not reduced (that is, $\operatorname{nil}(R) \neq(0)$). Suppose that R admits only a finite number of maximal N -primes of (0). Let $\left\{P_{1}, \ldots, P_{n}\right\}$ be the set of all maximal N-primes of (0) in R. Moreover, we assume that $\cap_{i=1}^{n} P_{i}=\operatorname{nil}(R)$ and $A(R)^{*}$ contains at least two elements. The purpose of this section is to determine necessary and sufficient conditions in order that $A G(R)$ is complemented. We begin with the following lemma.

Lemma 6.1. Let R be a ring which is not reduced. Suppose that R admits only one maximal N-prime of (0). Let P be the unique maximal N-prime of (0) in R. If $A G(R)$ is complemented, then P is a maximal ideal of R. Moreover, if $P=\operatorname{nil}(R)$, then P is the only prime ideal of R.

Proof. Suppose that $A G(R)$ is complemented. We prove that P is a maximal ideal of R. Let M be a maximal ideal of R such that $P \subseteq M$. We assert that $P=M$. Suppose that $P \neq M$. Let $a \in M \backslash P$. Since P is the only maximal N-prime of (0) in R, it follows that $P=Z(R)$. Thus $a \notin Z(R)$. As $\operatorname{nil}(R) \neq(0)$, there exists $x \in \operatorname{nil}(R) \backslash\{0\}$ such that $x^{2}=0$. Let $J=R x$. Note that $J \in A(R)^{*}$. Hence there exists $K \in A(R)^{*}$ such that $J \perp K$. Let $A=R a x$. From $(R x) K=(0)$, it is clear that $A K=(\operatorname{Rax}) K=(0)$. Moreover, as $x^{2}=0$, it follows that $A J=(R a x)(R x)=(0)$. Thus the ideal A of R satisfies $A J=A K=(0)$. Since $J \perp K$, it follows that $A \in\{(0), J, K\}$. Since $x \neq 0$ and $a \notin Z(R), A=R a x \neq(0)$. Observe that $A \neq J$. Indeed, for any $y \in M, J=R x \neq R y x$. For if $R x=R y x$, then $x=r y x$ for some $r \in R$. This implies that $x(1-r y)=0$ and so $1-r y \in Z(R)=P \subseteq M$. As $y \in M$, we obtain that $1=1-r y+r y \in M$. This is impossible since $M \neq R$. This shows that $A \neq J$. Therefore, $A=K$. Hence we obtain that $J \perp A$. Let $B=R a^{2} x$. Since $x^{2}=0$, it is clear that $B J=\left(R a^{2} x\right)(R x)=(0)$ and $B A=\left(R a^{2} x\right)(R a x)=(0)$. As $a \notin Z(R)$ but $a \in M$, it is clear that $R x \neq R a^{2} x$ and $R a x \neq R a^{2} x$. Thus the ideal $B=R a^{2} x \in A(R)^{*}$ is adjacent to both J and A. This is impossible since $J \perp A$. Therefore, $P=M$ and this proves that P is a maximal ideal of R.

Suppose that $P=\operatorname{nil}(R)$. We next verify that P is the only prime ideal of R. Let Q be any prime ideal of R. Then $Q \supseteq \operatorname{nil}(R)=P$ and as P is a maximal ideal of R, it follows that $Q=P$. This shows that P is the only prime ideal of R.

The following example illustrates that the moreover assertion of Lemma 6.1 may fail to hold if the hypothesis that $P=\operatorname{nil}(R)$ is omitted.

Example 6.2. Let $T=\mathbf{Z}[x]$ be the polynomial ring in one variable over \mathbf{Z}. Let $I=$ $x^{2} T+2 x T$. Let $R=T / I$. For any $t \in T$, we denote $t+I$ by \bar{t}. Since $\mathbf{Z} \cap I=(0)$, we identify \bar{n} with n for any $n \in \mathbf{Z}$. This example appeared in [2, Example 3.6(a)], where it was noted that $\operatorname{nil}(R)=\{0, \bar{x}\}$ and moreover, it was shown that $\Gamma(R)$ is an infinite star graph with center \bar{x}, where $\Gamma(R)$ is the zero-divisor graph of R.

