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If A is the generator of an exponentially bounded C-cosine function on a
Banach space X, then the abstract Cauchy problem (ACP) for 4 has a unique
solution for every pair (x,y) of initial values from (A — 4)"*C(X). The main
result is a characterization of the generator of a C-cosine function, which may not
be exponentially bounded and may have a nondensely defined generator, in terms
of the associated ACP.  © 1997 Academic Press

INTRODUCTION

Let 4 be a closed linear operator with domain D(.4) and range R(A) in
a Banach space X. The second order abstract Cauchy problem associated
with A is the initial value problem,

u"(t) = Au(t) + f(t), tER,

w0 =x,  w(0) =y, ACP(fx.7)

where f € C(R; X). A function u is a (strong) solution of ACP(f; x, y) if
u € CAR; X), u(t) € D(A) for all t € R, and ACP(f; x, y) is satisfied. It
is well known that the ACP is closely related to the theory of strongly
continuous cosine operator functions (see [4-6, 13]); ACP is well-posed if
and only if A is the generator of a strongly continuous cosine operator
function. Since the generator of a cosine operator function is necessarily
densely defined, the well-established theory of cosine operator functions is
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not applicable to those ACPs which have a nondensely defined operator
A. Many partial differential operators, e.g., the Laplacian A on L?(R")
(n > 1 and p # 2) do not generate strongly continuous cosine operator
functions.

Recently, to deal with the case which cannot be treated by cosine
operator functions, a generalization, the so-called n-times integrated C-
cosine function, has been investigated in [9, 10, 12]. See also [8, 11, 16] for
the case n = 0. When A is the generator of an exponentially bounded
(0-times integrated) C-cosine function, the ACP(0; x, y) has the unique
solution u(z; x,y) = C~YC(t)x + [{ C(s)yds] for every pair of initial val-
ues x,y € C(D(A)) [9, Corollary 4.3]. Many applications of C-cosine
functions to abstract differential operators and concrete partially differen-
tial operators have been discussed in [16]. For instance, if a polynomial
P(-)on R" is r-coercive for some r € (0, m], and if « > (mn/2)|1/2 — 1 /p|
(1 < p < «), then the differential operator P(D) generates a norm contin-
uous (1 — A)~“-cosine function on L?(R").

A cosine operator function (i.e., the case C = I) is necessarily exponen-
tially bounded (see [13]). But, as is shown by an example in Section 1, a
general C-cosine function need not be exponentially bounded. The above
mentioned papers mainly deal with C-cosine functions which are exponen-
tially bounded, and the relationship between a C-cosine function C(-) and
the corresponding ACP has not been fully investigated, even in the case
where C(-) is exponentially bounded. In this paper and the subsequent
paper [7] we attempt to give thorough discussions on this subject. The main
purpose in this paper is to investigate a certain relationship between C(-)
and its associated ACP(0; x, y). Further characterizations of the generator
of C(-) in terms of the existence and uniqueness of strong and weak
solutions of ACP(f; x,y), as well as an application to perturbation of
generators, will be discussed in [7].

Some basic properties of a C-cosine function and the existence and
uniqueness of a solution of the ACP associated with the generator will be
investigated in Section 1, and a characterization of the generator of a
C-cosine function in terms of the ACP will be established in Section 2.

More precisely, after preparing some basic properties we shall show that
if A4 is the generator of a (not necessarily exponentially bounded) C-cosine
function, then wu(¢r) = C™'C(t)x + C '/ C(s)yds is the unique strong
solution of the ACP(0; x, y) for every pair (x, y) of initial values from
C(D(A)) (Theorem 1.5(i)). In the case where C(-) is exponentially bounded,
one can take initial values from the set (A — A4) 1C(X) (Corollary 1.6),
which is larger than C(D(A)) in general, but is equal to the latter when
A € p(A), the resolvent set of A (see [15, Proposition 1.4]). Conversely, if
A is a closed linear operator such that R(C) c D
(A — A)~Y) for some real number A and 4 commutes with C, and if
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ACP(0; x,0) has a unique strong solution for every initial value x € (A —
A)"1C(X), then C~AC is the generator of a C-cosine function (Theorem
2.1). Since C'AC = A4 in case p(A) # ¢ [15, Proposition 1.4], it follows
that a closed linear operator A with p(A) # ¢ is the generator of a
C-cosine function if and only if 4 commutes with C and ACP(0; x, y) has
a unique strong solution for every pair (x, y) of initial values in C(D(A)),
if and only if 4 commutes with C and ACP(0; x,0) has a unigue strong
solution for every initial value x € C(D(A)) (Corollary 2.2). In the case
where C is the identity operator I, this result reduces to Fattorini’'s
theorem [4, 5]. We also characterize the generator of an exponentially
bounded C-cosine function in terms of the ACP (see Theorem 2.3). These
results are analogous to some results of Tanaka and Miyadera [15] on the
relationship between a C-semigroup and its associated Cauchy problem of
the first order. The reader can refer to [1-3, 14, 15] and references therein
for recent research on C-semigroups.

