C-Cosine Functions and the Abstract Cauchy Problem, I*

Chung-Cheng Kuo and Sen-Yen Shaw

Department of Mathematics, National Central University, Chung-Li, Taiwan

Cubmitted by Mimmo Iannelli

metadata, citation and similar papers at core.ac.uk

If A is the generator of an exponentially bounded C-cosine function on a Banach space X, then the abstract Cauchy problem (ACP) for A has a unique solution for every pair (x, y) of initial values from $(\lambda - A)^{-1}C(X)$. The main result is a characterization of the generator of a C-cosine function, which may not be exponentially bounded and may have a nondensely defined generator, in terms of the associated ACP. © 1997 Academic Press

INTRODUCTION

Let A be a closed linear operator with domain D(A) and range R(A) in a Banach space X. The second order abstract Cauchy problem associated with A is the initial value problem,

$$\begin{cases} u''(t) = Au(t) + f(t), & t \in R, \\ u(0) = x, & u'(0) = y, \end{cases} ACP(f; x, y)$$

where $f \in C(R; X)$. A function u is a (strong) solution of ACP(f; x, y) if $u \in C^2(R; X)$, $u(t) \in D(A)$ for all $t \in R$, and ACP(f; x, y) is satisfied. It is well known that the ACP is closely related to the theory of strongly continuous cosine operator functions (see [4–6, 13]); ACP is well-posed if and only if A is the generator of a strongly continuous cosine operator function. Since the generator of a cosine operator function is necessarily densely defined, the well-established theory of cosine operator functions is

^{*} Research supported in part by the National Science Council of the R.O.C.

not applicable to those ACPs which have a nondensely defined operator A. Many partial differential operators, e.g., the Laplacian Δ on $L^p(R^n)$ (n > 1 and $p \neq 2)$ do not generate strongly continuous cosine operator functions.

Recently, to deal with the case which cannot be treated by cosine operator functions, a generalization, the so-called n-times integrated C-cosine function, has been investigated in [9, 10, 12]. See also [8, 11, 16] for the case n=0. When A is the generator of an exponentially bounded (0-times integrated) C-cosine function, the ACP(0; x, y) has the unique solution $u(t; x, y) = C^{-1}[C(t)x + \int_0^t C(s)y \, ds]$ for every pair of initial values $x, y \in C(D(A))$ [9, Corollary 4.3]. Many applications of C-cosine functions to abstract differential operators and concrete partially differential operators have been discussed in [16]. For instance, if a polynomial $P(\cdot)$ on R^n is r-coercive for some $r \in (0, m]$, and if $\alpha > (mn/2)|1/2 - 1/p|$ $(1 \le p \le \infty)$, then the differential operator P(D) generates a norm continuous $(1 - \Delta)^{-\alpha}$ -cosine function on $L^p(R^n)$.

A cosine operator function (i.e., the case C=I) is necessarily exponentially bounded (see [13]). But, as is shown by an example in Section 1, a general C-cosine function need not be exponentially bounded. The above mentioned papers mainly deal with C-cosine functions which are exponentially bounded, and the relationship between a C-cosine function $C(\cdot)$ and the corresponding ACP has not been fully investigated, even in the case where $C(\cdot)$ is exponentially bounded. In this paper and the subsequent paper [7] we attempt to give thorough discussions on this subject. The main purpose in this paper is to investigate a certain relationship between $C(\cdot)$ and its associated ACP(0; x, y). Further characterizations of the generator of $C(\cdot)$ in terms of the existence and uniqueness of strong and weak solutions of ACP(f; x, y), as well as an application to perturbation of generators, will be discussed in [7].

Some basic properties of a *C*-cosine function and the existence and uniqueness of a solution of the ACP associated with the generator will be investigated in Section 1, and a characterization of the generator of a *C*-cosine function in terms of the ACP will be established in Section 2.

C-cosine function in terms of the ACP will be established in Section 2. More precisely, after preparing some basic properties we shall show that if A is the generator of a (not necessarily exponentially bounded) C-cosine function, then $u(t) = C^{-1}C(t)x + C^{-1}\int_0^t C(s)y\,ds$ is the unique strong solution of the ACP(0; x, y) for every pair (x,y) of initial values from C(D(A)) (Theorem 1.5(i)). In the case where $C(\cdot)$ is exponentially bounded, one can take initial values from the set $(\lambda - A)^{-1}C(X)$ (Corollary 1.6), which is larger than C(D(A)) in general, but is equal to the latter when $\lambda \in \rho(A)$, the resolvent set of A (see [15, Proposition 1.4]). Conversely, if A is a closed linear operator such that $R(C) \subset D$ $((\lambda - A)^{-1})$ for some real number λ and A commutes with C, and if

ACP(0; x, 0) has a unique strong solution for every initial value $x \in (\lambda - A)^{-1}C(X)$, then $C^{-1}AC$ is the generator of a C-cosine function (Theorem 2.1). Since $C^{-1}AC = A$ in case $\rho(A) \neq \phi$ [15, Proposition 1.4], it follows that a closed linear operator A with $\rho(A) \neq \phi$ is the generator of a C-cosine function if and only if A commutes with C and ACP(0; x, y) has a unique strong solution for every pair (x, y) of initial values in C(D(A)), if and only if A commutes with C and ACP(0; x, 0) has a unique strong solution for every initial value $x \in C(D(A))$ (Corollary 2.2). In the case where C is the identity operator I, this result reduces to Fattorini's theorem [4, 5]. We also characterize the generator of an exponentially bounded C-cosine function in terms of the ACP (see Theorem 2.3). These results are analogous to some results of Tanaka and Miyadera [15] on the relationship between a C-semigroup and its associated Cauchy problem of the first order. The reader can refer to [1–3, 14, 15] and references therein for recent research on C-semigroups.

