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Abstract

We study a Linear–Quadratic Regulation (LQR) problem with Lévy processes and establish the
closeness property of the solution of the multi-dimensional Backward Stochastic Riccati Differential
Equation (BSRDE) with Lévy processes. In particular, we consider multi-dimensional and one-dimensional
BSRDEs with Teugel’s martingales which are more general processes driven by Lévy processes. We show
the existence and uniqueness of solutions to the one-dimensional regular and singular BSRDEs with Lévy
processes by means of the closeness property of the BSRDE and obtain the optimal control for the non-
homogeneous case. An application of the backward stochastic differential equation approach to a financial
(portfolio selection) problem with full and partial observation cases is provided.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper examines the following Backward Stochastic Differential Equation (BSDE) called
the Backward Stochastic Riccati Differential Equation (BSRDE) with Lévy processes:dΠ (t) = −G(t,Π , βΠ , γΠ )dt +

k∑
i=1

β i
Π (t)dw

i (t)+

l∑
i=1

∞∑
j=1

γ
i j
Π (t)dH i j (t)

Π (T ) = M(T ),

(1.1)
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where

G(t,Π , βΠ , γΠ ) =

(
Π (t−)A + A∗Π (t−)+ M

+

k∑
i=1

β i
Π C i

+

l∑
i=1

∞∑
j=1

γ
i j
Π E i j

+

k∑
i=1

(C i )∗(β i
Π + Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(E i j )∗(γ
i j
Π + Π (t−)E i j )

)
(t)− F(t,Π , βΠ , γΠ )

and

F(t,Π , βΠ , γΠ ) = L(t)∗K (t)−1L(t),

L(t) :=

(
d∑

i=1

(Bi )∗Π (t−)+

k∑
i=1

(Di )∗(β i
Π + Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
Π + Π (t−)E i j )

)
(t)

K (t) :=

(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)F i j

)
(t).

The coefficients of A, Bi , C i , Di , E i j and F i j for all i, j, d, k, l ∈ N in the BSRDE (1.1) are
in n × n, n × m, n × n, n × m, n × n and n × m, respectively. wi (t), i ∈ {1, . . . , k}, k < ∞,
is a one-dimensional Wiener process and H i j (t), i ∈ {1, . . . , l}, l < ∞, j ∈ {1, . . . ,∞}, is a
one-dimensional stochastic process called Teugel’s martingale (see Nualart and Schoutens [17])
defined in Section 2. We call Eq. (1.1) a one-dimensional BSRDE for Π ∈ R, and a multi-
dimensional BSRDE for Π ∈ Rn×n , n > 1.

There are many studies on the existence of a unique solution to the BSRDE based on the
nonlinear BSDE including Pardoux and Peng [20]. For γ i j

Π (t) = E i j
= F i j

= 0, for all i, j (the

case where γ i j
Π = E i j

= F i j
= 0, for all i, j , implies that the BSRDE does not have Teugel’s

martingales and Π (t−) in G of (1.1) is equal to Π (t)), the BSRDE is of a well-known form,
which includes a class of the BSRDEs given in other studies such as Bismut [4], Wonham [24],
Chen et al. [5], Kohlmann and Zhou [13], Kohlmann and Tang [11], Kohlmann and Tang [9],
Kohlmann and Tang [10] and so on. Kohlmann and Tang [12] survey recent studies on the
BSRDEs.

If the coefficients A, B,C i , Di ,M, N (M ∈ Rn×n, N ∈ Rm×m) in (1.1) are constant and
β i
Π = 0, for all i , γ i j

Π = E i j
= F i j

= 0, for all i, j , then the BSRDE becomes a nonlinear matrix
ordinary differential equation. The solution of such a class of BSRDEs is completely derived by
Wonham [24]. Bismut [4] first considers the case where these coefficients are random variables
under β i

Π = 0, i ∈ {1, . . . , k0}, C i
= Di

= 0, i ∈ {k0 + 1, . . . , k} and γ i j
Π = E i j

= F i j
= 0,

for all i, j , and then Peng [21] studies the existence and uniqueness of the solution to the multi-
dimensional BSRDE. Kohlmann and Tang [10] make use of the result of Peng [21] and show the
closeness property of the solutions of the BSRDE for the case where γ i j

Π = E i j
= F i j

= 0, for
all i, j , and prove the existence and uniqueness for the singular case (N = 0).
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On the other hand, for the one-dimensional BSRDE (1.1), i.e. n = 1, Kohlmann and Tang [9]
prove the existence and uniqueness for the regular case with γ i j

Π = E i j
= F i j

= 0, for all i, j ,
by means of a technique developed by Kobylanski [7], and for the singular case by the regular
approximation method [11].

It is essential for application to a financial problem which is to obtain an optimal portfolio
strategy (an optimal control process) derived by solving the Linear–Quadratic Regulators (LQR)
problem to confirm the existence and uniqueness of the solution to the one-dimensional singular
BSRDE. There are studies of applications, called the BSDE approach, of the LQR problem to
finance such as Kohlmann and Zhou [13], Kohlmann and Tang [11], Kohlmann and Tang [9],
Bender and Kohlmann [2] and so on. The optimal portfolio strategy problem as an LQR problem
is formulated as follows: First, define the controlled process x which is the process of the
difference between a wealth process with risky assets driven by Wiener processes and a target
random variable at maturity. Then, with the existence of a unique solution to the BSRDE whose
form is determined by that of the controlled process, the optimal strategy u can be obtained by
solving a minimization problem

P1
: inf

u∈L2
F (0,T ;Rm )

J (0, T ; u), x0 ∈ Rn, (1.2)

where

J (t, T ; u) = E
[∫ T

t
(x∗Mx + u∗Nu)(s)ds + x(T )∗M(T )x(T )|Ft

]
. (1.3)

The objective in this paper is to study the (mainly one-dimensional) BSRDE with Lévy
processes represented by (1.1). We will solve the minimization problem (1.2) for the case where
the controlled process is given by

dx(t) =

(
Ax +

d∑
i=1

Bi u

)
(t)dt +

k∑
i=1

(C i x + Di u)(t)dwi (t)

+

l∑
i=1

∞∑
j=1

(E i j (t)x(t−)+ F i j (t)u(t))dH i j (t)

x(0) = x0.