1. C-COSINE FUNCTIONS

Let X be a Banach space and let B(X) be the set of all bounded linear
operators from X into itself. Throughout this paper, C € B(X) will be
injective. A family {C(¢);¢t € R} in B(X) is called a C-cosine function on X
if

C()x: R — X is continuous for each x € X, (1.1)
C[C(t+s) + C(t—s)] =2C(t)C(s) forall¢,5s € Rand C(0) = C.
(1.2)

The associated C-sine function (or integrated C-cosine function) is the family
{S(¢);t € R} of operators defined by S(¢)x = [;C(s)xds, x € X, t € R.
Equation (1.2) implies that C commutes with C(¢) and S(¢). C(-) is said to
be exponentially bounded if

there are M > 0 and w > 0 such that [|C(¢)|l < Me*" for all t € R.
(1.3)

When C = I, a C-cosine function is a classical cosine operator function,
and it is necessarily exponentially bounded (see [13]). In general, just like
in the case of C-semigroups, this may not be true. For examples, the
C-group T(-) on X := LA(R), defined by (T()f)s) = ¢* *f(s), f € X,
s,t € R, is not exponentially bounded (see [1]). Consider the associated
family {C(¢); t € R} of operators defined by

(C(OHF)(s) =272 (e +e e f(s), feX,s€R,teR.
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It is clear that C(-) is a C-cosine function on X, with C being the
multiplication operator defined by (Cf)(s) = e™* f(s) and with the genera-
tor A defined by (Af)(s) = sf(s). We have

IC(2)ll = sup {272 (e~ + e")e™*)

sER

1
= sup {es2/4 _(e—(s—t/z)Z + e—(s+t/2)2)}
SER 2

\%
|
m

One can define the infinitesimal generator A of C(-) by

D(A) = {x € X; lim2r72(C(t)x — Cx) € R(C)},
=0 (1.4)
Ax =C! tIiﬁnth*Z(C(t)x—Cx), x € D(A).

ProposITION 1.1. Let {C(¢);t € R} be a C-cosine function on X. The
following assertions hold

C(t) = C(—1) forallt € R; (1.5)

S(—t) = —=S8(1) forallt € R. (1.6)
C(s),S(s),C(t), and S(t) commute forallt,s € R, (1.7)
S()xe CYR,X)  foreachx € X; (1.8)

[S(s +1) +S(s —1)]C=2C(¢)S(s)  forallt,s €R; (1.9)
S(t+s5)C=S8(t)C(s) +C(t)S(s) forallt,s € R. (1.10)

Proof.  Assertion (1.5) follows from (1.2) by setting # = 0; (1.6) follows
from (1.5); (1.7) follows from (1.2) and (1.5); (1.8) follows from (1.1); (1.9)
follows by integrating (1.2) with respect to s; (1.10) follows from (1.9), (1.7),
and (1.6).

