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Consider the neutral delay differential equation (*) (d/dr)[ y(t) +py(t - r)] + 
9y(t - u) = 0, I > 1, where r, 9, and CJ are positive constants, while p E (- cc, - 1) v 
(0, + cc). (For the case PE [ - 1, 0] see Ladas and Sticas, Oscillations of neutral 
delay differential equations (to appear)). The following results are then proved. 
Theorem 1. Assume p< - 1. Then every nonoscillatory solution y(t) of Eq. (*) 
tends to +ca as f-too. Theorem 2. Assume p<-1, 7>u, and 
q(o - r)/( 1 +p) > (l/e). Then every solution of Eq. (*) oscillates. Theorem 3. 
Assume p > 0. Then every nonoscillatory solution y(r) of Eq. (*) tends to zero as 
I + ~8. Theorem 4. Assume p > 0. Then a necessary condition for all solutions of 
Eq. (*) to oscillate is that o> 7. Theorem 5. Assume p >O, CJ> 7, and q(o-7)/ 

(I +p) > (I/e). Then every solution of Eq. ( ) * oscillates. Extensions of these results 
to equations with variable coefficients are also obtained. '( 1986 Acddemlc Prera. Inc 

1. 1NTRoDucTr0~ 

In a recent paper, Ladas and Was [9] studied the oscillatory behavior 
of solutions of neutral delay differential equations (NDDE) of the form 

; Cy(t)+py(t-~)l+Q(t)~(t-a)=O, t 3 t, (1) 

and the asymptotic behavior of nonoscillatory solutions in the case where T 
and CJ are positive constants, Q E C( [to, co), R + ) and the real parameter p 
lies in [-l,O]. 
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In this paper, we investigate the behavior of the solutions of Eq. (1) for 
all other possible values of p, namely, for p < - 1 and for p > 0. For the 
sake of simplicity, in Section 2 we state the asymptotic and oscillatory 
behavior of solutions of the NDDE (1) with Q(t) = q > 0 constant, that is 
of the NDDE 

; [y(t)+py(t--z)l+qy(t-o)=O, t2 t,. 

In Section 3 we prove extensions of these results in the case where 
QEC(Ch> a), R’). 

Although the oscillatory theory of delay differential equations has been 
extensively developed during the last few years (see, for example, [ 1, 7, 8, 
l&13]), there is hardly any work at this time (except for [9]) dealing with 
the oscillatory behavior of solutions of neutral delay differential equations. 
(For some results on second-order NDDE, see [ 141.) The problem of 
asymptotic and oscillatory behavior or solutions of neutral delay differen- 
tial equations is of both theoretical and practical interest. It suffices to note 
that equations of this type appear in the study of networks containing 
lossless transmission lines. Such networks arise, for example, in high-speed 
computers where lossless transmission lines are used to interconnect 
switching circuits (see [3]). 

LetdEC([tO-P,to], lR),wherep=max{r,a).ByasolutionofEq.(l), 
we mean a function y~C[t,,-pp, co), R) such that y(t)=&t) for to-p6 
t < t,, y(t) + py( t - 5) is continuously differentiable, and y(t) satisfies Eq. ( 1) 
for all t 2 2,. 

Using the method of steps, it follows that for every continuous funtion 4, 
there exists a unique solution of Eq. (1) valid for t > t,. For further 
questions on existence, uniqueness, and continuous dependence, see 
Driver [4, 51, Bellman and Cooke [2], and Hale [6]. 

As is customary, a solution of Eq. (1) is called oscillatory if it has 
arbitrarily large zeros and nonoscillatory if it is eventually positive or even- 
tually negative. 

2. CONSTANT COEFFICIENTS 

In this section, we shall state without proof our results in the case 
Q(r) = q is a positive constant. We shall also give several examples. Proofs 
of extensions of these results are given in Section 3. A schematic summary 
of the oscillatory and asymptotic results for Eq. (2) including the results of 
Ladas and Sficas [9], is given at the end of this section. 
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A. The Case p < - 1 

Consider the characteristic equation of Eq. (2) that is, 

F(1)=1+1pe-“‘+qe-““=O 

where q, z, and c are positive constants and p < - 1. For 1~ 0 we have 

F(J)= --A(-pePA’-1)-t-qe-““>O. 