1. C-COSINE FUNCTIONS

Let X be a Banach space and let B(X) be the set of all bounded linear operators from X into itself. Throughout this paper, $C \in B(X)$ will be injective. A family $\{C(t); t \in R\}$ in B(X) is called a C-cosine function on X if

$$C(\cdot)x: R \to X$$
 is continuous for each $x \in X$, (1.1)

$$C[C(t+s) + C(t-s)] = 2C(t)C(s)$$
 for all $t, s \in R$ and $C(0) = C$.
(1.2)

The associated *C-sine function* (or *integrated C-cosine function*) is the family $\{S(t); t \in R\}$ of operators defined by $S(t)x = \int_0^t C(s)x \, ds$, $x \in X$, $t \in R$. Equation (1.2) implies that *C* commutes with C(t) and S(t). $C(\cdot)$ is said to be *exponentially bounded* if

there are
$$M \ge 0$$
 and $w \ge 0$ such that $||C(t)|| \le Me^{w|t|}$ for all $t \in R$.

(1.3)

When C=I, a C-cosine function is a classical *cosine operator function*, and it is necessarily exponentially bounded (see [13]). In general, just like in the case of C-semigroups, this may not be true. For examples, the C-group $T(\cdot)$ on $X:=L^2(R)$, defined by $(T(t)f)(s)=e^{st-s^2}f(s)$, $f\in X$, $s,t\in R$, is not exponentially bounded (see [1]). Consider the associated family $\{C(t);t\in R\}$ of operators defined by

$$(C(t)f)(s) = 2^{-1}(e^{st} + e^{-st})e^{-s^2}f(s), \quad f \in X, s \in R, t \in R.$$

It is clear that $C(\cdot)$ is a C-cosine function on X, with C being the multiplication operator defined by $(Cf)(s) = e^{-s^2}f(s)$ and with the generator A defined by (Af)(s) = sf(s). We have

$$||C(t)|| = \sup_{s \in R} \left\{ 2^{-1} (e^{-st} + e^{st}) e^{-s^2} \right\}$$

$$= \sup_{s \in R} \left\{ e^{s^2/4} \frac{1}{2} (e^{-(s-t/2)^2} + e^{-(s+t/2)^2}) \right\}$$

$$\geq \frac{1}{2} e^{t^2/4}.$$

One can define the *infinitesimal generator* A of $C(\cdot)$ by

$$\begin{cases} D(A) = \left\{ x \in X; \lim_{t \to 0} 2t^{-2} (C(t)x - Cx) \in R(C) \right\}, \\ Ax = C^{-1} \lim_{t \to 0} 2t^{-2} (C(t)x - Cx), & x \in D(A). \end{cases}$$
 (1.4)

PROPOSITION 1.1. Let $\{C(t); t \in R\}$ be a C-cosine function on X. The following assertions hold

$$C(t) = C(-t)$$
 for all $t \in R$; (1.5)

$$S(-t) = -S(t)$$
 for all $t \in R$. (1.6)

$$C(s), S(s), C(t), and S(t) commute for all t, s \in R;$$
 (1.7)

$$S(\cdot)x \in C^1(R, X)$$
 for each $x \in X$; (1.8)

$$[S(s+t) + S(s-t)]C = 2C(t)S(s)$$
 for all $t, s \in R$; (1.9)

$$S(t+s)C = S(t)C(s) + C(t)S(s) \qquad \text{for all } t, s \in R. \quad (1.10)$$

Proof. Assertion (1.5) follows from (1.2) by setting t = 0; (1.6) follows from (1.5); (1.7) follows from (1.2) and (1.5); (1.8) follows from (1.1); (1.9) follows by integrating (1.2) with respect to s; (1.10) follows from (1.9), (1.7), and (1.6).

Some important properties of the generator of a C-cosine function are provided by the following proposition. Note that it was proved in [9] under the assumption that $C(\cdot)$ is exponentially bounded. We give a proof of it without that assumption.

PROPOSITION 1.2. Let C be an injection and $\{C(t); t \in R\}$ be a C-cosine function with generator A. The following assertions hold

$$C(t)x \in D(A)$$
 and $AC(t)x = C(t)Ax$ for $x \in D(A)$ and $t \in R$; (1.11)

$$S(t)x \in D(A)$$
 and $AS(t)x = S(t)Ax$ for $x \in D(A)$ and $t \in R$; (1.12)

$$\int_0^t S(s)x \, ds \in D(A) \text{ and } A \int_0^t S(s)x \, ds = C(t)x - Cx$$

for
$$x \in X$$
 and $t \in R$; (1.13)

$$[C(t+s) - C(t-s)]C = 2AS(t)S(s) \qquad \text{for all } s, t \in R; \quad (1.14)$$

$$C(t)x - Cx = \int_0^t S(s) Ax ds \quad \text{for } x \in D(A) \text{ and } t \in R; \quad (1.15)$$

$$C(\cdot)x \in C^2(R, X)$$
 for each $x \in D(A)$; (1.16)