(1.4)

Some questions to be answered arise when we solve the LQR problem (1.2) with the
controlled process (1.4) driven by Lévy processes. (1) Can we have the existence and uniqueness
of the solution to the one-dimensional singular BSRDE with Lévy processes (1.1)? If existence
and uniqueness of the solution to such a BSRDE were to hold, we would be able to prove this
for the singular case by making use of the existence and uniqueness of the solution to the one-
dimensional regular BSRDE with Lévy processes (1.1) and the closeness for the solution. (2)
Can we have the existence and uniqueness of the solution for the singular case? (3) Do we have
the closeness property of the solution of the BSRDE with Lévy processes?

In order to answer these questions on the existence and uniqueness of solutions to one-
dimensional regular and singular BSRDEs, we make use of the closeness property of the solution
of the BSRDE established by Kohlmann and Tang [10] for the solution of the multi-dimensional
regular BSRDE (1.1) with γ i j

Π = E i j
= F i j

= 0, for all i, j . We first show the property
for the multi-dimensional regular BSRDE with Lévy processes. For the regular case with one
dimension and γ i j

Π = E i j
= F i j

6= 0, for all i, j , we will prove existence of the solution through
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an approximating BSDE of Kohlmann and Tang [11]. They prove the existence and uniqueness of
solution to the one-dimensional regular BSRDE (1.1) with γ i j

Π = E i j
= F i j

= 0, for all i, j , by
a technique developed by Kobylanski [7]. They also prove this for the singular case. In this paper,
we instead use the closeness property of the solution for the regular case with Lévy processes and
will find it more convenient than the Kohlmann and Tang [11] approach for proving existence of
the solution. For the singular case we use the approximation method of Kohlmann and Tang [11]
and the closeness property again. Finally, we extend to the non-homogeneous BSRDE with Lévy
processes and apply the LQR problem to a financial problem.

In summary, the contributions of this paper include:

1. The closeness property of the solutions of the multi-dimensional regular BSRDE with Lévy
processes is established.

2. The existence and uniqueness of solutions to the one-dimensional regular and singular
BSRDEs with Lévy processes is included.

3. The application of the LQR problem is implemental in solving a financial (i.e. portfolio
selection) problem with risky asset having Lévy processes (we often call them jump risks).

The rest of the paper is organized as follows. In Section 2, we provide a list of notation and
the results: the “existence and uniqueness” and the “comparison theorem” for the solution to the
BSDE, with respect to Teugel’s martingale processes. Section 3 presents the optimal control for
the LQR problem P1 (1.2) and shows the property of closeness for the multi-dimensional BSRDE
with Lévy processes. In Section 4, we first prove the existence and uniqueness of the solution to
the one-dimensional regular BSRDE with Lévy processes and subsequently prove them for the
singular case by the closeness of the solution obtained in Section 3. Section 5 is devoted to the
LQR problem in the non-homogeneous case and the application to the financial problem with
full and partial observation cases.

2. Preliminaries

Let (Ω ,F,P) be a complete probability space and (Ω ,F, {Ft }t>0,P) be a filtered probability
space, where {Ft ; t ∈ [0, T ], T < ∞} satisfies the usual conditions, a right continuous
increasing family of complete sub σ -algebra of F . Let {W (t), t ∈ [0, T ]} be a standard Wiener
process in Rn and {L(t), t ∈ [0, T ]} be an Rn-valued Lévy process with a Lévy measure v such
that

∫
R(1 ∧ z)v(dz) < ∞ which is independent of the Wiener process W (t).

Assume that Ft is the smallest σ -algebra generated by W (t) and L(t), i.e.

Ft = σ(W (s), s 6 t) ∨ σ(L(s), s 6 t) ∨ N ,

where N is the totality of the P-null set.
We denote by H i (t), i > 1, Teugel’s martingales associated with the Lévy process L(t) (see,

e.g., Bahlali et al. [1], Nualart and Schoutens [17], Nualart and Schoutens [16]). H i (t) is given
by

H i (t) = ci,i Y
(i)
t + ci,i−1Y (i−1)

t + · · · + ci,1Y (1)t ,

where Y (i)t = L(i)t − E[L(i)t ] for all i > 1 and L(i)t are power-jump processes: L(1)t = L t and
L(i)t =

∑
0<s6t (∆Ls)

i for i > 2. This representation is obtained from the chaos decomposition
in Nualart and Schoutens [17]. They furthermore prove the existence of a unique solution of the
BSDE [16]. Løkka [14] prove the martingale representation (Clark–Ocone formula) of the Lévy
process in different ways based on the chaos expansion.
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We introduce the following notation:

• |A| =

√∑
i, j A2

i j .

• A∗: the transpose of matrix A.
• (U , d): the separable metric space.
• Sn,Sn

+, Ŝn
+: the space of all n × n symmetric matrices, the space of all non-negative definite

matrices and the space of all positive definite matrices, respectively.
• C([0, T ]; H): the Banach space of H -valued continuous functions on [0, T ].
• l2(H): the space of H -valued { fi }i>1 such that

∑
∞

i=1 | fi (s)|2 < ∞.
• l2F (0, T ; H): the Banach space of l2(H)-valued Ft -adapted stochastic processes fi , endowed

with the norm E
∫ T

0

∑
∞

i=1 | fi (s)|2ds.
• L2

F (0, T ; H): the Banach space of H -valued Ft -adapted square integrable stochastic
processes with the norm.

• L∞

F (0, T ; H): the Banach space of H -valued Ft -adapted, essentially bounded stochastic
process with the norm: ‖ f (t)‖L∞

F
= esssupt∈[0,T ],ω∈Ω | f (t)|.

• L2(Ω ,F,P, H): the Banach space of H -valued norm square integrable random variables on
(Ω ,F,P).