Note that $I=x^{2} T+2 x T=x T \cap\left(x^{2} T+2 T\right)$ is an irredundant primary decomposition of I in T with $x T$ is $P_{1}=x T$-primary and $x^{2} T+2 T$ is $P_{2}=x T+2 T$-primary. Observe that $x T / I$ is a P_{1} / I-primary ideal of R and $\left(x^{2} T+2 T\right) / I$ is a P_{2} / I-primary ideal of R. Hence it follows that $x T / I \cap\left(x^{2} T+2 T\right) / I$ is an irredundant primary decomposition of the zero ideal of R. We know from [3, Proposition 4.7] that $Z(R)=P_{1} / I \cup P_{2} / I$ and as $P_{1} \subseteq P_{2}$, it follows that $Z(R)=P_{2} / I$. This shows that R admits P_{2} / I as its only maximal N-prime of (0). Note that $n i l(R)=P_{1} / I \neq P_{2} / I$.

We now verify that $A G(R)$ is complemented. Indeed, we show that $A G(R)$ is an infinite star graph with center $\operatorname{nil}(R)$. Let $J \in A(R)^{*}$. Then $J \subseteq Z(R)=P_{2} / I$. Observe that $P_{2} / I=\left((0):_{R} \bar{x}\right)$. Hence we obtain that $\operatorname{Jnil}(R)=(0)$. Let J_{1}, J_{2} be distinct nonzero ideals of R which are different from $\operatorname{nil}(R)$. As $\operatorname{nil}(R)=\{0, \bar{x}\}$, it follows that $J_{1} \nsubseteq \operatorname{nil}(R)$ and $J_{2} \nsubseteq \operatorname{nil}(R)$. Since $\operatorname{nil}(R)$ is a prime ideal of R, we obtain that $J_{1} J_{2} \nsubseteq \operatorname{nil}(R)$. Hence we obtain that $J_{1} J_{2} \neq(0)$. It is clear that for any positive integer $n, 2^{n} R \in A(R)^{*}$ and moreover, for any distinct positive integers $n, m, 2^{n} R \neq 2^{m} R$. The above arguments show
that $A G(R)$ is an infinite star graph with center $\operatorname{nil}(R)$. Hence $A G(R)$ is complemented. However, R has an infinite number of prime ideals.

The following theorem is an immediate consequence of Lemma 6.1 and Theorem 4.8.

Theorem 6.3. Let R be a ring which is not reduced, admitting only one maximal N-prime P of (0) such that $P=\operatorname{nil}(R)$ and $A G(R)$ admits at least two vertices. Then $A G(R)$ is complemented if and only if (a) and (b) hold and moreover, either (c) or (d) holds where (a)-(d) are given below:
(a) $P^{2} \neq(0)$.
(b) $P^{4}=(0)$.
(c) R is a SPIR.
(d) $\left(d_{1}\right) z^{2}=0$ for each $z \in P, P$ is not principal but there exist $a, b \in P$ such that $P=R a+R b$; and $\left(d_{2}\right) P^{2}=R x$ for any nonzero $x \in P^{2}$.

Proof. Suppose that $P=\operatorname{nil}(R)$ and $A G(R)$ is complemented. Now it follows, from Lemma 6.1, that P is the only prime ideal of R. Hence R is a zero-dimensional quasilocal ring with P as its unique maximal ideal. Applying Theorem 4.8, we obtain that (a) and (b) hold and moreover, either (c) or $\left(d_{1}\right)$ holds. We now verify that when $\left(d_{1}\right)$ holds, then $\left(d_{2}\right)$ holds. From $\left(d_{1}\right), P=R a+R b$. As $z^{2}=0$ for each $z \in P$, it follows that $P^{2}=R a b$, and $P^{3}=(0)$. Let $x \in P^{2}, x \neq 0$. Hence $x=r a b$ for some $r \in R$. Since R is quasilocal with P as its unique maximal ideal and $P^{3}=(0)$, it follows that r is a unit in R and so $a b=r^{-1} x$. Hence we obtain that $P^{2}=R a b=R x$.

Conversely, assume that (a) and (b) hold and moreover, either (c) or (d) holds. If (c) holds, then it is clear that P is the unique maximal ideal of R and it follows that either $A G(R)$ is a graph on the vertex set $\left\{P, P^{2}, P^{3}\right\}$ with $P \perp P^{3}$ and $P^{2} \perp P^{3}$ or $A G(R)$ is a graph on the vertex set $\left\{P, P^{2}\right\}$ and $P \perp P^{2}$. Thus if (c) holds, then $A G(R)$ is complemented. Suppose that (d) holds. Let $r \in R \backslash P$. Now $P=R a+R b, P^{2}=R a b$, and $P^{3}=(0)$. Since P is the only maximal N-prime of (0) in R, it follows that $Z(R)=P$. As $a b \neq 0$ and $r \in R \backslash Z(R)$, we obtain that $r a b \neq 0$. Hence $P^{2}=R(r a b)$. So there exists $s \in R$ such that $a b=s r a b$. This implies that $(1-s r) a b=0$. Hence we obtain that $1-s r \in Z(R)=P$. Therefore, $P+R r=R$. This is true for any $r \in R \backslash P$. Hence it follows that P is a maximal ideal of R. By hypothesis, $P=\operatorname{nil}(R)$. So, R must be quasilocal with P as its unique maximal ideal. Now we obtain from (ii) \Rightarrow (i) of Lemma 4.2 that $A G(R)$ is complemented.