A is a closed linear operator in
$$X$$
; (1.17)

$$C^{-1}AC = A;$$
 (1.18)

$$R(C) \subset \overline{D(A)}.$$
 (1.19)

Proof. To show that (1.11) holds, let $x \in D(A)$ and $t \in R$. Then for all $s \in R \setminus \{0\}$ we have

$$2s^{-1}[C(s)C(t)x - CC(t)x] = C(t)[2s^{-2}(C(s)x - Cx)]$$

$$\rightarrow C(t)CAx = CC(t)Ax \in R(C)$$

as $s \to 0$. This means that $C(t)x \in D(A)$ and AC(t)x = C(t)Ax. Assertion (1.12) follows from the definition of $S(\cdot)$ and the closedness of A. We next prove that (1.13) holds. Using (1.9) we have for all $x \in X$

$$2s^{-2} \left[C(s) \int_0^t S(\tau) x \, d\tau - C \int_0^t S(\tau) x \, d\tau \right]$$

$$= 2s^{-2} \left[\frac{1}{2} \left(\int_0^t S(s+\tau) C x \, d\tau - \int_0^t S(s-\tau) C x \, d\tau \right) - \int_0^t S(\tau) C x \, d\tau \right]$$

$$= 2s^{-2} \left[\frac{1}{2} \left(\int_s^{t+s} S(\tau) C x \, d\tau + \int_{-s}^{t-s} S(\tau) C x \, d\tau \right) - \int_0^t S(\tau) C x \, d\tau \right]$$

$$\to C(t) C x - C^2 x = C(C(t) x - C x) \quad \text{as } s \to 0.$$

Thus $\int_0^t S(\tau)x d\tau \in D(A)$ and $A \int_0^t S(\tau)x d\tau = C(t)x - Cx$ for $x \in X$ and $t \in R$.

By (1.2), we have for $x \in X$

$$C(r)S(t)S(s)x = C(r) \int_0^t \int_0^s C(u)C(v)x \, du \, dv$$

$$= \int_0^t \int_0^s \frac{1}{2} [C(r+u) + C(r-u)]CC(v)x \, du \, dv$$

$$= \frac{1}{2} \int_0^t \left[\int_r^{r+s} C(u)C(v)Cx \, du + \int_{r-s}^r C(u)C(v)Cx \, du \right] dv$$

$$= \frac{1}{2} \int_0^t \int_{r-s}^{r+s} C(u)C(v)Cx \, du \, dv.$$

Hence

$$\frac{d}{dr}C(r)S(t)S(s)x = \frac{1}{2} \int_0^t \left[C(r+s) - C(r-s) \right] C(v)Cx dv$$

$$= \frac{1}{2} \int_0^t \frac{1}{2} \left[C(r+s+v) + C(r+s-v) - C(r-s+v) - C(r-s-v) \right] C^2x dv$$

$$= \frac{1}{4} \left(\int_{r+s}^{r+s+t} + \int_{r+s-t}^{r+s} - \int_{r-s}^{r-s+t} - \int_{r-s-t}^{r-s} \right) C(v)C^2x dv$$

$$= \frac{1}{4} \left(\int_{r+s-t}^{r+s+t} - \int_{r-s-t}^{r-s+t} \right) C(v)C^2x dv$$

and

$$\frac{d^2}{dr^2}C(r)S(t)S(s) = \frac{1}{4} [C(r+s+t) - C(r+s-t) - C(r-s+t) + C(r-s-t)]C^2x.$$

In particular,

$$\lim_{r \to 0} 2r^{-2} [C(r)S(t)S(s)x - CS(t)S(s)x]$$

$$= \frac{d^2}{dr^2} C(r)S(t)S(s)x|_{r=0}$$

$$= 2^{-1} [C(s+t) - C(s-t)]C^2x$$

$$= C2^{-1} [C(s+t) - C(s-t)]Cx$$

for all $x \in X$ and $t, s \in R$.

It follows that $S(t)S(s)x \in D(A)$ and $AS(t)S(s)x = 2^{-1}[C(t+s) - C(t-s)]Cx$ for all $x \in X$ and $t, s \in R$; to show that (1.15) holds, we first claim that $C(\cdot)Cx \in C^1(R,X)$ and (d/dt)C(t)Cx = CS(t)Ax for $x \in D(A)$. In fact, using (1.2), (1.14), and (1.12) we have

$$s^{-1}[C(t+s)Cx - C(t)Cx]$$

$$= s^{-1}[C(t)C(s)x + AS(t)S(s)x - C(t)Cx]$$

$$= C(t)[s^{-1}(C(s)x - Cx)] + s^{-1}S(s)S(t)Ax$$

$$= C(t)[2s^{-2}(C(s)x - Cx) \cdot s/2] + s^{-1}S(s)S(t)Ax,$$

which converges to CS(t)Ax as $s \to 0$. It follows that

$$C\int_0^t S(s) Ax ds = \int_0^t CS(s) Ax ds = \int_0^t \frac{d}{ds} C(s) Cx ds$$
$$= C(C(t)x - Cx),$$

which proves that $C(t)x - Cx = \int_0^t S(s)Ax$ for each $x \in D(A)$ and $t \in R$ because C is injective. Assertion (1.16) follows from (1.15). To show that (1.17) holds, let $x_n \in D(A)$, $x_n \to x$, and $Ax_n \to y$. Then from the equality

$$C(t)x_n - Cx_n = \int_0^t S(s) Ax_n ds$$

it follows that as $n \to \infty$, $C(t)x - Cx = \int_0^t S(s)y \, ds$ for all $t \in R$ and

$$2t^{-2}(C(t)x - Cx) = 2t^{-2} \int_0^t S(s)y \, ds \to Cy \quad \text{as } t \to 0.$$