• L∞(Ω ,F,P, H): the Banach space of H -valued, essentially norm bounded random variables
f on (Ω ,F,P) with the norm: esssupω∈Ω maxt∈[0,T ] | f (t, ω)|.

• U : the admissible set in L2
F (t, T ; Rn).

We will need the existence and uniqueness of the solution to the BSDE driven by Teugel’s
martingales in order to prove those for the one-dimensional regular BSRDE with Teugel’s
martingales. Bahlali et al. [1] prove the existence and uniqueness of the solution to the BSDE with
Teugel’s martingales which are more general than the stochastic process with Poisson random
measures.

The following two lemmas concerning the uniqueness and existence and the comparison
theorem for the BSDE driven by both the Wiener process and Teugel’s martingales are obtained
by Bahlali et al. [1] using the results of Pardoux and Peng [20].

Lemma 2.1 (Existence and Uniqueness). Assume that

(1) a terminal value ξ ∈ L2(Ω ,FT ,P),
(2) a process f : [0, T ] × Ω × R × R × l2

→ R such that (i) f is progressively measurable s.t.
f (·, 0, 0, 0) is in the space of real-valued square integrable and Ft -progressively measurable
processes with the norm ‖ f ‖ = E

∫ T
0 | f (s)|2ds < ∞ and (ii) there exists a constant L > 0

s.t.

| f (t, ω, y, u, z)− f (t, ω, y′, u′, z′)| 6 L(|y − y′
| − |u − u′

| − ‖z − z′
‖).

Then, the BSDEYt = ξ +

∫ T

t
f (s, Ys− ,Us, Zs)ds +

∫ T

t
Usdw(s)+

∫ T

t

∞∑
i=1

Z i
sdH i (s)

ξ is an FT measurable square integrable random variable

(2.1)

has a unique solution (y, u, z) on a Banach space such that

‖(y, u, z)‖2
= E

(
sup

06t6T
|yt |

2
+

∫ T

0
|us |

2ds +

∫ T

0
‖zs‖

2ds

)
< ∞.
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Lemma 2.2 (Comparison Theorem). Suppose that ( f k, ξ k), k = {1, 2} satisfies (1) and (2) in
Lemma 2.1. Assume that

f 1(t, y, u, z) 6 f 2(t, y, u, z), ∀(y, u, z) ∈ R × R × l2, dP × dt − a.s.; ξ1 6 ξ2.

Then, Y 1
t 6 Y 2

t , t ∈ [0, T ].

Remark 2.1. In Bahlali et al. [1] and Nualart and Schoutens [16], Yt− , the left limit value before
it jumps at t , is set to the drift coefficient of the BSDE. For the controlled process x(t), we set the
variable x(t−) to the coefficient of Lévy processes as in (1.4); see e.g. Øksendal and Sulem [19]
for the BSDE with Poisson random measures and Tang and Li [23] for the Poisson point
process.

3. LQR and optimal control

This section deals with the multi-dimensional regular BSRDE with Lévy processes (1.1). We
first present an optimal control for (1.2), and show the closeness property of the solution of the
multi-dimensional regular BSRDE with Lévy processes. The closeness property is important for
proving the existence and uniqueness of solutions to the one-dimensional regular and singular
BSRDEs with Lévy processes in the next section.

Consider the stochastic control problem P1 (1.2) and the cost function (1.3) with M and N
in Rn×n and Rm×m , respectively. The controlled process x(t) is the solution of the stochastic
differential equation (1.4) with the dimensions of A, Bi , C i , Di , E i j and F i j for all i in n × n,
n × m, n × n, n × m, n × n and n × m, respectively.

Let us introduce the multi-dimensional BSRDE with Lévy processes (1.4). The following
proposition provides the optimal feedback control for P1 (1.2).

Proposition 3.1. Let (Π , β, γ ) be an Ft -adapted solution of the BSRDE (1.1) and in
L∞

F (0, T ;Sn
+) ∩ L∞(Ω ,FT ,P; C([0, T ];Sn

+),L2
F (0, T ;Sn)k, l2F (0, T ;Sn)

l
). Assume that

(N +
∑k

i=1(D
i )∗Π (t−)Di

+
∑l

i=1
∑

∞

j=1(F
i j )∗Π (t−)F i j )(t) is uniformly positive. Then

û(t) = −

(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)F i j

)−1

(t)

×

(
d∑

i=1

(Bi )∗Π (t−)+

k∑
i=1

(Di )∗(β i
Π + Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
Π + Π (t−)E i j )

)
(t)x(t−) (3.1)

is an optimal feedback control, and

x(t)∗Π (t)x(t) = essinf
u∈L2

F (t,T ;Rm )

J (t, T ; u). (3.2)

Proof. In order to obtain the optimal control, we use the completion of squares (see Kohlmann
and Tang [11], Kohlmann and Zhou [13], Chen et al. [5]).

Assume that the stochastic process Π (t) ∈ L∞

F (0, T ;Sn
+) ∩ L∞(Ω ,FT ,P; C(0, T ;Sn

+)) has
the decomposition
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dΠ (t) = Γ (t)dt +

k∑
i=1

Λi (t)dwi
+

l∑
i=1

∞∑
j=1

Θ i j (t)dH i j (t). (3.3)

Applying the Itô–Lévy formula, we obtain

dx(t)∗Π (t)x(t) =

[
x∗(t−)

{
A∗Π (t−)+ Γ + Π (t−)A

+

k∑
i=1

{(C i )∗(Λi
+ Π (t−)C i )+ Λi C i

}

+

l∑
i=1

∞∑
j=1

{(E i j )∗(Θ i j
+ Π (t−)E i j )+ Θ i j E i j

}

}
(t)x(t−)

+ 2u(t)∗
{

d∑
i=1

(Bi )∗Π (t−)+

k∑
i=1

(Di )∗(Λi
+ Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(F i j )∗(Θ i j
+ Π (t−)E i j )

}
(t)x(t−)

+ u(t)∗
{

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)F i j

}
(t)u(t)