Let R and $\left\{P_{1}, \ldots, P_{n}\right\}$ be as in the beginning of this section. We assume that $n \geq$ 2 and attempt to determine necessary and sufficient conditions in order that $A G(R)$ is complemented. We next state and prove Lemma 6.4. It is useful to recall the following. Let I be an ideal of a commutative ring T with identity. A prime ideal P of T is said to be a B-prime of I if there exists $t \in T$ such that $P=\left(I:_{T} t\right)$ [9].

Lemma 6.4. Let R be a ring which is not reduced. Let $n \geq 2$ and let $\left\{P_{1}, P_{2} \ldots, P_{n}\right\}$ be the set of all maximal N-primes of (0) in R. Suppose that nil $(R)=\cap_{i=1}^{n} P_{i}$. If $A G(R)$ is complemented, then the following hold:
(i) For each $i \in\{1,2, \ldots, n\}$, there exists $x_{i} \in R$ such that $P_{i}=\left((0):_{R} x_{i}\right)$ (that is, P_{i} is a B-prime of (0) in R for each $i \in\{1,2, \ldots, n\}$). Moreover, for each $i \in\{1,2, \ldots, n\}$, $x_{i} \in P_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$.
(ii) With $x_{1}, x_{2}, \ldots, x_{n}$ as in (i), $x_{i} \in \operatorname{nil}(R)$ for some $i \in\{1,2, \ldots, n\}$ and moreover, for that i, P_{i} is a maximal ideal of R.

Proof. (i) As $\left\{P_{1}, P_{2} \ldots, P_{n}\right\}$ is the set of all maximal N-primes of (0) in R, it follows that $Z(R)=\cup_{i=1}^{n} P_{i}$. Suppose that $A G(R)$ is complemented. We know, from Lemma 3.3, that $(\operatorname{nil}(R))^{4}=(0)$. Hence $\left(\cap_{i=1}^{n} P_{i}\right)^{4}=(0)$. Therefore, $\prod_{i=1}^{n} P_{i}^{4}=(0)$. Let $i \in\{1,2, \ldots, n\}$. Since $n \geq 2$ and P_{k} is a maximal N-prime of (0) in R for each $k \in\{1,2, \ldots, n\}$, it follows that $\prod_{j \in A_{i}} P_{j}^{4} \neq(0)$, where $A_{i}=\{1,2, \ldots, n\} \backslash\{i\}$. Let $y_{i} \in \prod_{j \in A_{i}} P_{j}^{4}$, $y_{i} \neq 0$. It now follows that $P_{i}^{4} y_{i}=(0)$. Let $0 \leq s<4$ be such that $P_{i}^{s} y_{i} \neq$ (0) but $P_{i}^{s+1} y_{i}=(0)$. Let $x_{i} \in P_{i}^{s} y_{i} \backslash\{0\}$. Observe that $P_{i} x_{i}=(0)$. Hence we obtain that $P_{i} \subseteq\left((0):_{R} x_{i}\right) \subseteq Z(R)=\cup_{k=1}^{n} P_{k}$. It now follows that $P_{i}=\left((0):_{R} x_{i}\right)$. This proves that P_{i} is a B-prime of (0) in R for each $i \in\{1,2, \ldots, n\}$. We now prove the moreover assertion. We obtain from [4, Lemma 3.6] that $x_{i} x_{j}=0$ for all distinct $i, j \in\{1,2, \ldots, n\}$. Hence for each $i \in\{1,2, \ldots, n\}, x_{i} \in\left((0):_{R} x_{j}\right)=P_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$.
(ii) Let $z \in \operatorname{nil}(R)$ with $z \neq 0$. Note that $\left(x_{1}+x_{2}+\cdots+x_{n}\right) z=0$. Therefore, $x_{1}+x_{2}+\cdots+x_{n} \in Z(R)=\cup_{i=1}^{n} P_{i}$. Hence we obtain that $x_{1}+x_{2}+\cdots+x_{n} \in P_{i}$ for some $i \in\{1,2, \ldots, n\}$. We know from (i) that for each $j \in\{1,2, \ldots, n\} \backslash\{i\}, x_{j} \in P_{i}$. It follows from $x_{1}+x_{2}+\cdots+x_{n} \in P_{i}$ that $x_{i} \in P_{i}=\left((0):_{R} x_{i}\right)$. Therefore, we obtain that $x_{i}^{2}=0$ and so $x_{i} \in \operatorname{nil}(R)$. We now prove that P_{i} is a maximal ideal of R. Let M be a maximal ideal of R such that $P_{i} \subseteq M$. We claim that $M \subseteq Z(R)$. Suppose that $M \nsubseteq Z(R)$. Let $w \in M \backslash Z(R)$. Let $I=R x_{i}$. Since $x_{i} \neq 0$ but $x_{i}^{2}=0$, it is clear that $I \in A(R)^{*}$. As $A G(R)$ is complemented, there exists $J \in A(R)^{*}$ such that $I \perp J$. Let $A=R w x_{i}$. Since $x_{i}^{2}=0, I J=\left(R x_{i}\right) J=(0)$, it is clear that $A J=A I=(0)$. It follows from $I \perp J$ that $A \in\{(0), I, J\}$. Since $w \notin Z(R)$, we obtain that $A=R w x_{i} \neq(0)$. Observe that $A \neq I$. For if $A=I$, then $x_{i} \in A$ and so $x_{i}=r w x_{i}$ for some $r \in R$. This implies that $(1-r w) x_{i}=0$. Hence $1-r w \in\left((0):_{R} x_{i}\right)=P_{i} \subseteq M$. This is impossible since $w \in M$ and M is a proper ideal of R. Hence $A \neq I$ and so $A=J$. Thus we arrive at $I=R x_{i} \perp A=R w x_{i}$. Note that $B=R w^{2} x_{i}$ is such that $B \notin\{(0), I, A\}$, but $B I=B A=(0)$. This is in contradiction to the fact that $I \perp A$. Hence we must have $M \subseteq Z(R)$. As M is a maximal ideal of R and $M \subseteq Z(R), M$ is necessarily a maximal N-prime of (0) in R. Since P_{i} is also a maximal N-prime of (0) in R, it follows from $P_{i} \subseteq M$ that $P_{i}=M$. This proves that P_{i} is a maximal ideal of R.