Some important properties of the generator of a C-cosine function are
provided by the following proposition. Note that it was proved in [9] under
the assumption that C(-) is exponentially bounded. We give a proof of it
without that assumption.
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PropPoSITION 1.2. Let C be an injection and {C(t); t € R} be a C-cosine
function with generator A. The following assertions hold

C(t)x € D(A) and AC(t)x = C(t)Axforx € D(A) andt € R; (1.11)
S(t)x € D(A) and AS(t)x = S(t) Axforx € D(A) andt € R; (1.12)

[)S(s)xds € D(A) andAfO S(s)xds =C(t)x — Cx

forx € Xandt € R; (1.13)
[C(t+s) —C(t—5)|]C=2A48(t)S(s)  foralls,t €R; (1.14)

C(t)x—Cx=ftS(s)Axds forx € D(A) andt € R; (1.15)
0

C(')x € C*(R,X)  foreachx € D(A); (1.16)
A is a closed linear operator in X ; (1.17)
CAC = 4; (1.18)

R(C) cD(A). (1.19)

Proof.  To show that (1.11) holds, let x € D(A) and ¢ € R. Then for all
s € R\ {0} we have

257 C(s)C(t)x — CC(t)x] = C(t)[2s72(C(s)x — Cx)]
— C(1)CAx = CC(t) Ax € R(C)

as s — 0. This means that C(t)x € D(A) and AC(t)x = C(t)Ax. Asser-
tion (1.12) follows from the definition of S(-) and the closedness of 4. We
next prove that (1.13) holds. Using (1.9) we have for all x € X

2s2[C(s)f0‘S(7)xdT - ch’S(T)xdT]

— 2s_2[%(fotS(s + 7)Cxdr — [O’S(s - T)deT) - /O’S(T)deT]

s

- 23-2[%([’+55(7)de7+ /‘;SS(T)deT) - /O’S(T)def]
- C(t)Cx — C*%x = C(C(t)x —Cx) ass—0.

Thus [§ S(r)xdr € D(A) and Af; S(t)xdr = C(¢)x — Cx for x € X and
t €R.
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By (1.2), we have for x € X

C(r)S(1)S(s)x = C(r)fO[OC(u)C(u)xdudu
= /(:/:%[C(r +u) + C(r—u)]CC(v)xdudv
= %/:[frrﬂC(u)C(u)deu + '/;:YC(u)C(U)deu dv

1 r+s
B Efotfrfs C(u)C(v)Cxdudv.

Hence

[N

d
—C(N)S()S(s)x = EfO[C(r +5) — C(r —5)]C(v)Cxdv

1 .1

- —C(r+s+v)+C(r+s—U)

T2 02

—C(r—s+v)—C(r—s—0v)]C?%xdv

1 rts+t rts r—s+t 2
=Z(fr st t—j; —/ )C(U)dev

1 r+s+t r—s+t 2
-3l L Jewretsa

and

d—:zC(r)S(t)S(s) = %[C(r +s+t)—C(r+s—t)—C(r—s+t)
+C(r—s—1)]C?
In particular,
rIi_)rTg)Zr‘Z[C(r)S(t)S(s)x — CS(1)S(s)x]
_ d—:zC(r)S(t)S(s)x|,0
=27YC(s+1t) — C(s —1)]C*%
=C27YC(s+1t) —C(s—1)]Cx

forall x e X and ¢, s € R.
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It follows that S(#)S(s)x € D(A) and AS()S(s)x = 27C(t + 5) —
C(t — s)ICx for all x € X and ¢, s € R; to show that (1.15) holds, we first
claim that C(-)Cx € CYR, X) and (d/dt)C(t)Cx = CS(t)Ax for x €
D(A). In fact, using (1.2), (1.14), and (1.12) we have

sTHC(t + 5)Cx — C(t)Cx]
=sHC(t)C(s)x + AS(1)S(s)x — C(1)Cx]
= O[5 (C(s)x — )] + 578(5) (1) Ax
= (1) [2572(C(5)x — Cx) -s5/2] +575(5) (1) A,

which converges to CS(¢) Ax as s — 0. It follows that
d
t t t
C| S(s)Axds = | CS(s)Axds = | —C(s)Cxds
[5(5) [ess) [&€)