]
dt

+

k∑
i=1

{· · ·}dwi (t)+

l∑
i=1

∞∑
j=1

{· · ·}dH i j (t). (3.4)

The cost function (1.3) with (3.4) can be manipulated as follows:

J (s, T ; u(·)) = E

[∫ T

s

[
x∗(t−)

{
A∗Π (t−)+ Γ + Π (t−)A

+

k∑
i=1

{(C i )∗(Λi
+ Π (t−)C i )+ Λi C i

}

+

l∑
i=1

∞∑
j=1

{(E i j )∗(Θ i j
+ Π (t−)E i j )+ Θ i j E i j

}

+ M − L∗K −1L

}
(t)x(t−)

+ (u + K −1Lx(t−))∗(t)K (t)(u + K −1Lx(t−))(t)

]
dt

+
(
x(T )∗(M(T )− Π (T ))x(T )+ x∗

s Π (s)xs
)
|Fs

]
where K (t) and L(t) have the forms defined in the Introduction section with Λi

= β i
Π and

Θ i j
= γ

i j
Π .
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Substituting the BSRDE (1.1) and M(T ) = Π (T ) for the cost function, we have

J (s, T ; u(·)) = E
[∫ T

s
(u + K −1Lx(t−))∗K (u + K −1Lx(t−))(t)dt |Fs

]
+ x∗

s Π (s)xs

> x∗
s Π (s)xs = J (s, T ; û(·)). (3.5)

K is uniformly positive for s ∈ [t, T ]. Thus, the optimal feedback control û(·) is given by (3.1).
�

Now we show the closeness property of the solution of the BSRDE (1.1). To this end, let us
consider the following multi-dimensional regular BSRDE: for m̃ ∈ N,

dΠ m̃(t) = −Gm̃(t,Π m̃, βm̃
Π , γ

m̃
Π )dt

+

k∑
i=1

β i
Π

m̃
(t)dwi (t)+

l∑
i=1

∞∑
j=1

γ
i j
Π

m̃
(t)dH i j (t)

Π m̃(T ) = M m̃(T ),

(3.6)

where

Gm̃(t,Π m̃, βm̃
Π , γ

m̃
Π ) =

(
Π m̃(t−)Am̃

+ (Am̃)∗Π m̃(t−)+ M m̃
+

k∑
i=1

β i
Π

m̃
C i m̃

+

l∑
i=1

∞∑
j=1

γ
i j
Π

m̃
E i j m̃

+

k∑
i=1

(C i m̃
)∗(β i

Π
m̃

+ Π m̃(t−)C i m̃
)

+

l∑
i=1

∞∑
j=1

(E i j m̃
)∗(γ

i j
Π

m̃
+ Π m̃(t−)E i j m̃

)

)
(t)

− F m̃(t,Π m̃, βm̃
Π , γ

m̃
Π )

and

F m̃(t,Π m̃, βm̃
Π , γ

m̃
Π ) = L ′(t)∗K ′(t)−1L ′(t),

L ′(t) :=

(
d∑

i=1

Bi m̃∗

Π m̃(t−)+

k∑
i=1

Di m̃∗

(β i
Π

m̃
+ Π m̃(t−)C i m̃

)

+

l∑
i=1

∞∑
j=1

F i j m̃∗

(γ
i j
Π

m̃
+ Π m̃(t−)E i j m̃

)

)
(t),

K ′(t) :=

(
N m̃

+

k∑
i=1

Di m̃∗

Π m̃(t−)Di m̃
+

l∑
i=1

∞∑
j=1

F i j m̃∗

Π m̃(t−)F i j m̃

)
(t).

Assume that for m̃ ∈ N:

H1: For all i , Am̃ , Bi m̃
, C i m̃

, Di m̃
, M m̃ and N m̃ are Ft -progressively measurable and, as

k → ∞, converge uniformly in (t, ω) to A∞, Bi ∞, C i ∞, Di ∞, M∞ and N∞, respectively.∑
∞

j=1 E i j m̃
,
∑

∞

j=1 F i j m̃
are Ft -progressively measurable and, as k → ∞, converge

uniformly in (t, ω) to
∑

∞

j=1 E i j ∞,
∑

∞

j=1 F i j ∞.
H2: M m̃(T ) is an FT -measurable and non-negative random matrix variable and, as m̃ → ∞,

converges uniformly in ω to M∞(T ).



128 K.-i. Mitsui, Y. Tabata / Stochastic Processes and their Applications 118 (2008) 120–152

H3: M m̃(t) is a.s. a.e. non-negative.
H4: There exist constants ε1, ε2 and ε3 which are independent of m̃ such that

|Am̃
|, |Bi m̃

|, |C i m̃
|, |Di m̃

|,

∞∑
j=1

|E i j m̃
|,

∞∑
j=1

|F i j m̃
|, |M m̃

|, |N m̃
| 6 ε1,

∞∑
j=1

|E i j m̃
|
2,

∞∑
j=1

|F i j m̃
|
2 6 ε2,

N m̃ > ε3 Im×m .

H5: The BSRDE (3.6) has an Ft -adapted unique solution (Π m̃, βm̃
Π , γ

m̃
Π ) ∈ L∞

F (0, T ;Sn
+) ∩

L∞(Ω ,FT ,P; C([0, T ];Sn
+),L2

F (0, T ;Sn)k, l2F (0, T ;Sn)
l
) for all m̃.

We denote the difference between φm̃ and φñ as φm̃ñ where φ = M , N , x , A, B, C , D, E , F .