With the same hypotheses as in the statement of Lemma 6.4, the following lemma provides another necessary condition in order that $A G(R)$ is complemented.

Lemma 6.5. Let R be a ring which is not reduced. Let $n \geq 2$ and let $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be the set of all maximal N-primes of (0) in R. Suppose that nil $(R)=\cap_{i=1}^{n} P_{i}$. If $A G(R)$ is complemented, then $(\operatorname{nil}(R))^{2}=(0)$.

Proof. Suppose that $A G(R)$ is complemented. We know from Lemma 3.3 that $(\operatorname{nil}(R))^{4}=$ (0). We first prove that $(\operatorname{nil}(R))^{3}=(0)$. Suppose that $(\operatorname{nil}(R))^{3} \neq(0)$. We know from Proposition 3.4(i) that $\operatorname{nil}(R) \perp(\operatorname{nil}(R))^{3}$. Moreover, we know from Lemma 6.4 that there exist elements $x_{i} \in R$ such that $P_{i}=\left((0):_{R} x_{i}\right)$ for each $i \in\{1,2, \ldots, n\}$ and so $(\operatorname{nil}(R))\left(R x_{i}\right)=(0)$ and $(\operatorname{nil}(R))^{3}\left(R x_{i}\right)=(0)$. Since $\operatorname{nil}(R) \perp(\operatorname{nil}(R))^{3}$, it follows that $R x_{1} \in\left\{\operatorname{nil}(R),(\operatorname{nil}(R))^{3}\right\}$ and $R x_{2} \in\left\{\operatorname{nil}(R),(\operatorname{nil}(R))^{3}\right\}$. As $(\operatorname{nil}(R))^{3} \subseteq \operatorname{nil}(R)$, it follows that either $R x_{1} \subseteq R x_{2}$ or $R x_{2} \subseteq R x_{1}$. We may assume without loss of
generality that $R x_{1} \subseteq R x_{2}$. This implies that $x_{1}=r x_{2}$ for some $r \in R$. Let $a \in P_{2}$. Then $a x_{2}=0$ and so $a x_{1}=a\left(r x_{2}\right)=0$. This implies that $a \in P_{1}$. Hence we arrive at $P_{2} \subseteq P_{1}$. This is impossible since P_{1} and P_{2} are distinct maximal N -primes of (0) in R. Hence we obtain that $(\operatorname{nil}(R))^{3}=(0)$. We now show that $(\operatorname{nil}(R))^{2}=(0)$. Suppose that $(\operatorname{nil}(R))^{2} \neq(0)$. We know from Proposition 3.5(i) that $\operatorname{nil}(R) \perp(\operatorname{nil}(R))^{2}$. As $(\operatorname{nil}(R)) R x_{i}=(n i l(R))^{2} R x_{i}=(0)$ for each $i \in\{1,2, \ldots, n\}$, we obtain that $R x_{1} \in\left\{\operatorname{nil}(R),(\operatorname{nil}(R))^{2}\right\}$ and $R x_{2} \in\left\{\operatorname{nil}(R),(\operatorname{nil}(R))^{2}\right\}$. Since $(\operatorname{nil}(R))^{2} \subseteq \operatorname{nil}(R)$, proceeding as in the previous paragraph, we obtain a similar contradiction.