This shows that $x \in D(A)$ and Ax = y, and so A is a closed linear operator in X. Finally we show that $C^{-1}AC = A$. The relation $A \subset C^{-1}AC$ immediately follows from (1.11) with t = 0. To show the converse, let $x \in D(C^{-1}AC)$, that is, $Cx \in D(A)$ and $ACx \in R(C)$. Then, by (1.15) we have

$$C(C(t)x - Cx) = C(t)Cx - C^{2}x = \int_{0}^{t} S(\tau)ACx d\tau$$
$$= C\int_{0}^{t} S(\tau)C^{-1}ACx d\tau$$

from which it follows that

$$2t^{-2}(C(t)x - Cx) = 2t^{-2} \int_0^t S(\tau)C^{-1}ACx d\tau \to ACx \in R(C)$$

as $t \to 0$. This means that $x \in D(A)$ and $Ax = C^{-1}ACx$. Finally, the facts that $\int_0^t S(s)x \, ds \in D(A)$ (see (1.13)) and $2t^{-2}\int_0^t S(s)x \, ds \to Cx$ as $t \to 0$ imply (1.19).

LEMMA 1.3. Let D_{λ} denote the set

$$D_{\lambda} := \left\{ x \in X \mid both \ L_{\lambda} x = \int_{0}^{\infty} e^{-\lambda t} C(t) x \, dt \ and \int_{0}^{\infty} e^{-\lambda t} S(t) x \, dt \ exist \right\}.$$

The following assertions hold.

- (i) $C(t)L_{\lambda}D_{\lambda} \subset R(C)$ and $(d^2/dt^2)C^{-1}C(t)L_{\lambda}x = \lambda^2C^{-1}C(t)L_{\lambda}x \lambda C(t)x$ for $x \in D_{\lambda}$ and $t \in R$.
 - (ii) $L_{\lambda}D_{\lambda} \subset D(A)$ and $(\lambda^2 A)L_{\lambda}x = \lambda Cx$ for $x \in D_{\lambda}$.

Proof. Using (1.2) and (1.9), we easily see that for $x \in D_{\lambda}$

$$C(t)L_{\lambda}x = C\frac{1}{2}\left[e^{\lambda t}\int_{t}^{\infty}e^{-\lambda s}C(s)x\,ds + e^{-\lambda t}\int_{-t}^{\infty}e^{-\lambda s}C(s)x\,ds\right] \in R(C),$$

so that

$$\frac{d}{dt}C^{-1}C(t)L_{\lambda}x = \frac{\lambda}{2}\left[e^{\lambda t}\int_{t}^{\infty}e^{-\lambda s}C(s)x\,ds - e^{-\lambda t}\int_{-t}^{\infty}e^{-\lambda s}C(s)x\,ds\right]$$

and

$$\begin{split} \frac{d^2}{dt^2} C^{-1} C(t) L_{\lambda} x \\ &= \frac{\lambda^2}{2} \left[e^{\lambda t} \int_t^{\infty} e^{-\lambda s} C(s) x \, ds + e^{-\lambda t} \int_{-t}^{\infty} e^{-\lambda s} C(s) x \, ds \right] - \lambda C(t) x \\ &= \lambda^2 C^{-1} C(t) L_{\lambda} x - \lambda C(t) x. \end{split}$$

It follows that

$$\frac{d^2}{dt^2}C(t)L_{\lambda}x = C\frac{d^2}{dt^2}C^{-1}C(t)L_{\lambda}x = \lambda^2C(t)L_{\lambda}x - \lambda CC(t)x$$

for all $t \in R$. In particular, $(d^2/dt^2)C(t)L_{\lambda}x|_{t=0} = C(\lambda^2L_{\lambda}x - \lambda Cx)$. Thus $(\lambda^2 - A)L_{\lambda}x = \lambda Cx$.

Since the generator A is closed, its domain D(A), equipped with the graph norm $|x|_A = ||x|| + ||Ax||$, is a Banach space. We shall denote it by [D(A)].

When $C(\cdot)$ is exponentially bounded, for large λ the set D_{λ} as defined in Lemma 1.3 is clearly equal to X. Then (ii) of Lemma 1.3 together with (1.11) yields the next lemma, which was also proved in [9, Proposition 3.2] by different methods.

LEMMA 1.4. Let $C(\cdot)$ be an exponentially bounded C-cosine function satisfying condition (1.3). Then for each $\lambda > w$, $\lambda^2 - A$ is injective, $R(C) \subset R(\lambda^2 - A)$, $L_{\lambda} \in B(X)$, $R(L_{\lambda}) \subset D(A)$, and $L_{\lambda}(\lambda^2 - A) \subset (\lambda^2 - A)L_{\lambda} = \lambda C$.