=C(C(t)x — Cx),

which proves that C(¢#)x — Cx = [§ S(s) Ax for each x € D(A4) and t € R
because C is injective. Assertion (1.16) follows from (1.15). To show that
(1.17) holds, let x, € D(A), x,, — x, and Ax, — y. Then from the equality

t

C(t)x, — Cx, = fS(s)Axn ds

0

it follows that as n — o, C(1)x — Cx = (3 S(s)yds for all t € R and

2172(C(t)x — Cx) =2t‘2ftS(s)yds—>Cy ast — 0.
0

This shows that x € D(A4) and Ax =y, and so A is a closed linear
operator in X. Finally we show that C~4C = A4. The relation A c C~4C
immediately follows from (1.11) with ¢ = 0. To show the converse, let
x € D(C™'AC), that is, Cx € D(A) and ACx € R(C). Then, by (1.15) we
have

C(C(1)x = Cx) = C(1)Cx = Cx = ['S(7) ACxdr
0
— C['s(r)C Cxdr
0
from which it follows that

202(C(t)x = Cx) = 2172 ['S(7)C~ACxdr — ACx € R(C)
0
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as ¢ — 0. This means that x € D(A) and Ax = C~'ACx. Finally, the facts
that [¢ S(s)xds € D(A) (see (1.13)) and 2t %[{ S(s)xds > Cx as t > 0
imply (1.19).

LemmA 1.3.  Let D, denote the set
D, = {x € X | both L,x =f e’“C(t)xdtandf e”S(t)xdtexist}.
0 0

The following assertions hold.

(i) C()L,D, c R(C) and (d?/dt*)C *C(t)L,x = X>*C *C(t)L,x
— AC(t)x forx € D, and t € R.

(i) L,D, € D(A) and (\*> — A)L,x = \Cx for x € D,.
Proof.  Using (1.2) and (1.9), we easily see that for x € D,

1 o o0
C(t)Lx = CE[e)"f e MC(s)xds + e*“/ e“C(s)xds] € R(C),
t —t
so that
inlC(t)L x = 2 e’\’fooe*“C(s)xds - e*"’foce*“C(s)xds
dt A 2 t —t

and
2
FC‘lC(t)LAx
A2 © ©
= —[e“/ e MC(s)xds + e_“f e‘“C(s)xds} — AC(t)x
2 t —t
= NCIC(t)Lyx — AC(1)x.
It follows that
2 2
FC(I‘)L)\X = CWC_1C(t)L,\x = /\ZC(t)L)\x - )\CC(t)x
forall ¢t € R. In particular, (d?/dt*)C(t)L,x | ,_, = C(X’L,x — ACx). Thus
(A2 — A)L,x = XCx.

Since the generator A is closed, its domain D(A), equipped with the
graph norm |x| 4 = |lx|| + || Ax||, is a Banach space. We shall denote it by
[D(A)].
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When C(-) is exponentially bounded, for large A the set D, as defined in
Lemma 1.3 is clearly equal to X. Then (ii) of Lemma 1.3 together with
(1.11) yields the next lemma, which was also proved in [9, Proposition 3.2]
by different methods.

LEMMA 1.4. Let C(-) be an exponentially bounded C-cosine function
satisfying condition (1.3). Then for each A > w, \* — A is injective, R(C) C
R(\* — A), L, € B(X), R(L,) € D(A), and L,(\* — A) c (\* — AL, =
AC.

THEOREM 1.5.  Let A be the generator of a C-cosine function {C(¢); t € R}.
The following assertions hold

(i) The function u(t) = C(t)x + S(t)y is the unique solution of
ACP(0; Cx, Cy) for each pair x, y in D(A).
(ii) The function u(t; L,x, L,y) = C"*C(t)L,x + C'S(t)L,y is the
unique solution of ACP(0; L,x, L,y) for each pair x, y in D,.
Proof. (i) Set u(¢) = C(¢+)x + S(¢)y for x,y € D(A) and t € R. Then
by (1.11), (1.12), and (1.15) we have u(¢) € C3(R, X) N C(R,[D(A)),
d? d
Pu(t) = E(S(t)Ax + C(t)y) = C(t)Ax + S(t)Ay
=A(C(t)x + S(t)y) = Au(t),

u(0) = Cx and u'(0) = Cy. Hence u is a solution of ACP(0; Cx, Cy). To
show that it is unique, let v be a solution of ACP(0; Cx,Cy). Then
(d/de)(C(s — o(t) + S(s — t)v'(#)) = 0. Integrating this equality from 0
to s yields that v(s) = C(s)x + S(s)y for each s € R.