This proves that $(\operatorname{nil}(R))^{2}=(0)$.

Let $R,\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be as in the statement of Lemma 6.4. With the assumption that $\operatorname{nil}(R)=\cap_{i=1}^{n} P_{i}$, we determine in Theorem 6.9 when $A G(R)$ is complemented. We make use of the following lemmas in the proof of Theorem 6.9. We denote by $\operatorname{Tot}(R)$, the total quotient ring of R.

Lemma 6.6. Let R be a ring which is not reduced. Let $n \geq 2$ and let $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be the set of all maximal N-primes of (0) in R. Suppose that nil $(R)=\cap_{i=1}^{n} P_{i}$. If $A G(R)$ is complemented, then $n=2$.

Proof. As $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ is the set of all maximal N-primes of (0) in R, it is clear that $Z(R)=\cup_{i=1}^{n} P_{i}$. Let $S=R \backslash Z(R)=R \backslash\left(\cup_{i=1}^{n} P_{i}\right)$. Observe that $S^{-1} R=\operatorname{Tot}(R)$ is a zero-dimensional quasisemilocal ring and moreover, $\left\{S^{-1} P_{1}, S^{-1} P_{2}, \ldots, S^{-1} P_{n}\right\}$ is the set of all its maximal ideals. Furthermore, as R is not reduced, it follows that $\operatorname{Tot}(R)$ is not reduced. Since $n \geq 2$, it is clear that $\operatorname{Tot}(R)$ is not quasilocal. We want to show that $n=2$. In view of (i) \Rightarrow (ii) of Theorem 5.6, it is enough to show that $A G(\operatorname{Tot}(R))$ is complemented. This is clear if $R=\operatorname{Tot}(R)$. Hence we may assume that $R \neq \operatorname{Tot}(R)$. Therefore, P_{i} is not a maximal ideal of R for at least one $i \in\{1,2, \ldots, n\}$. Without loss of generality we may assume that P_{1} is not a maximal ideal of R. We know from Lemma 6.4(i) that there exist elements $x_{i} \in R$ such that $P_{i}=\left((0):_{R} x_{i}\right)$ for $i=1,2, \ldots, n$. Since P_{1} is not a maximal ideal of R, it follows from Lemma 6.4(ii) that $x_{1} \notin \operatorname{nil}(R)$.