THEOREM 1.5. Let A be the generator of a C-cosine function $\{C(t); t \in R\}$. The following assertions hold

- (i) The function u(t) := C(t)x + S(t)y is the unique solution of ACP(0; Cx, Cy) for each pair x, y in D(A).
- (ii) The function $u(t; L_{\lambda}x, L_{\lambda}y) := C^{-1}C(t)L_{\lambda}x + C^{-1}S(t)L_{\lambda}y$ is the unique solution of ACP(0; $L_{\lambda}x, L_{\lambda}y$) for each pair x, y in D_{λ} .
- *Proof.* (i) Set u(t) = C(t)x + S(t)y for $x, y \in D(A)$ and $t \in R$. Then by (1.11), (1.12), and (1.15) we have $u(t) \in C^2(R, X) \cap C(R, [D(A)])$,

$$\frac{d^2}{dt^2}u(t) = \frac{d}{dt}(S(t)Ax + C(t)y) = C(t)Ax + S(t)Ay$$
$$= A(C(t)x + S(t)y) = Au(t),$$

u(0) = Cx and u'(0) = Cy. Hence u is a solution of ACP(0; Cx, Cy). To show that it is unique, let v be a solution of ACP(0; Cx, Cy). Then (d/dt)(C(s-t)v(t)+S(s-t)v'(t))=0. Integrating this equality from 0 to s yields that v(s)=C(s)x+S(s)y for each $s\in R$.

(ii) Using Lemma 1.3, (1.11), and (1.15) we have for $x \in D_{\lambda}$

$$C(C^{-1}C(t)L_{\lambda}x) = C(t)L_{\lambda}x \in D(A)$$

and

$$\begin{split} AC\big(C^{-1}C(t)L_{\lambda}x\big) &= AC(t)L_{\lambda}x = \frac{d^2}{dt^2}C(t)L_{\lambda}x \\ &= C\frac{d^2}{dt^2}C^{-1}C(t)L_{\lambda}x \in R(C). \end{split}$$

This means that

$$C^{-1}C(t)L_{\lambda}x \in D(C^{-1}AC) = D(A)$$

and

$$\frac{d^2}{dt^2}C^{-1}C(t)L_{\lambda}x = C^{-1}AC(C^{-1}C(t)L_{\lambda}x) = AC^{-1}C(t)L_{\lambda}x.$$

Moreover.

$$\begin{split} \frac{d^2}{dt^2} C^{-1} S(t) L_{\lambda} y &= C^{-1} \frac{d^2}{dt^2} S(t) L_{\lambda} y = C^{-1} \frac{d}{dt} C(t) L_{\lambda} y \\ &= C^{-1} A S(t) L_{\lambda} y = (C^{-1} A C) C^{-1} S(t) L_{\lambda} y \\ &= A \left(C^{-1} S(t) L_{\lambda} y \right). \end{split}$$

Combining these facts we obtain that $u(0; L_{\lambda}x, L_{\lambda}y) = L_{\lambda}x$, $u'(0; L_{\lambda}x, L_{\lambda}y) = L_{\lambda}y$ and

$$\frac{d^2}{dt^2}u(t;L_{\lambda}x,L_{\lambda}y)=Au(t;L_{\lambda}x,L_{\lambda}y), \qquad t\in R,$$

if we put $u(t; L_{\lambda}x, L_{\lambda}y) = C^{-1}C(t)L_{\lambda}x + C^{-1}S(t)L_{\lambda}y$. Similarly we can prove that $u(t; L_{\lambda}x, L_{\lambda}y)$ is the unique solution of ACP(0; $L_{\lambda}x, L_{\lambda}y$).

COROLLARY 1.6. Let A be the generator of an exponentially bounded C-cosine function $\{C(t); t \in R\}$ with $||C(t)|| \le Me^{w|t|}$ and let $\lambda > w$. Then for each pair (x, y) of elements of $(\lambda^2 - A)^{-1}C(X) = L_{\lambda}(X)$, $u(t; x, y) = C^{-1}(C(t)x + S(t)y)$ is a unique solution of ACP(0; x, y) satisfying

$$||u(t; x, y)|| \le M(\lambda - w)^{-1} e^{w|t|} (||L_{\lambda}^{-1} x|| + |t|||L_{\lambda}^{-1} y||),$$

$$||u''(t; x, y)|| \le M(2\lambda^2 - \lambda w)(\lambda - w)^{-1} e^{w|t|} (||L_{\lambda}^{-1} x|| + |t| ||L_{\lambda}^{-1} y||),$$

$$t \in R.$$
(1.20)

Proof. The first part of the corollary is a direct consequence of Lemma 1.4 and Theorem 1.5. The estimate (1.20) follows from

$$u(t; x, y) = e^{\lambda t} \frac{1}{2} \int_{t}^{\infty} e^{-\lambda s} C(s) \tilde{x} ds + e^{-\lambda t} \frac{1}{2} \int_{-t}^{\infty} e^{-\lambda s} C(s) \tilde{x} ds + e^{\lambda t} \frac{1}{2} \int_{-t}^{\infty} e^{-\lambda s} S(s) \tilde{x} ds - e^{-\lambda t} \frac{1}{2} \int_{-t}^{\infty} e^{-\lambda s} S(s) \tilde{x} ds,$$

and

$$\frac{d^2}{dt^2}u(t;x,y) = \lambda^2 u(t;x,y) - \lambda (C(t)\tilde{x} + S(t)\tilde{y}),$$

where

$$x = \lambda (\lambda^2 - A)^{-1} C \tilde{x} = L_{\lambda} \tilde{x}, \qquad y = \lambda (\lambda^2 - A)^{-1} C \tilde{y} = L_{\lambda} \tilde{y}.$$

In Section 2 we shall need the following lemma which is taken from [15, Proposition 1.4].