Lemma 3.1. Assume H1–H5. Then there exist constants Ki , i = 0, 1, . . . , 3, such that

E|Π m̃(t)|2 + K0E
∫ T

t

k∑
i=1

|β i
Π

m̃
(s)|2ds + K1E

∫ T

t

l∑
i=1

∞∑
j=1

|γ
i j
Π

m̃
(s)|2ds

6 |M m̃(T )|2 + K2 + K3E
∫ T

t
|Π m̃(s−)|2ds. (3.7)

Proof. Applying the Itô–Lévy formula to |Π m̃(t)|2, we have

d|Π m̃(t)|2 = −

[
2Tr(Π m̃(t−)M m̃)+ 4Tr(Π m̃(t−)(Am̃)∗Π m̃(t−))

×

k∑
i=1

{
4Tr(Π m̃(t−)β i m̃

C i m̃
)+ 2Tr(Π m̃(t−)(C i m̃

)∗Π m̃C i m̃
)
}

+

l∑
i=1

{
4Tr(Π m̃(t−)

∞∑
j=1

γ i j m̃
E i j m̃

)+ 2Tr(E i j m̃
)∗Π m̃ E i j m̃

}

− 2Tr(Π m̃(t−)F m̃(t,Π m̃, βm̃, γ m̃))−

k∑
i=1

|β i m̃
|
2
−

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

]
(t)dt

+ 2
k∑

i=1

|Tr(Π m̃(t−)β i m̃
(t))dwi (t)

+ 2
l∑

i=1

∞∑
j=1

Tr(Π k(t−)γ i j m̃
(t))dH i j (t). (3.8)

By the positivity of Tr(Π m̃(t−)F m̃(t,Π m̃, βm̃, γ m̃)) (since F has a squared form and Π k
∈

S+), Young’s inequality, Tr(AB) 6 |A||B| and Tr(A2) = |A|
2 for A ∈ S, (3.8) yields

d|Π m̃(t)|2 >

{
const.+ ε0|Π m̃(t−)|2 + ε1

k∑
i=1

|β i m̃
|
2
+ ε2

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

}
(t)dt
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+

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(t)dt + 2

k∑
i=1

Tr(Π m̃(t−)β i m̃
(t))dwi (t)

+ 2
l∑

i=1

∞∑
j=1

Tr(Π m̃(t−)γ i j m̃
(t))dH i j (t). (3.9)

Taking the integral of (3.9) from t to T and expectation, we can obtain inequality (3.7). �

Lemma 3.2 (A Priori Estimates). Under conditions H1–H5, we have estimates

0 6 Π m̃(t) 6 εIn×n, (3.10)

E

(∫ T

t

(
k∑

i=1

|β i m̃
(s)|2 +

l∑
i=1

∞∑
j=1

|γ i j m̃
(s)|2

)
ds

)p

6 ε ∀p > 1. (3.11)

Proof. By Lemma 3.1, we have

E|Π m̃(t)|2 6 const.+ K3E
∫ T

t
|Π m̃(s−)|2ds. (3.12)

Applying Gronwall’s inequality (see e.g. Protter [22]) to (3.12), for a positive constant
depending on T , E|Π m̃(t)|2 6 C(T ) < ∞. Therefore, since Π m̃(t) ∈ Sn

+, we can obtain
the estimate (3.10). From this estimate (3.10) and inequality (3.9),

|Π m̃(t)|2 +

∫ T

t

k∑
i=1

|β i m̃
(s)|2ds +

∫ T

t

l∑
i=1

∞∑
j=1

|γ i j m̃
(s)|2ds

6 const.+ K3

∫ T

t

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(s)ds

− 2
∫ T

t

k∑
i=1

Tr(Π m̃(s−)β i m̃
(s))dwi (s)

− 2
∫ T

t

l∑
i=1

∞∑
j=1

Tr(Π m̃(s−)γ i j m̃
(s))dH i j (s).

Thus,∫ T

t

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(s)ds

6 const.+ K3

∫ T

t

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(s)ds

− 2
∫ T

t

k∑
i=1

Tr(Π m̃(s−)β i m̃
(s))dwi (s)

− 2
∫ T

t

l∑
i=1

∞∑
j=1

Tr(Π m̃(s−)γ i j m̃
(s))dH i j (s). (3.13)
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From (3.13), the Burkholder–Davis–Gundy inequalities, Tr(AB)2 6 |A|
2
|B|

2 and (3.10),

E

(∫ T

t

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(s)ds

)p

6 3p

[
const.p + K ′pE

(∫ T

t

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(s)ds

)p

+ 2pE

(∫ T

t

k∑
i=1

Tr(Π m̃(s−)β i m̃
(s))dwi (s)

+

∫ T

t

l∑
i=1

∞∑
j=1

Tr(Π m̃(s−)γ i j m̃
(s))dH i j (s)

)p]

6 3p

[
const.p + K ′pE

(∫ T

t

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(s)ds

)p

+ 2pE

(
sup

τ∈[t,T ]

∣∣∣∣∣
∫ τ

t

k∑
i=1

Tr(Π m̃(s−)β i m̃
(s))dwi (s)

+

∫ τ

t

l∑
i=1

∞∑
j=1

Tr(Π m̃(s−)γ i j m̃
(s))dH i j (s)

∣∣∣∣∣
)p]

6 3p

const.p + K ′ pE

(∫ T

t

(
k∑

i=1

|β i m̃
| +

l∑
i=1

∞∑
j=1

|γ i j m̃
|

)
(s)ds

)p

+ C pE

(∫ T

t

k∑
i=1

|Π m̃(s−)|2|β i m̃
(s)|2ds +

∫ T

t

l∑
i=1

∞∑
j=1

|Π m̃(s−)|2|γ i j m̃
(s)|2ds

) p
2


6 3p

const.p + K ′pE

(∫ T

t

(
k∑

i=1

|β i m̃
|
2
+

l∑
i=1

∞∑
j=1

|γ i j m̃
|
2

)
(s)ds

)p

+ C ′
pE

(∫ T

t

k∑
i=1

|β i m̃
(s)|2ds +

∫ T

t

l∑
i=1

∞∑
j=1

|γ i j m̃
(s)|2ds

) p
2
 . (3.14)