(i) Using Lemma 1.3, (1.11), and (1.15) we have for x € D,
C(C*C(t)Lyx) = C(t)L,x € D(A)
and

d2
AC(C'C(1)Lyx) = AC(t)Lyx = WC(t)LAx

2

= C_5C (1) Lx € R(C).

This means that
C'C(t)L,x € D(C'AC) = D(A)
and
2

—7CTIC() Lyx = CTAC(CTIC(1) Lyx) = ACT'C(1) Lyx.
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Moreover,
d? 2 d
—CS()L,y=C*—S()L,y=C*—C(t)L
dr? ( ) 4 dr? ( ) N4 dr ( ) N4

= CUS(t)L,y = (C"'AC)C 1S(1) L,y
= A(CT'S(1) L,y).

Combining these facts we obtain that u(0; L,x, L,y) = L,x,
u'(0; Lyx, L,y) = L,y and
2
?M(I;LAx,LAy) = Au(t; L,x,L,y), t R,
if we put u(t; L,x,L,y) = C *C(t)L,x + C"S(t)L,y. Similarly we can
prove that u(¢; L,x, L, y) is the unique solution of ACP(0; L, x, L, y).

COROLLARY 1.6. Let A be the generator of an exponentially bounded
C-cosine function {C(t); t € R} with ||C(¢)|| < Me"" and let X > w. Then for
each pair (x,y) of elements of (A> — A) 'C(X) = L,(X), u(t;x,y) =
C Y (C(t)x + S(t)y) is a unique solution of ACP(0; x, y) satisfying

lu(t; x, p)Il < M(A = w) e I(ILy xll + [elILy 2yll),
" (2, y) < M(2X2 = Aw) (A —w) " e I(ILLy xll + [l Ly 2yl),
teR. (1.20)

Proof. The first part of the corollary is a direct consequence of Lemma
1.4 and Theorem 1.5. The estimate (1.20) follows from

u(t;x,y) = e“lfxe*“C(s)fds + e*)‘tlfxe*“C(s)fds
3 Ay 2 ] 2 _,

+ e’\’ifme*“S(s)fds - ef“ifxef“S(S)fds,
2 t 2 —t

and

?u(t; x,y) = Au(t;x,y) — MC(1)X + S(1)y),

where

x=AMN—-A) 'F=LF y=MNAN-A) 'G=L7.
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In Section 2 we shall need the following lemma which is taken from [15,
Proposition 1.4].

LEMMA 1.7. Let A € R and let A be a closed linear operator satisfying
(@ forx € D(A), Cx € D(A) and ACx = CAx,
(b) X — A is injective and D((A — A)™') D R(C).
Then we have
(i) C(D(A)) c C(D(CT'AC)) c (A — A) 1 C(X),
(i) C(D(A) = (A — A *C(X) if and only if X € p(A),
(iii) C'AC=Aif p(A) + D.

2. THE ABSTRACT CAUCHY PROBLEM

In this section we give a characterization of the generator of a C-cosine
function in terms of the unique existence of strong solution of the ACP.
The main theorem is stated as follows:

THEOREM 2.1. Let A € R and let A be a closed linear operator satisfying
(@ forx € D(A), Cx € D(A) and ACx = CAx,
(b) A — A is injective and D((A — A)~') D R(C),
(©) for each x € (A — A)"*C(X), the ACP(0;x,0) has a unique
solution.
Then there exists a C-cosine function C(-) on X with C*AC as its generator.
Proof. 'We denote the unique solution of ACP(0; x, 0) by u(¢; x,0) and
define the operator C(¢): X - X for t € R by C(t)x = (A — Ault; (A —
A)"1Cx,0) for x € X. Then C(-)x: R — X is continuous for x € X. Now,
the uniqueness of the solution implies that C(¢) is linear, Cu(¢; (A —
A)71Cx,0) = u(t; (A — A)71C%%x,0), u(—s;(A —A)1C%x,0) = u(s; (A —
A)"1C?%x,0), and C(0) = C. For x € X we define v(¢) = 27 u(t + s;
A=—A)1C?%x,0) + u(t —s: (A — A)~C?%x,0)]. Then v € C3(R, X) N
C(R,[D(A)D, v"(t) = Av(t), and

v(0) = ;[”(S: (A =4)7'C%x,0) +u(=si (A = 4)'C?x,0)]
= u(s;(/\ —A)flczx,o)_
We also have