LEMMA 1.7. Let $\lambda \in R$ and let A be a closed linear operator satisfying

- (a) for $x \in D(A)$, $Cx \in D(A)$ and ACx = CAx,
- **(b)** λA is injective and $D((\lambda A)^{-1}) \supset R(C)$.

Then we have

- (i) $C(D(A)) \subset C(D(C^{-1}AC)) \subset (\lambda A)^{-1}C(X)$,
- (ii) $C(D(A)) = (\lambda A)^{-1}C(X)$ if and only if $\lambda \in \rho(A)$,
- (iii) $C^{-1}AC = A \text{ if } \rho(A) \neq \emptyset.$

2. THE ABSTRACT CAUCHY PROBLEM

In this section we give a characterization of the generator of a *C*-cosine function in terms of the unique existence of strong solution of the ACP. The main theorem is stated as follows:

THEOREM 2.1. Let $\lambda \in R$ and let A be a closed linear operator satisfying

- (a) for $x \in D(A)$, $Cx \in D(A)$ and ACx = CAx,
- (b) λA is injective and $D((\lambda A)^{-1}) \supset R(C)$,
- (c) for each $x \in (\lambda A)^{-1}C(X)$, the ACP(0; x, 0) has a unique solution.

Then there exists a C-cosine function $C(\cdot)$ on X with $C^{-1}AC$ as its generator.

Proof. We denote the unique solution of ACP(0; x, 0) by u(t; x, 0) and define the operator $C(t): X \to X$ for $t \in R$ by $C(t)x = (\lambda - A)u(t; (\lambda - A)^{-1}Cx, 0)$ for $x \in X$. Then $C(\cdot)x: R \to X$ is continuous for $x \in X$. Now, the uniqueness of the solution implies that C(t) is linear, $Cu(t; (\lambda - A)^{-1}Cx, 0) = u(t; (\lambda - A)^{-1}C^2x, 0)$, $u(-s; (\lambda - A)^{-1}C^2x, 0) = u(s; (\lambda - A)^{-1}C^2x, 0)$, and C(0) = C. For $x \in X$ we define $v(t) = 2^{-1}[u(t + s; (\lambda - A)^{-1}C^2x, 0) + u(t - s; (\lambda - A)^{-1}C^2x, 0)]$. Then $v \in C^2(R, X) \cap C(R, [D(A)])$, v''(t) = Av(t), and

$$v(0) = \frac{1}{2} \left[u(s; (\lambda - A)^{-1}C^{2}x, 0) + u(-s; (\lambda - A)^{-1}C^{2}x, 0) \right]$$

= $u(s; (\lambda - A)^{-1}C^{2}x, 0).$

We also have

$$v'(\mathbf{0}) = \frac{1}{2} \left[u' \left(s; (\lambda - A)^{-1} C^2 x, \mathbf{0} \right) + u' \left(-s; (\lambda - A)^{-1} C^2 x, \mathbf{0} \right) \right] = \mathbf{0}.$$

The uniqueness of solution implies that

$$v(t) = u(t; u(s; (\lambda - A)^{-1}C^{2}x, 0)) = u(t; Cu(s; (\lambda - A)^{-1}Cx, 0))$$

= $u(t; (\lambda - A)^{-1}C(\lambda - A)u(s; (\lambda - A)^{-1}Cx), 0)$
= $u(t; (\lambda - A)^{-1}CC(s)x, 0).$

It follows that

$$\frac{1}{2}C[C(t+s) + C(t-s)]x = (\lambda - A)v(t)$$

$$= (\lambda - A)u(t; (\lambda - A)^{-1}CC(s)x, 0)$$

$$= C(t)C(s)x.$$

Let $t_0 > 0$ be arbitrarily given and consider the linear map $\eta_{t_0}: X \to C([0,t_0],[D(A)])$ given by

$$\eta_{t_0}(x) = u(\cdot; (\lambda - A)^{-1}Cx, 0) = (\lambda - A)^{-1}C(\cdot)x.$$

We show that η_{t_0} is a closed linear operator. In fact, let $x_n \to x$ in X and $\eta_{t_0}(x_n) = u(\cdot; (\lambda - A)^{-1}Cx_n, 0) \to v$ in $C([0,t_0],[D(A)])$. Then $u(t; (\lambda - A)^{-1}Cx_n, 0) = (\lambda - A)^{-1}Cx_n + \int_0^t \int_0^s Au(r; (\lambda - A)^{-1}Cx_n, 0) \, dr \, ds$. Letting $n \to \infty$ we obtain $v(t) = (\lambda - A)^{-1}Cx + \int_0^t \int_0^s Av(r) \, dr \, ds$ for $0 \le t \le t_0$. Let $\tilde{v}(t) = Cv(|t|)$ for $|t| \le t_0$ and $\tilde{v}(t) = u(|t| - t_0; Cv(t_0), 0)$ for $|t| > t_0$. Then $\tilde{v}(t)$ is a solution of ACP(0; $(\lambda - A)^{-1}C^2x$, 0). Therefore, from the uniqueness of solution it follows that for $0 \le t \le t_0$, $Cv(t) = \tilde{v}(t) = u(t; (\lambda - A)^{-1}C^2x, 0) = Cu(t; (\lambda - A)^{-1}Cx, 0)$, and so $v = u(\cdot; (\lambda - A)^{-1}Cx, 0) = \eta_{t_0}(x)$ on $[0,t_0]$. We have shown that η_{t_0} is closed. By the closed graph theorem, η_{t_0} is a bounded linear operator. So there exists an $M_{t_0} > 0$ such that $\sup_{0 \le t \le t_0} |\eta_{t_0}(x)(t)|_A \le M_{t_0}||x||$ for $x \in X$, and we see that for $0 \le t \le t_0$ and $x \in X$,