Thus, the only real roots that the characteristic equation of Eq. (2) can 
have are positive. This observation provides the motivation for the follow- 
ing result, concerning the asymptotic behavior of nonoscillatory solutions. 

THEOREM 1. Consider the NDDE (2). Assume that q, z, and (T are 
positive constants and p < - 1. Then every nonoscillatory solution of Eq. (2) 
tends to +CQ or --00 as t+cO. 

The next result provides sufficient conditions for oscillation of all 
solutions of Eq. (2). 

THEOREM 2. Consider the NDDE (2). Let q, T, and o be positive con- 
stants. Assume that p < - 1, T > 0, and that 

(Cl) da-T)/(p+ I)> l/e. 

Then every solution of Eq. (2) oscillates. 

B. The Case p > 0 

As in Theorem 1, Theorem 3 is motivated by the characteristic equation. 
In this case with p, q, G, and r positive constants, the characteristic 
equation 

F(1)=I+llpe-“‘+qe”“=O 

cannot have nonnegative real zeros. 

THEOREM 3. Consider the NDDE (2). Assume that p, q, g, and T are 
positive constants. Then every nonoscillatory solution of Eq. (2) tends to zero 
as t+cO. 

If T > 0 > 0, then Eq. (2) always has nonoscillatory solutions. Indeed, the 
characteristic equation of Eq. (2) is 

F(~)=~+;Ipe~~‘+qe-A-“=O 

and F(O)=q>O, while lim,,-, F(A)= --co. 

Thus, we have the following theorem. 
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THEOREM 4. Consider the NDDE (2). Assume that p, q, T, and a are 
positive constants. Then a necessary condition for all solutions of Eq. (2) to 
oscillate is that 

0 > T. 

As in the case of Theorem 2, the following result provides sufficient con- 
ditions for the oscillation of all solutions of Eq. (2). 

THEOREM 5. Consider the NDDE (2). Assume that p, q, z, and (T are 
positive constants, IS > z, and that 

(Cl) 4(o-~Y(l+p)> l/e. 

Then every solution of Eq. (2) oscillates. 

C. Examples 

The following two examples illustrate the asymptotic behavior of non- 
oscillatory solutions. 

EXAMPLE 1. The NDDE 

-$[y(t)-2ey(t-l)]+e112y t-i =O, 
( ) 

tao 

satisfies the hypotheses of Theorem 1, and therefore every nonoscillatory 
solution of Eq. (3) tends to + co or -cc as t + co. For example, y(t) = e’ 
and y(t) = - e’ are such solutions. 

EXAMPLE 2. The NDDE 

i[y(t)+(e--i)y(t-L)]+y(t-2)=0, t>O 

satisfies the hypotheses of Theorem 3, and hence every nonoscillatory 
solution of Eq. (4) tends to zero as t + co. For example, y(t) = e-’ is such a 
solution. 

In the paper by Ladas and Sticas [9], it was shown that if p E [ - 1, 01, 
then qa > l/e implies that every solution of Eq. (2) oscillates. Examples 1 
and 2 also illustrate the fact that in the case p < - 1 and p > 0, the con- 
dition qa > l/e is not sufficient to imply that every solution of Eq. (2) 
oscillates. 

EXAMPLE 3. The NDDE 

; [y(t)+py(t-2X)] +(-p- l)y 1-g =o, 
( > 

t>O (5) 
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where p < - 1, satisfies the hypotheses of Theorem 2, and so every solution 
of Eq. (5) oscillates. For example, y(t) = sin t is such a solution. 

EXAMPLE 4. The NDDE 

;[y(i)+py(1-2~~)]+e~~~~(e~‘+p)fiy(r;n)=O,~>0 (6) 

where p > 0, satisfies the hypotheses of Theorem 5. Hence every solution of 
Eq. (6) is oscillatory. For example, y(t) = e’ sin t is such a solution. 

D. A Schematic Summary of the Oscillation and asymptotic Results of 
NDDE(2) 

See Scheme 1. 

