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Table 1. Dystonias with Established Causative Gene Defects

Locus Designation Inheritance Gene Product

DYT1 primary torsion dystonia AD torsinA
DYT5 dopa-responsive dystonia AD GTP cyclohydrolase 1

Segawa syndrome AR tyrosine hydroxylase
DYT11 myoclonic dystonia AD �-sarcoglycan
DYT12 rapid-onset dystonia-parkinsonism AD Na�/K�-ATPase �3 subunit
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irreversible event. There is no direct evidence to date,
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results in clinical phenotypes resulting from preferential
dysfunction of the CNS. Partial inhibition of sodium
pump activity in rat brain causes hyperexcitability and
epileptiform bursts (Vaillend et al., 2002). Total absence
of the �2 subunit in mice is neonatal lethal, whereas New Roles for an Old Molecule
heterozygous mice have enhanced fear responses and in Axon-Glial Interactionneuronal activity in the amygdala (Ikeda et al., 2003). In
man, haploinsufficiency due to missense mutations in
the �2 subunit (ATP1A2) is associated with susceptibility
to familial hemiplegic migraine and benign familial infan-
tile convulsions (Vanmolkot et al., 2003). As reported in Axons need to be above a minimum size before they
this issue, missense mutations in the �3 subunit can be ensheathed by myelin-forming glia. But it has
(ATP1A3) predispose to rapid-onset dystonia-parkin- generally been assumed that the axonal signals that
sonism. These genotype-phenotype correlations, be- initiate myelination, whatever they are, would act simi-
tween mutations of a specific � subunit gene and distinct larly in both the CNS and the PNS. The surprising find-
clinical syndromes, illustrate the importance of isoform ing of Chan et al. in this issue of Neuron is that NGF
specificity of the Na�/K�-ATPase in normal brain func- can act as a regulator of ensheathment but that it has
tion and serve as an impetus for further study. opposite effects on CNS and PNS axons.
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neurotrophins have a role in modulating the receptive- of the PNS possess TrkA receptors but they are not my-
ness of axons to glial ensheathment. elinated.

The prototypic neurotrophin is nerve growth factor The fact that Chan et al. were able to show that NGF
(NGF), and studies on the ability of NGF to promote appears to act via axonal not glial TrkA receptors leads
neuron survival have a venerable history (Levi-Montal- to an important question that future work will need to
cini and Cohen, 1960). Other neurotrophins and their address, namely, what is the nature of the axonal signals
cognate Trk and p75NTR receptors are known to have that influence the cell biology of oligodendrocytes and
distinct roles in the development of glia. Neurotro- Schwann cells that are produced in response to the
phin-3 (NT3) influences both the survival of oligodendro- binding of NGF to axons? Ligand binding to Trk recep-
cytes and the proliferation of their precursors (Barres et tors causes autophosphorylation and the subsequent
al., 1994), and brain-derived neurotrophic factor (BDNF) binding of various adaptor proteins, including PLC-�-1,
and NT3 have opposing effects on Schwann cell myelin- SHC, PI-3 kinase, and Erk 1. Each of these has been
ation (Cosgaya et al., 2002). The effects of NT3 on oligo- implicated in signaling pathways that converge on the
dendrocytes are direct, whereas it is not certain whether nucleus. Hence, it is very likely that receptor activation
the effects of BDNF and NT3 are mediated by receptors influences the transcription of neuronal genes that can
on neurons or on Schwann cells. Now it appears that modulate the ability of oligodendrocytes and Schwann
NGF also has a role in regulating myelination (Chan et cells to myelinate. Possible candidates for the effector
al., 2004). Interestingly, the effects of NGF on the cell molecules produced by neurons might include secreted
biology of myelin-forming glia appear to be indirect, i.e., molecules such as neuregulins or the compounds
the signals that affect myelination emanate from axons known to act at glial purinergic receptors (Fields and
in response to the binding of NGF to axonal TrkA re- Stevens-Graham, 2002). Axonal cell adhesion molecules
ceptors. are also reasonable candidates. Some of the best-char-

In a series of elegant experiments, Chan et al. have acterized axo-glial cell adhesion molecules are the neu-
made extensive use of myelinating cocultures in which ronal proteins Caspr and Contactin and the glial isoform
they used the neurites extended by dorsal root ganglion of Neurofascin, NF155 (Poliak and Peles, 2003; Salzer,
(DRG) neurons as the substrate for myelination by either 2003). It will be interesting to see if, in the context of
Schwann cells or oligodendrocytes. Crucially, they first axon-glial interaction, Caspr and Contactin fall out of
“weaned” the DRG neurons from dependency on NGF the inevitable screens for the target genes of TrkA recep-
to an independent state. This then allowed them to test tor activation.
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receptors in mediating the action of NGF was under-
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positive neurons and enter the spinal cord can be my-
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influence the diameter of responsive axons, but this (2004). Science 304, 700–703.
would still leave open the question as to why myelin- Poliak, S., and Peles, E. (2003). Nat. Rev. Neurosci. 4, 968–980.
forming glia can recognize differences in axonal size. Salzer, J.L. (2003). Neuron 40, 297–318.
Nevertheless, these observations have firmly estab-
lished the importance of the properties of the axon itself
as a determinant of myelination. This is of particular
relevance in the context of demyelinating diseases such
as multiple sclerosis (MS), where it has been proposed
that changes in the expression of proteins on the surface
of axons might make them more or less susceptible to
remyelination (Charles et al., 2002). Even in axons that
express TrkA, it seems that responsiveness to NGF can-
not be the whole story, since the thin sensory C fibers