Let $A \in A(\operatorname{Tot}(R))^{*}$. Note that $A=S^{-1} I$ for some ideal $I \in A(R)^{*}$. Since we are assuming that $A G(R)$ is complemented, there exists $J \in A(R)^{*}$ such that $I \perp J$ in $A G(R)$. We claim that $A=S^{-1} I \perp S^{-1} J$ in $A G(\operatorname{Tot}(R))$. From $I J=(0)$, it follows that $S^{-1} I S^{-1} J=(0)$. If $B=S^{-1} K$ is any element of $A(\operatorname{Tot}(R))^{*}$ such that $S^{-1} I S^{-1} K=S^{-1} J S^{-1} K=(0)$, it follows that $I K=J K=(0)$. Since $I \perp J$ in $A G(R)$, it follows that $K \in\{I, J\}$ and hence we obtain that either $S^{-1} K=S^{-1} I$ or $S^{-1} K=S^{-1} J$. Now to show $S^{-1} I \perp S^{-1} J$ in $A G(\operatorname{Tot}(R))$, we need only to verify that $S^{-1} I \neq S^{-1} J$. Suppose that $S^{-1} I=S^{-1} J$. Then it follows from $S^{-1} I S^{-1} J=(0)$ that $\left(S^{-1} I\right)^{2}=\left(S^{-1} J\right)^{2}=(0)$. Therefore, we obtain that $I^{2}=J^{2}=(0)$. Hence it follows that $I \subseteq \operatorname{nil}(R)$ and $J \subseteq \operatorname{nil}(R)$. Note that $I\left(R x_{1}\right)=J\left(R x_{1}\right)=(0)$. As $x_{1} \notin \operatorname{nil}(R)$, it is clear that $R x_{1} \notin\{(0), I, J\}$. Thus we obtain that the ideal $R x_{1}$ is adjacent to I and J in $A G(R)$. This is impossible since $I \perp J$ in $A G(R)$. This proves that $S^{-1} I \neq S^{-1} J$ and so as is noted already, we obtain that $S^{-1} I \perp S^{-1} J$ in $A G(\operatorname{Tot}(R))$. This shows that $A G(\operatorname{Tot}(R))$ is complemented and so as is remarked earlier in this proof, it follows that $n=2$.

Lemma 6.7. Let T_{1}, T_{2} be commutative rings with identity. Suppose that N_{i} is the unique maximal N-prime of (0) in T_{i} for each $i \in\{1,2\}$ with nil $\left(T_{i}\right)=N_{i}$. Let $T=T_{1} \times T_{2}$. Suppose that $A G(T)$ is complemented. If $N_{2} \neq(0)$, then N_{2} is a maximal ideal of T_{2}.

Proof. Since $\operatorname{nil}\left(T_{2}\right)=N_{2} \neq(0)$, there exists $t_{2} \in N_{2}$ such that $t_{2} \neq 0$ but $t_{2}^{2}=0$. By contradiction, suppose that N_{2} is not a maximal ideal of T_{2}. Let M be a maximal ideal of T_{2} such that $N_{2} \subset M$. Consider the ideal $I=T_{1} \times T_{2} t_{2}$. Note that $I \in A(T)^{*}$. As $A G(T)$ is complemented, there exists $J \in A(T)^{*}$ such that $I \perp J$. Observe that $J=J_{1} \times J_{2}$ for some ideal J_{1} of T_{1} and an ideal J_{2} of T_{2}. From $I J=(0) \times(0)$, it follows that $J_{1}=(0)$ and $\left(T_{2} t_{2}\right) J_{2}=(0)$. Let $y \in M \backslash N_{2}$. Since $Z\left(T_{2}\right)=N_{2}$, we obtain that $y \notin Z\left(T_{2}\right)$. As $t_{2} \neq 0$, it follows that $y t_{2} \neq 0$. Note that the nonzero ideal $K=(0) \times T_{2}\left(y t_{2}\right)$ is such that $I K=J K=(0) \times(0)$. Since $I \perp J$, we obtain that $K \in\{I, J\}$. It is clear that $K \neq I$. Hence $K=J$. Therefore, we obtain that $T_{2} t_{2}=T_{2}\left(y t_{2}\right)$. So there exists $s_{2} \in T_{2}$ such that $t_{2}=s_{2} y t_{2}$. This implies that $t_{2}\left(1-s_{2} y\right)=0$. Thus $1-s_{2} y \in Z\left(T_{2}\right)=N_{2} \subset M$. As $y \in M$, it follows that $1=1-s_{2} y+s_{2} y \in M$. This is impossible. Therefore, N_{2} must be a maximal ideal of T_{2}.

We also make use of the following lemma in the proof of Theorem 6.9.
Lemma 6.8. Let (S, M) be a SPIR with $M \neq(0)$ but $M^{2}=(0)$ and D be an integral domain. Let $R=S \times D$. Then $A G(R)$ is complemented.

Proof. If D is a field, then it is already verified in the proof of (ii) \Rightarrow (i) of Theorem 5.6 that $A G(R)$ is complemented. Suppose that D is not a field. Observe that $A(R)^{*}=\{(0) \times$ $I \mid I$ varies over all nonzero ideals of $D\} \cup\{M \times J \mid J$ varies over all ideals of $D\} \cup\{S \times(0)\}$. It is easy to verify that for any nonzero ideal I of $D,(0) \times I \perp M \times(0)$, for any nonzero ideal J of $D, M \times J \perp M \times(0)$, and $S \times(0) \perp(0) \times D$. This proves that each element of $A(R)^{*}$ admits a complement in $A G(R)$ and hence we obtain that $A G(R)$ is complemented.