Every nonosclllarory Every nonoscillatory solution of Eq. (2) 

solution y(t) of Eq.(Z) 1 tends to zero as t * m 

tends to +m as t + m I 

-1 0 
p<-1 -l<p<O P’O 

‘CI “s u>-c is a necessary 
1, 
A a\;, condition for all 

II I 
solutions of Eq.(Z) 

SCHEME I. 

3. VARIABLE COEFFICIENTS 

In this section we assume that r and 0 are positive constants and 
QE C([to, GO), R). We assume further that there exists q>O so that 
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Q(t) > q eventually. We shall study the neutral delay differential equation 

~[u(l)+~~.(l-r)l+Q(t)4.(1-o)=O, t a 1, (1) 

where the real parameter p lies in (- co, - 1) u (0, + co). 
The results of Section 2 will be immediate consequences of the results of 

this section. 
The following lemma is an improved version of a result due to Ladas 

and Stavroulakis [ 111 concerning delay differential inequalities. The 
improvement is due to Koplatadze and Chanturia [S], who removed one 
of the hypotheses. For advanced inequalities see Onose [12]. 

LEMMA 1. Assume that ,u is a positive constanf. Let p E C( [ t,, co), R + ), 
and suppose that 

lim inf ir D(S) ds > 1. 

Then: 

(i) the inequality 

x’(t)-p(t)x(t+p)dO, 

has no eventually negative solutions; 

(ii) the inequality 

x’(t)-p(t)x(t+p)>O, 

has no eventually positive solutions; 

(iii) the inequality 

x’(t)+p(t)x(t-p)<O, 

has no eventually positive solutions; 

(iv) the inequality 

x’(t) +p(t) x(t - p) >, 0, 

has no eventually negative solutions. 

A. The Casep< -I 

e 

13 to 

t 2 to 

13 to 

t3 20 

The following theorem is the variable coefficient analogue for Theorem 1. 
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THEOREM 6. Consider the NDDE (1). Zf p < - 1, then every non- 
oscillatory solution of Eq. (1) tends to + co or - 03 us t --f co. 

Proof: Since the negative of a solution of Eq. (1) is again a solution of 
Eq. (1 ), it suffices to prove the theorem in the case of an eventually positive 
solution. So, suppose that y(t) is an eventually positive solution of Eq. (1). 
Set 

Then 

4t)=Y(t)+PY(t-~). (7) 

z’(t)= -Q(t)y(t-a) (8) 

and eventually z’(t) < 0. 
We wish to show that z(t) is eventually negative. Suppose, for the sake of 

contradiction, that eventually z(t) 3 0. Then from (7) it follows that even- 
tually 

which implies that 

O<y(t)d $ “y(t+nr), 
( ) 

n = 1, 2,..., 

eventually. So, as -p > 1, we see that y(t)-+ + cc as t + co. But 

z’(t)= -Q(t)y(t-a)6 -qy(t-a) 

and so z’(t) + - co as t + co which contradicts the assumption that even- 
tually z(t) 2 0. 

Thus, we see that eventually z(t) < 0. Since z’(t) < 0 eventually, we have 

0> lim z(t)=12 --co. 
z-33 

We wish to show that I = - co, and so shall assume, for the sake of con- 
tradiction, that l> --GO. Then, by integrating (8) from to to t, we find 

z(t) - z( to) + j’ Q(s) y(s - a) ds = 0 
62 

and so 

+m Q(s)y(s-a)ds=z(t,)-I. 
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So, since Q(t) 3 q > 0 eventually, we see that y E L,( t,, co). Thus, from (7) 
we conclude that z E L,( to, co). This implies that I= 0 which is impossible. 
Hence we have that lim,+, z(t) = - co, and as eventually z(t) >JJJJ(? - z), 
we conclude that lim,,, y(t) = + co. The proof is complete. 

The next two theorems provide sufficient conditions for all solutions of 
Eq. (1) to oscillate. 

THEOREM 7. Consider the NDDE (1). Assume that p < - 1, z > 0, and 
that 

(Cd - 1+(7-u) 1 
Q(s)ds>-. 

e 

Then every solution of Eq. (1) oscillates. 