1
0'(0) = [ (si(A = A) T Cx,0) +u'(=si (A = A)T'CPx,0)] =o.
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The uniqueness of solution implies that
o(t) = u(t;u(s; (X = A)"*C2x,0)) = ut; Cu(s; (A — A) " *Cx,0))
= u(t; (A —A)TC(A = Ayu(s; (A — 4) " Cx),0)
= u(t; (A —A)'CC(s)x,0).
It follows that

%C[C(t +s) + C(t —s)|x = (A —A)v(r)

= (A = A)u(t; (A = A4) "CC(s)x,0)
— C(1)C(s)x.

Let ¢z, > 0 be arbitrarily given and consider the linear map 7, : X —
C([0,¢,1,[ D(A)D) given by

ny(x) =u(-; (A —A) "Cx,0) = (A —A4) C(-)x.

We show that x, is a closed linear operator. In fact, let x, — x in X and
n,(x,) = u(; (A = A)1Cx,,0) > v in C(0,t,],[D(A]D. Then u(t; (A —
A)Cx,,00 =(A — A Cx, + ¢ [§ Au(r; (X — A)"1Cx,,0) drds. Letting
n — o we obtain v(¢t) = (A — A 'Cx + [§ [§ Av(r)drds for 0 <t < t,.
Let 2(z) = Cu(|t) for |t| <ty and T(¢) = u(|t] — ty; Co(ty),0) for [t] > ¢,.
Then 7(¢) is a solution of ACP(0; (A — A)~C?x,0). Therefore, from the
uniqueness of solution it follows that for 0 < ¢ < ¢, Co(¢) = 0(¢) = u(t;
(A —A)1C?%x,0) = Cu(t; (A — A)~1Cx,0), and so v = u(-; (A — A) " Cx,
0) = n,(x) on [0, #,]. We have shown that m, is closed. By the closed graph
theorem, m, is a bounded linear operator. So there exists an M, > 0 such
that sup, ., ., I (X4 < M, [lx]l for x € X, and we see that for 0 <
t<t,and x € X,

IC(t)xll = (A = A)u(t; (A —A4) "Cx, 0)l = (A — A)m, (x)(2)]]
< (Al + D) (x) (D)4 < (1A + 1) M, llx]l

for all r € R.

Having shown that C(-) is a C-cosine function on X, we next show that
C~YAC is the generator of C(-). Let B be the generator of C(-) and let
x € D(B). We have

2t72(C(t)x — Cx)
= (A= A2t 2[u(t; (A = A) *Cx,0) — u(0; (A — 4) *Cx,0)] - CBx
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and
2072[u(t; (X = A)"*Cx,0) — u(0; (A — 4) "'Cx,0)]
— Au(0; (X —A) ' Cx,0)

=A(A—A) 'Cr=MA—-A) 'Cx — Cx

as t — 0. It follows from the closedness of A4 that Cx € D(A4) and
ACx = (A — A)[MA — A)"1Cx — Cx] = CBx € R(C). That shows that B
c Cl4C.

To prove the converse, let x € D(C*AC). Then Cx € (A — A)"'C(X)
(Lemma 1.7), and so u(-; Cx,0) as well as u(:;(A —A)"1Cx,0) is well
defined and

F()\u(l; (A —A)_le,O) - u(t; Cx,O))
=A(/\u(t; (A —A)_le,O) —u(t; Cx,O)).