$$||C(t)x|| = ||(\lambda - A)u(t; (\lambda - A)^{-1}Cx, 0)|| = ||(\lambda - A)\eta_{t_0}(x)(t)||$$

$$\leq (|\lambda| + 1)|\eta_{t_0}(x)(t)|_A \leq (|\lambda| + 1)M_{t_0}||x||$$

for all $t \in R$.

Having shown that $C(\cdot)$ is a C-cosine function on X, we next show that $C^{-1}AC$ is the generator of $C(\cdot)$. Let B be the generator of $C(\cdot)$ and let $x \in D(B)$. We have

$$2t^{-2}(C(t)x - Cx)$$
= $(\lambda - A)2t^{-2}[u(t; (\lambda - A)^{-1}Cx, 0) - u(0; (\lambda - A)^{-1}Cx, 0)] \to CBx$

and

$$2t^{-2} \Big[u(t; (\lambda - A)^{-1}Cx, 0) - u(0; (\lambda - A)^{-1}Cx, 0) \Big]$$

$$\to Au(0; (\lambda - A)^{-1}Cx, 0)$$

$$= A(\lambda - A)^{-1}Cx = \lambda(\lambda - A)^{-1}Cx - Cx$$

as $t \to 0$. It follows from the closedness of A that $Cx \in D(A)$ and $ACx = (\lambda - A)[\lambda(\lambda - A)^{-1}Cx - Cx] = CBx \in R(C)$. That shows that $B \subset C^{-1}AC$.

To prove the converse, let $x \in D(C^{-1}AC)$. Then $Cx \in (\lambda - A)^{-1}C(X)$ (Lemma 1.7), and so $u(\cdot; Cx, 0)$ as well as $u(\cdot; (\lambda - A)^{-1}Cx, 0)$ is well defined and

$$\frac{d^2}{dt^2} \Big(\lambda u \Big(t; (\lambda - A)^{-1} Cx, 0 \Big) - u(t; Cx, 0) \Big)$$
$$= A \Big(\lambda u \Big(t; (\lambda - A)^{-1} Cx, 0 \Big) - u(t; Cx, 0) \Big).$$

Let $v(t) = (\lambda - A)^{-1}Cx + \int_0^t \int_0^s (\lambda u(r; (\lambda - A)^{-1}Cx, 0) - u(r; Cx, 0)) dr ds, t \in R$. Then we have $v(0) = (\lambda - A)^{-1}Cx, v'(0) = 0$, and

$$Av(t) = A(\lambda - A)^{-1}Cx + \int_{0}^{t} \int_{0}^{s} A(\lambda u(r; (\lambda - A)^{-1}Cx, 0) - u(r; Cx, 0)) dr ds = A(\lambda - A)^{-1}Cx + [\lambda u(t; (\lambda - A)^{-1}Cx, 0) - u(t; Cx, 0)] - [\lambda(\lambda - A)^{-1}Cx - Cx] = \lambda u(t; (\lambda - A)^{-1}Cx, 0) - u(t; Cx, 0) = v''(t)$$

for all $t \in R$. Hence v is identical to the unique solution $u(\cdot; (\lambda - A)^{-1}Cx, 0)$ of ACP(0; $(\lambda - A)^{-1}Cx, 0)$, and we have

$$C(t)x = (\lambda - A)u(t; (\lambda - A)^{-1}Cx, \mathbf{0}) = \lambda v(t) - Av(t) = u(t; Cx, \mathbf{0}).$$

It follows that as $t \to 0$

$$2t^{-2}(C(t)x - Cx) = 2t^{-2}(u(t; Cx, 0) - u(0; Cx, 0))$$
$$\to Au(0; Cx, 0) = ACx \in R(C).$$

This shows that $x \in D(B)$ and $Bx = C^{-1}ACx$, and so $C^{-1}AC$ is the generator of $C(\cdot)$.

COROLLARY 2.2. Let A be a closed linear operator with nonempty resolvent set. Then the following are equivalent:

- (i) A is the generator of a C-cosine function.
- (ii) A satisfies condition (a) and ACP(0; Cx, Cy) has a unique solution for every x, $y \in D(A)$.
- (iii) A satisfies condition (a) and ACP(0; Cx, 0) has a unique solution for each $x \in D(A)$.

Proof. The implication (i) \Rightarrow (ii) is a direct consequence of Proposition 1.2 and Theorem 1.5(i); (ii) \Rightarrow (iii) is obvious. We show the implication (iii) \Rightarrow (i). Since $C(D(A)) = (\lambda - A)^{-1}C(X)$ for $\lambda \in \rho(A)$ and $C^{-1}AC = A$ (Lemma 1.7(ii), (iii)), it follows from Theorem 2.1 that A is the generator of a C-cosine function.