Therefore we have

E

(∫ T

t

(
k∑

i=1

|β i m̃
(s)|2 +

l∑
i=1

∞∑
j=1

|γ i j m̃
(s)|2

)
ds

)p

6 (1 − 3p K ′p)−13p

×

const.p + C ′
pE

(∫ T

t

k∑
i=1

|β i m̃
(s)|2ds +

∫ T

t

l∑
i=1

∞∑
j=1

|γ i j m̃
(s)|2ds

) p
2
 . (3.15)

Thus the estimate (3.11) holds. �
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Let us consider the optimal control problem for each m̃. For this purpose, define the following
problem:

P2
: inf

u∈L2(0,T ;Rm )
J m̃(0, T ; u), x0 ∈ Rn, (3.16)

where

J m̃(t, T ; u) = E
[∫ T

t
((x m̃)∗M m̃ x m̃

+ u∗N m̃u)(s)ds + (x m̃(T ))∗M m̃(T )x m̃(T )|Ft

]
,

(3.17)

and the controlled process x m̃(t) is the solution of the following stochastic differential equation:
dx(t) =

(
Am̃ x +

d∑
i=1

Bi m̃
u

)
(t)dt +

k∑
i=1

(C i m̃
x + Di m̃

u)(t)dwi (t)

+

l∑
i=1

∞∑
j=1

(E i j m̃
x(t−)+ F i j m̃

u(t))(t)dH i j (t)

x(0) = x0.

(3.18)

Since E[
∫ T

t (û(s)
∗N m̃(s)û(s))ds|Ft ] 6 K |xt |

2 by Proposition 3.1 and the a priori estimate of
Lemma 3.2, the optimal control problem can be given by

essinf
u∈Uad (t,T )

J m̃(t, T ; u),

where

Uad(t, T ) =

{
u ∈ L2(t, T ; Rm); E

[∫ T

t
|u|

2ds|Ft

]
6 K |xt |

2
}
.

By Lemma 3.3 in Kohlmann and Tang [10], we have

|J m̃(t, T ; u)− J ñ(t, T ; u)| 6 ε0 esssup
ω∈Ω

|N m̃ñ(t)|E[|x m̃(T )|2|Ft ]

+ ε0E[|x m̃ñ(T )|2|Ft ]
1
2 E[|x m̃(T )|2 + 2|x ñ(T )|2|Ft ]

1
2

+ ε0T E[ sup
s∈[t,T ]

|x m̃ñ(s)|2|Ft ]
1
2

× E[ sup
s∈[t,T ]

(2|x m̃(s)|2 + 2|x ñ(s)|2)|Ft ]
1
2

+ ε0 esssup
ω∈Ω

∫ T

0
|M m̃ñ(s)|dsE[ sup

s∈[t,T ]

|x m̃(s)|2|Ft ]

+ ε1|xt |
2 esssup

s∈[t,T ],ω∈Ω
|M m̃ñ(s)|, (3.19)

where ε0, ε1 are positive constants.
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Using the following lemma, we can prove Π (t) ∈ L∞

F (0, T ;Sn
+) ∩ L∞(Ω ,FT ,P; C([0, T ];

Sn
+)).

Lemma 3.3. Let H1–H5 be satisfied and x m̃(t) be the solution of (3.18). Then we have for each
m̃, ñ ∈ N the following two inequalities:

E[ sup
s∈[t,T ]

|x m̃(s)|2|Ft ] 6 ε0|xt |
2 (3.20)

E[ sup
s∈[t,T ]

|x m̃ñ(s)|2|Ft ]

6 ε0ε1|xt |
2 KE

[∫ T

t

(
d∑

i=1

|Bi m̃ñ
| +

k∑
i=1

|Di m̃ñ
|
2
+

l∑
i=1

∞∑
j=1

|F i m̃ñ
|
2

)
(s)ds|Ft

]

+ ε0ε1|xt |
2E

[∫ T

t

(
|Am̃ñ

| +

k∑
i=1

|C i m̃ñ
|
2
+

l∑
i=1

∞∑
j=1

|E i m̃ñ
|
2

)
(s)ds|Ft

]
. (3.21)

Proof. By the Itô–Lévy formula and Young’s inequality,

E[|x m̃(T )|2|Ft ] = |x(t)|2 + E

[∫ T

t

{
2Tr(Am̃ x m̃ x m̃(s−))+ 2

k∑
i=1

Tr(Bi m̃
ux m̃(s−))

+

k∑
i=1

Tr(C i m̃
x m̃C i m̃

x m̃)+

l∑
i=1

∞∑
j=1

Tr(E i j m̃
x m̃(s−)E i j m̃

x m̃(s−))

+

k∑
i=1

Tr(Di m̃
u Di m̃

u)+

l∑
i=1

∞∑
j=1

Tr(F i j m̃
uF i j m̃

u)

+

k∑
i=1

Tr(C i m̃
x m̃ Di m̃

u)+

l∑
i=1

∞∑
j=1

Tr(E i j m̃
x m̃(s−)F i j m̃

u)

}
(s)ds|Ft

]

6 |x(t)|2 + ε′0E[ sup
s∈[t,T ]

|x m̃(s)|2|Ft ] + ε′2E
[∫ T

t
|u(s)|2ds|Ft

]
.

Therefore (3.20) can be obtained by the Burkholder–Davis–Gundy inequalities and u(s) ∈ Uad .
Similarly we have (3.21), since

E[|x m̃ñ(T )|2|Ft ] 6 ε′′0E[ sup
s∈[t,T ]

|x m̃ñ(s)|2|Ft ]

+ ε′′1E

[∫ T

t

(
d∑

i=1

|Bi m̃ñ
| +

k∑
i=1

|Di m̃ñ
|
2
+

l∑
i=1

∞∑
j=1

|F i m̃ñ
|
2

)
(s)|u(s)|2ds|Ft

]

+ ε′′2E

[∫ T

t

{(
|Am̃ñ

| +

k∑
i=1

|C i m̃ñ
|
2

)
|x m̃ñ

|
2

+

l∑
i=1

∞∑
j=1

|E i m̃ñ
|
2
|x m̃ñ(s−)|2

}
(s)ds|Ft

]
. �
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The following theorem is one of the main results in this paper and can be regarded as an
extension of Theorem 2.1 in Kohlmann and Tang [10] in that the controlled processes additionally
driven by the Lévy processes.