Let v(r) = (A — A 'Cx + [{ [§Qu(r; (A — A) 'Cx,0) —
u(r; Cx,0)) drds, t € R. Then we have v(0) = (A — A) *Cx,0v'(0) = 0, and

Av(t) = A(X — A) " Cx

+/:f0A()\u(r; (A —A)"'Cx,0) — u(r; Cx,0)) drds
= A(A—A) 7 'Co+ [Mu(r; (A — 4)Cx,0)
—u(1; Cx,0)] = [A(A —4) 'Cx — ]
= Au(t; (A —A) Cx,0) — u(t; Cx,0)
= v (1)

for all t € R. Hence v is identical to the unique solution wu(-;(A —
A)~1Cx,0) of ACP(0; (A — A)1Cx,0), and we have

C(t)x=(A —A)u(t; (A —A)fle,O) = c(t) — Av(t) = u(t; Cx,0).
It follows that as t — 0
2t72(C(t)x — Cx) = 2t7(u(t; Cx,0) — u(0; Cx,0))
— Au(0; Cx,0) = ACx € R(C).

This shows that x € D(B) and Bx = C ACx, and so C~*4C is the
generator of C(-).
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COROLLARY 2.2. Let A be a closed linear operator with nonempty resol-
vent set. Then the following are equivalent:

(i) A is the generator of a C-cosine function.

(ii) A satisfies condition (a) and ACP(0; Cx, Cy) has a unique solution
for every x, y € D(A).

(iii) A satisfies condition (a) and ACP(0; Cx,0) has a unique solution
for each x € D(A).

Proof. The implication (i) = (ii) is a direct consequence of Proposition
1.2 and Theorem 1.5(i); (ii) = (iii) is obvious. We show the implication
@iii) = (i). Since C(D(A)) = (A — A)"'C(X) for A € p(A) and C'AC =
A (Lemma 1.7Gi), (iii)), it follows from Theorem 2.1 that A is the
generator of a C-cosine function.

A characterization of exponentially bounded C-cosine functions in terms
of the ACP is given by

THEOREM 2.3. Let A be a closed linear operator in X. Then the following
are equivalent:

(i) A is the generator of an exponentially bounded C-cosine function
CC) with ||C(O| < Me"" fort > 0.

(i) A satisfies conditions
(@*) Cc4Cc =4,
(b) for some A > 0, \> — A is injective and D(A\> — A)™!) D R(C),
(c*) for every x,y € (\* — A)"'C(X), the ACP(0; x,y) has a
unique solution u(t; x, y) such that u(t; x,0) and (d?/dt*)u(t; x,0) are of
order O(e”""y as |t| = .
(iii) A satisfies (a*), (b) and
(c') for every x € (\> — A)"1C(X), the ACP(0; x,0) has a unique

solution u(t; x,0) such that u(t; x,0) and (d?/dt*)u(t; x,0) are of order
O(e”") as |t] — o.

Proof. The implication (i) = (ii) follows from Corollary 1.6 and (1.18);
(ii) = (iii) is obvious. To show the implication (iii) = (i), by Theorem 2.1,
it suffices to show that the family {C(¢);t € R} defined by C(t)x = (A —
Au(t, (A — A)~1Cx) is exponentially bounded. From the condition (c") we
deduce that |le " C(¢)x|| < . Thus, the uniform boundedness principle
implies that sup, . glle ™ C()|| < o.

In the case where A4 has nonempty resolvent set and (a) holds, the
conditions (a*) and (b) are automatically satisfied. Thus we deduce the
following corollary.
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COROLLARY 2.4. Let A be a closed linear operator with nonempty resol-
vent set. Then the following are equivalent:

(i) A is the generator of an exponentially bounded C-cosine function
C() with ||C(D|l < Me""! fort € R.

(i) A satisfies condition (a) of Theorem 2.1, and for everyx, y € D(A),
the ACP(0; Cx,Cy) has a unique solution u(t; Cx,Cy) such that ||lu(t; Cx,
0l = O(e*'") and |I(d? /dt®)u(t; Cx,0)|| = O(e™"") as |t] — oe.

(iii) A satisfies condition (@) of Theorem 2.1, and for every x € D(A)
the ACP(0; Cx,0) has a unique solution u(t; Cx,0) such that |lu(t; Cx,0)|| =
O(e"'"y and I(d? /dt®)u(t; Cx,0)|| = O(e”") as |t] — .

Remark. In the special case that the operator C is the identity operator
1, Theorem 2.1, Corollary 2.2, Theorem 2.3, and Corollary 2.4 all coincide,
and we obtain Fattorini’s theorem [4, 5].
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