A characterization of exponentially bounded C-cosine functions in terms of the ACP is given by

THEOREM 2.3. Let A be a closed linear operator in X. Then the following are equivalent:

- (i) A is the generator of an exponentially bounded C-cosine function $C(\cdot)$ with $||C(t)|| \le Me^{wt}$ for $t \ge 0$.
 - (ii) A satisfies conditions
 - (a*) $C^{-1}AC = A$,
 - (b) for some $\lambda \geq 0$, $\lambda^2 A$ is injective and $D((\lambda^2 A)^{-1}) \supset R(C)$,
- (c*) for every $x, y \in (\lambda^2 A)^{-1}C(X)$, the ACP(0; x, y) has a unique solution u(t; x, y) such that u(t; x, 0) and $(d^2/dt^2)u(t; x, 0)$ are of order $O(e^{w[t]})$ as $|t| \to \infty$.
 - (iii) A satisfies (a*), (b) and
- (c') for every $x \in (\lambda^2 A)^{-1}C(X)$, the ACP(0; x, 0) has a unique solution u(t; x, 0) such that u(t; x, 0) and $(d^2/dt^2)u(t; x, 0)$ are of order $O(e^{w|t|})$ as $|t| \to \infty$.

Proof. The implication (i) \Rightarrow (ii) follows from Corollary 1.6 and (1.18); (ii) \Rightarrow (iii) is obvious. To show the implication (iii) \Rightarrow (i), by Theorem 2.1, it suffices to show that the family $\{C(t); t \in R\}$ defined by $C(t)x = (\lambda - A)u(t, (\lambda - A)^{-1}Cx)$ is exponentially bounded. From the condition (c') we deduce that $\|e^{-w|t|}C(t)x\| < \infty$. Thus, the uniform boundedness principle implies that $\sup_{t \in R} \|e^{-w|t|}C(t)\| < \infty$.

In the case where A has nonempty resolvent set and (a) holds, the conditions (a*) and (b) are automatically satisfied. Thus we deduce the following corollary.

- COROLLARY 2.4. Let A be a closed linear operator with nonempty resolvent set. Then the following are equivalent:
- (i) A is the generator of an exponentially bounded C-cosine function $C(\cdot)$ with $||C(t)|| \le Me^{w|t|}$ for $t \in R$.
- (ii) A satisfies condition (a) of Theorem 2.1, and for every $x, y \in D(A)$, the ACP(0; Cx, Cy) has a unique solution u(t; Cx, Cy) such that $||u(t; Cx, 0)|| = O(e^{w|t|})$ and $||(d^2/dt^2)u(t; Cx, 0)|| = O(e^{w|t|})$ as $|t| \to \infty$.
- (iii) A satisfies condition (a) of Theorem 2.1, and for every $x \in D(A)$ the ACP(0; Cx, 0) has a unique solution u(t; Cx, 0) such that $||u(t; Cx, 0)|| = O(e^{w|t|})$ and $||(d^2/dt^2)u(t; Cx, 0)|| = O(e^{w|t|})$ as $|t| \to \infty$.

Remark. In the special case that the operator C is the identity operator I, Theorem 2.1, Corollary 2.2, Theorem 2.3, and Corollary 2.4 all coincide, and we obtain Fattorini's theorem [4, 5].

REFERENCES

- 1. E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, *Proc. London Math. Soc.* **55** (1987), 181–208.
- R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61.
- 3. R. deLaubenfels, Existence families, functional calculi and evolution equations, *in* "Lecture Notes in Math.," Vol. 1570, Springer-Verlag, Berlin, 1994.
- H. O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differential Equations 5 (1968), 72–105.
- 5. H. O. Fattorini, Second order linear differential equations in Banach spaces, *in* "North-Holland Mathematics Studies," Vol. 108, North-Holland, Amsterdam, 1985.
- 6. J. A. Goldstein, Semigroup of linear operators and applications, Oxford, 1985.
- C.-C. Kuo and S.-Y. Shaw, C-cosine functions and the abstract Cauchy problem, II, J. Math. Anal. Appl. 210 (1997), 647–666.
- 8. Y. Lei and Q. Zheng, Exponentially bounded C-cosine functions, Systems Sci. Math. Sci., to appear.
- 9. Y.-C. Li, "Integrated C-Semigroups and C-Cosine Functions of Operators on Locally Convex Spaces, Ph.D. dissertation, National Central University, 1991.
- 10. Y.-C. Li and S.-Y. Shaw, On generators of integrated C-semigroups and C-cosine functions, Semigroup Forum 47 (1993), 29–35.
- 11. S.-Y. Shaw, On exponentially bounded C-cosine functions, preprint, 1992.
- S.-Y. Shaw and Y.-C. Li, On n-times integrated C-cosine functions, in "Evolution Equation" (G. Ferreyra, G. R. Goldstein, and F. Neubrander, Eds.), pp. 393–406, Dekker, New York, 1994.
- 13. M. Sova, Cosine operator functions, Rozprawy Mat. 49 (1966), 1-47.
- 14. N. Tanaka and I. Miyadera, Exponentially bounded *C*-semigroups and integrated semigroups, *Tokyo J. Math.* **12** (1989), 99–115.
- 15. N. Tanaka and I. Miyadera, C-Semigroups and the abstract Cauchy problem, J. Math. Anal. Appl. 170 (1992), 196–206.
- Q. Zheng and J. Zhang, Abstract differential operators and regularized cosine functions, preprint, 1995.