With the help of Lemmas 6.4-6.8, we prove the following theorem.
Theorem 6.9. Let R be a ring which is not reduced. Let $n \geq 2$ and let $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be the set of all maximal N-primes of (0) in R. Suppose that nil $(R)=\cap_{i=1}^{n} P_{i}$. Then $A G(R)$ is complemented if and only if either R is isomorphic to $F \times S$ as rings, where F is a field and (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$, or is isomorphic to $S \times D$ as rings, where (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$ and D is an integral domain which is not a field.

Proof. Suppose that $A G(R)$ is complemented. We know from Lemma 6.6 that $n=2$. Thus $\left\{P_{1}, P_{2}\right\}$ is the set of all maximal N -primes of (0) in R. We know from Lemma 6.4(i) that there exist $x_{1}, x_{2} \in R$ such that $P_{1}=\left((0):_{R} x_{1}\right), P_{2}=\left((0):_{R} x_{2}\right)$ and moreover, $x_{1} \in P_{2}$ and $x_{2} \in P_{1}$. Furthermore, we know from Lemma 6.4(ii) that either $x_{1} \in \operatorname{nil}(R)$ or $x_{2} \in \operatorname{nil}(R)$. We may assume without loss of generality that $x_{1} \in \operatorname{nil}(R)$. In such a case, it follows from Lemma 6.4(ii) that P_{1} is a maximal ideal of R. As P_{1}, P_{2} are distinct maximal N-primes of (0) in R, we obtain that $P_{1}+P_{2}=R$. We know from Lemma 6.5 that $(\operatorname{nil}(R))^{2}=(0)$ and so $\left(P_{i} \cap P_{2}\right)^{2}=(0)$. Hence $P_{1}^{2} P_{2}^{2}=(0)$. As $P_{1}^{2}+P_{2}^{2}=R$, we obtain from the Chinese remainder theorem [3, Proposition 1.10(ii) and (iii)] that the mapping $f: R \rightarrow R / P_{1}^{2} \times R / P_{2}^{2}$ given by $f(r)=\left(r+P_{1}^{2}, r+P_{2}^{2}\right)$ is an isomorphism
of rings. Let us denote R / P_{1}^{2} by T_{1} and R / P_{2}^{2} by T_{2}. Moreover, let us denote $P_{1} / P_{1}^{2}=N_{1}$ and P_{2} / P_{2}^{2} by N_{2}. Note that $f(Z(R))=f\left(P_{1} \cup P_{2}\right)=\left(N_{1} \times T_{2}\right) \cup\left(T_{1} \times N_{2}\right)$. As f is an isomorphism of rings, it follows that $f(Z(R))=Z\left(T_{1} \times T_{2}\right)=\left(Z\left(T_{1}\right) \times T_{2}\right) \cup\left(T_{1} \times Z\left(T_{2}\right)\right)$. Hence we obtain that $Z\left(T_{1}\right)=N_{1}$ and $Z\left(T_{2}\right)=N_{2}$. Therefore, N_{i} is the unique maximal N-prime of the zero ideal of T_{i} for each $i \in\{1,2\}$. Moreover, $f(n i l(R))=f\left(P_{1} \cap P_{2}\right)=$ $P_{1} / P_{1}^{2} \times P_{2} / P_{2}^{2}=\operatorname{nil}\left(T_{1}\right) \times \operatorname{nil}\left(T_{2}\right)$. Hence it follows that $\operatorname{nil}\left(T_{1}\right)=P_{1} / P_{1}^{2}=N_{1}$ and $\operatorname{nil}\left(T_{2}\right)=P_{2} / P_{2}^{2}=N_{2}$.