Theorem 3.1. Assume that H1–H5 hold. Then there exists a triplet of processes (Π , βΠ , γΠ )

with

Π ∈ L∞

F (0, T ;Sn
+) ∩ L∞(Ω ,FT ,P; C([0, T ];Sn

+)),

βΠ ∈ L2
F (0, T ;Sn)k,

γΠ ∈ l2F (0, T ;Sn)
l

such that (Π m̃, βm̃
Π , γ

m̃
Π ) strongly converges to (Π , βΠ , γΠ ).

Proof. Since (xt )
∗Π m̃(t)xt = J m̃(t, T ; û) by Proposition 3.1, using (3.19) with Lemma 3.3 we

have

|(xt )
∗(Π m̃(t)− Π ñ(t))xt | = |J m̃(t, T ; û)− J ñ(t, T ; û)|

6 ε0ε0 esssup
ω∈Ω

|N m̃ñ(t)||xt |
2
+ {ε0(3ε0|xt |

2)
1
2 + ε0T (4ε0|xt |

2)
1
2 }

×

{
ε0ε1|xt |

2 KE

[∫ T

t

(
d∑

i=1

|Bi m̃ñ
| +

k∑
i=1

|Di m̃ñ
|
2
+

l∑
i=1

∞∑
j=1

|F i m̃ñ
|
2

)
(s)ds|Ft

]

+ ε0ε1|xt |
2E

[∫ T

t

(
|Am̃ñ

| +

k∑
i=1

|C i m̃ñ
|
2
+

l∑
i=1

∞∑
j=1

|E i m̃ñ
|
2

)
(s)ds|Ft

]} 1
2

+ ε0ε0|xt |
2 esssup
ω∈Ω

∫ T

t
|M m̃ñ(s)|ds + ε1|xt |

2 esssup
s∈[t,T ],ω∈Ω

|M m̃ñ(s)|.

Π m̃(t) converges to Π ∞(t) strongly in L∞

F (0, T ;Sn
+)∩ L∞(Ω ,FT ,P; C([0, T ];Sn

+)), as m̃ →

∞.
By the Lipschitz condition, for L > 0 and L ′ > (1 + L) > 0,

| − Gm̃(s,Π m̃, βm̃
Π , γ

m̃
Π )+ Gl(s,Π ñ, β ñ

Π , γ
ñ
Π )|

6 L

(
|Π m̃

− Π ñ
|(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)

6 L ′

(
1 + |Π m̃

− Π ñ
|(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)2

.

Therefore,

L L ′−1E

[∫ T

t

(
|Π m̃

− Π ñ
|(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)

+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)
ds|Ft

]
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6 E

∫ T

t

(
1 + |Π m̃

− Π ñ
|(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)

+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)2

ds|Ft

 . (3.22)

Using Theorem 3.2 in Bahlali et al. [1] and the Lipschitz condition, for C, L ′ > 0,

E

[∫ T

t

(
|Π m̃

− Π ñ
|
2(s−)+

k∑
i=1

(|β i
Π

m̃
|
2
+ |β i

Π
ñ
|
2
− 2c1|β

i
Π

m̃
||β i

Π
ñ
|)

+

l∑
i=1

∞∑
j=1

(|γ i
Π

m̃
|
2
+ |γ i

Π
ñ
(s)|2 − 2c2|γ

i
Π

m̃
(s)||γ i

Π
ñ
|)(s)

)
ds|Ft

]

6 E

[∫ T

t

(
|Π m̃

− Π ñ
|
2(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|
2(s)

+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|
2(s)

)
ds|Ft

]

6 C

E[|Π m̃
t − Π ñ

t |Ft ] + L ′E

∫ T

t

(
1 + |Π m̃

− Π ñ
|(s−)

+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)2

ds|Ft

 ,
where c1 and c2 are non-negative constants that satisfy

1
2

k∑
i=1

|β i
Π

m̃
|
2
+ |β i

Π
ñ
|
2

k∑
i=1

|β i
Π

m̃
||β i

Π
ñ
|

> c1

> −
1
2

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|
2
− |β i

Π
m̃
|
2
− |β i

Π
ñ
|
2

k∑
i=1

|β i
Π

m̃
||β i

Π
ñ
|

∨ 0 a.s. a.e.

and

1
2

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
|
2
+ |γ i

Π
ñ
|
2

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
||γ i

Π
ñ
|

> c2



K.-i. Mitsui, Y. Tabata / Stochastic Processes and their Applications 118 (2008) 120–152 135

> −
1
2

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|
2
− |γ i

Π
m̃
|
2
− |γ i

Π
ñ
|
2

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
||γ i

Π
ñ
|

∨ 0 a.s. a.e.

Since |Π m̃
t − Π ñ

t |
2 > 0,

C−1L ′−1E

[∫ T

t

(
|Π m̃

− Π ñ
|
2(s−)+

k∑
i=1

(|β i
Π

m̃
|
2
+ |β i

Π
ñ
|
2

− 2c1|β
i
Π

m̃
||β i

Π
ñ
|)(s)+

l∑
i=1

∞∑
j=1

(|γ i
Π

m̃
|
2
+ |γ i

Π
ñ
|
2
− 2c2|γ

i
Π

m̃
||γ i

Π
ñ
|)(s)

)
ds|Ft

]

6 L ′−1E[|Π m̃
t − Π ñ

t |Ft ] + E

∫ T

t

(
1 + |Π m̃

− Π ñ
|(s−)

+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)2

ds|Ft

 . (3.23)

For sufficiently small ϕ > 0, we can take a coefficient % > 0 such that

0 6 ϕL L ′−1E

[∫ T

t

(
|Π m̃

− Π ñ
|(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)

+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)
ds|Ft

]