Proof Othewise there is an eventually positive solution y(t) of Eq. (1). 
Set 

z(t)=y(t)+py(t-7). 

Then, as in the proof of Theorem 6, it follows that eventually z(t) < 0, 
z’(t) < 0, and that 

z(t) > py(t - z). 

From this last inequality, we find that eventually 

-;Q(t)z(t+(~-CJ))> -Q(t)y(t-a)=z’(t) 

and hence 

z’(t)- 5 Q(t)z(t+(~-a))<O. 
( 1 

But, by (C,) and Lemma 1 (i), it is impossible for this inequality to have an 
eventually negative solution. The proof is complete. 

THEOREM 8. Consider the NDDE (1). Assume that p < - 1, z > a, and Q 
is periodic with period T. Finally, suppose that 

(Cd - 
1 r+(T-u) 

- lim inf 
s 

1 

l+p I--toD 
Q(s) ds>-. 

I e 

Then every solution of Eq. (1) oscillates. 
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Proof Suppose, for the sake of contradiction, that there is an even- 
tually positive solution y(t). Set 

z(t)=Y(t)+PY(t-T) 

and 
w(t)=z(t)+pz(t-T). 

Then, since Q is periodic with period r, it is easy to see that z and u’ are 
also solutions to Eq. (1). 

As in the proof of Theorem 6, we eventually have z(t) < 0 and z’(t) < 0. 
The same argument, when applied to -z(t), implies that eventually 
w(t) > 0 and w>‘(t) > 0. Hence 

w(t)=z(t)+pz(t-r)<(I +p)z(t-T) 

eventually, and so 

-&Q(t)w(l+(~-a))< -Q(t)z(t--a)=w’(t) 

from which we find that eventually 

u.‘(t) - Q(r)w(l+(~-CJ,,~@ 

But, by (C,) and Lemma 1 (ii), this is impossible. 
The proof of the theorem is complete. 

B. The Case p > 0 

The following two theorems are the variable coefficient analogues for 
Theorems 3 and 5, respectively. 

THEOREM 9. Consider the NDDE (1). Assume that p> 0. Then ever-v 
nonoscillatory solution of Eq. (1) tends to zero as t + a3. 

Proof: It sufficies to show that every eventually positive solution y(t) of 
Eq. (1) tends to zero as t + co. So, let y(t) be an eventually positive 
solution of Eq. (1). Set 

z(t)=Y(f)+PY(t-r). (9) 

Then 

z’(t)= -Q(r)y(t-o) (10) 

and so z’(t) is eventually negative. Since p > 0, z(t) is eventually positive. 
Thus, lim,,, z(t) = 1 exists, is finite, and I3 0. 
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By integrating (10) from to to t, we obtain 

and therefore 

I ’ Q(s)y(s-o)ds=z(t,)--I. 
10 

So, as Q(f) 2 q > 0 eventually, we see that y E Ll(to, CC ), and so, by (9), 
z E L,( t,, a). Hence l= 0 which implies that lim,,, y(t) = 0, and the proof 
is complete. 

THEOREM 10. Consider the NDDE (1). Assume that p > 0, CJ > z, and Q 
is z periodic. Finally, suppose that 

CC,) J--lim inf s ’ 
1 

l+p r-a 
Q(s) ds > -. 

rP(uPT) e 

Then every solution of Eq. (1) oscillates. 

Proof: Otherwise there is an eventually positive solution y(t) of Eq. (1). 
Set 

and 

w(t)=z(t)+pz(t-z). 

Then eventually 

z(t)>O, z’(t)<O, w(t)>O, and w’(t)<O. 

Hence 

and so 

w(t)=z(t)+pz(t-T)<(l +p)z(t--s), 

+-Q(t) w(t-(O-T))> -Q(t)z(t-CT). 
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But the fact that Q is periodic with period z implies that z, and also W, are 
solutions of Eq. (1 ), and so 

-Q(f)Z(l-cT)=w’(t), 

that is to say, 

w’(t) + &Q(t)w(~-(6--~))~ch 

In view of (C,) and Lemma 1 (iii), this is impossible. 
The proof of the theorem is complete. 
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