We consider two cases.
Case (i). P_{2} is a maximal ideal of R.
As P_{1} is already a maximal ideal of R and $\operatorname{nil}(R)=P_{1} \cap P_{2}$, it follows that R is a zerodimensional quasisemilocal ring with $\left\{P_{1}, P_{2}\right\}$ as its set of all prime ideals of R. Now $A G(R)$ is complemented and R is not reduced. Hence it follows from (i) \Rightarrow (ii) of Theorem 5.6 that R must be isomorphic to $S \times F$ as rings, where (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$ and F is a field.
Case (ii). P_{2} is not a maximal ideal of R.
Note that $N_{2}=P_{2} / P_{2}^{2}$ is not a maximal ideal of T_{2}. Since $A G(R)$ is complemented and R is isomorphic to $T_{1} \times T_{2}$ as rings, we obtain that $A G\left(T_{1} \times T_{2}\right)$ is complemented. Now it follows from Lemma 6.7 that $\operatorname{nil}\left(T_{2}\right)$ is the zero ideal of T_{2}. Hence we obtain that $P_{2}=P_{2}^{2}$ and so $T_{2}=R / P_{2}^{2}=R / P_{2}$ is an integral domain. By assumption, P_{2} is not a maximal ideal of R and so T_{2} is not a field. Let us denote $T_{1} \times T_{2}$ by T. Since T is not reduced, it follows that $\operatorname{nil}\left(T_{1}\right)$ is a nonzero ideal of T_{1}. Hence $P_{1} \neq P_{1}^{2}$. We assert that any $x \in P_{1} \backslash P_{1}^{2}, P_{1} / P_{1}^{2}=T_{1}\left(x+P_{1}^{2}\right)$. Observe that $I=T_{1}\left(x+P_{1}^{2}\right) \times T_{2} \in A(T)^{*}$. As $A G(T)$ is complemented, there exists an ideal J_{1} of T_{1} and an ideal J_{2} of T_{2} such that $I=T_{1}\left(x+P_{1}^{2}\right) \times T_{2} \perp J=J_{1} \times J_{2}$. Hence $J_{2}=\left(0+P_{2}^{2}\right)$ and from $T_{1}\left(x+P_{1}^{2}\right) J_{1}=$ $\left(0+P_{1}^{2}\right)$, it follows that $J_{1} \subseteq P_{1} / P_{1}^{2}$. Note that the ideal $K=P_{1} / P_{1}^{2} \times\left(0+P_{2}^{2}\right)$ is such that $I K=J K=\left(0+P_{1}^{2}\right) \times\left(0+P_{2}^{2}\right)$. Since $I \perp J$ and as $K \notin\left\{\left(0+P_{1}^{2}\right) \times\left(0+P_{2}^{2}\right), I\right\}$, it follows that $K=J$. Hence we obtain that $I \perp K$. Now the ideal $B=T_{1}\left(x+P_{1}^{2}\right) \times\left(0+P_{2}^{2}\right)$ is such that $B I=B K=\left(0+P_{1}^{2}\right) \times\left(0+P_{2}^{2}\right)$. Since $I \perp K$ and $B \notin\left\{\left(0+P_{1}^{2}\right) \times\left(0+P_{2}^{2}\right), I\right\}$, we obtain that $B=K$. Hence $P_{1} / P_{1}^{2}=T_{1}\left(x+P_{1}^{2}\right)$. As P_{1} / P_{1}^{2} is a maximal ideal of T_{1}, it is clear that $\left(T_{1}, N_{1}\right)$ is a SPIR with N_{1} is a nonzero ideal of T_{1} but N_{1}^{2} is the zero ideal of T_{1}. Let $S=T_{1}, M=N_{1}$, and $D=T_{2}$. Note that $(S . M)$ is a SPIR with $M \neq(0)$ but $M^{2}=(0), D$ is an integral domain which is not a field and moreover, $R \cong S \times D$ as rings.

The converse follows immediately from Lemma 6.8.

Acknowledgments

We are very much thankful to the referee for his/her valuable and useful suggestions. We are very much thankful to Professor M.A. Al-Gwaiz and Professor Y. Boudabbous for their support.

References

[1] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr, F. Shaveisi, On the coloring of the annihilating ideal graph of a commutative ring, Discrete Math. 312 (2012) 2520-2526.
[2] D.F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean Algebras, J. Pure Appl. Algebra 180 (2003) 221-241.
[3] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1) (1988) 208-226.
[5] M. Behboodi, Z. Rakeei, The annihilating ideal graph of commutative rings I, J. Algebra Appl. 10 (4) (2011) 727-739.
[6] M. Behboodi, Z. Rakeei, The annihilating ideal graph of commutative rings II, J. Algebra Appl. 10 (4) (2011) 741-753.
[7] M. Hadian, Unit action and the geometric zero-divisor ideal graph, Comm. Algebra 40 (8) (2012) 2920-2931.
[8] W. Heinzer, J. Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1) (1972) 73-74.
[9] W. Heinzer, J. Ohm, Locally noetherian commutative rings, Trans. Amer. Math. Soc. 158 (2) (1971) 273-284.
[10] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
[11] R. Levy, J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra 30 (2) (2002) 745-750.

[^0]: * Corresponding author.

 E-mail address: s_visweswaran2006@yahoo.co.in (S. Visweswaran).
 Peer review under responsibility of King Saud University.