6 C−1L ′−1E

[∫ T

t

(
|Π m̃

− Π ñ
|
2(s−)+

k∑
i=1

(|β i
Π

m̃
|
2
+ |β i

Π
ñ
|
2

− 2c1|β
i
Π

m̃
||β i

Π
ñ
|)(s)+

l∑
i=1

∞∑
j=1

(|γ i
Π

m̃
|
2
+ |γ i

Π
m̃
|
2

− 2c2|γ
i
Π

m̃
||γ i

Π
ñ
|)(s)

)
ds|Ft

]
− %L ′−1E[|Π m̃

t − Π ñ
t |Ft ]

6 E

∫ T

t

(
1 + |Π m̃

− Π ñ
|(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)

+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)2

ds|Ft

 . (3.24)
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Since 2C−1L ′−1E[
∫ T

t

∑k
i=1 c1|β

i
Π

m̃
(s)||β i

Π
ñ
(s)|ds|Ft ] > 0 and 2C−1L ′−1E[

∫ T
t

∑l
i=1

∑
∞

j=1

c2|γ
i
Π

m̃
(s)||γ i

Π
ñ
(s)|ds|Ft ] > 0, we have by subtracting (3.23) from (3.24)

E

[∫ T

t

(
|Π m̃

− Π ñ
|(s−)+

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|(s)+

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|(s)

)
ds|Ft

]

6 ϕ−1C−1L−1E

[∫ T

t

(
|Π m̃

− Π ñ
|
2(s−)+

k∑
i=1

(|β i
Π

m̃
|
2
+ |β i

Π
ñ
|
2)(s)

+

l∑
i=1

∞∑
j=1

(|γ i
Π

m̃
|
2
+ |γ i

Π
ñ
|
2)(s)

)
ds|Ft

]
. (3.25)

Applying the Itô–Lévy formula to |Π m̃(s)−Π ñ(s)|2 and using the Lipschitz condition, (3.25)
and Lemma 3.2 with p = 1, we have

E[|Π m̃(t)− Π ñ(t)|2|Ft ] + E

[∫ T

t

k∑
i=1

|β i
Π

m̃
− β i

Π
ñ
|
2(s)ds|Ft

]

+ E

[∫ T

t

l∑
i=1

∞∑
j=1

|γ i
Π

m̃
− γ i

Π
ñ
|
2(s)ds|Ft

]

6 2E
[∫ T

t
Tr((Π m̃

− Π ñ)(s−)

× (−Gm̃(s,Π m̃, βm̃
Π , γ

m̃
Π )+ G ñ(s,Π ñ, β ñ

Π , γ
ñ
Π )))ds|Ft

]
6 2ϕ−1C−1 esssup

s,ω
|Π m̃ñ(t)|(esssup

s,ω
|Π m̃ñ(s)|2 + 2ε(T − t)).

Thus, as m̃ → ∞, βm̃
Π and γ m̃

Π converge to β∞

Π and γ∞

Π strongly in L2
F (0, T ;Sn)k and

l2F (0, T ;Sn)
l
, respectively. �

4. Singular case

In the previous section, we have shown the closeness property of the solution of the multi-
dimensional regular BSRDE (1.1). This property implies that anFt -adapted unique limit solution
(Π , βΠ , γΠ ), which is the limit as m̃ → ∞ in the BSRDE (3.6), holds under H1–H5. Since our
consideration in this section is the one-dimensional regular and singular BSRDE (1.1), here we
assume that n = 1 in (1.1) and the corresponding controlled process has the same dimensions.
We will prove the existence and uniqueness for this case by using the closeness property.

We consider a stochastic control problem P1 for the singular case, i.e. N = 0, assuming

M(T ) > ε (4.1)
k∑

i=1

(Di (s))∗ Di (s)+

l∑
i=1

∞∑
j=1

(F i j (s))∗F i j (s) > ε Im×m ∀s ∈ [t, T ], (4.2)
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where ε is a positive constant. Before considering the singular case, let us introduce the
approximate regular control problem;

P3
α : Vα(t) := esssup

u∈L2
F (t,T ;Rm )

Jα(t, T ; u),

where

Jα(t, T ; u) = J (t, T ; u)+
1
α

E
[∫ T

t
|u(s)|2ds|Ft

]
,

J (t, T ; u) is (1.3) with the BSRDE (1.1) and Jα(t, T ; u) is the cost function with the following
approximate regular BSRDE Π α(s):

dΠ α(t) = −Gα(t,Π α, βαΠ α , γ
α
Π α )dt

+

k∑
i=1

βαΠ α
i
(t)dwi (t)+

l∑
i=1

∞∑
j=1

γ αΠ α
i j
(t)dH i j (t)

Π α(T ) = M(T ),

(4.3)

where

Gα(t,Π α, βαΠ α , γ
α
Π α ) =

(
Π α(t−)A + A∗Π α(t−)+ M

+

k∑
i=1

βαΠ α
i C i

+

l∑
i=1

∞∑
j=1

γ αΠ α
i E i j

+

k∑
i=1

(C i )∗(βαΠ α
i
+ Π α(t−)C i )

+

l∑
i=1

∞∑
j=1

(E i j )∗(γ αΠ α
i j

+ Π α(t−)E i j )

)
(t)− Fα(t,Π α, βαΠ α , γ

α
Π α )

and

Fα(t,Π α, βαΠ α , γ
α
Π α ) = (Lα)∗(K α)−1Lα

Lα :=

(
d∑

i=1

(Bi )∗Π α(t−)+

k∑
i=1

(Di )∗(βαΠ α
i
+ Π α(t−)(C i ))

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ αΠ α
i j

+ Π α(t−)E i j )

)
(t)

K α
:=

(
1
α

Im×m + N +

k∑
i=1

(Di )∗Π α(t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π α(t−)F i j

)
(t).

Our objective, here, is to prove the following theorem.

Theorem 4.1 (Singular Case). Assume that N = 0, M(t) > 0, and (4.1) and (4.2) hold. Then
the BSRDE (4.3) with N = 0, α → ∞ has a unique Ft -adapted solution with

Π ∈ L∞

F (0, T ; R+) ∩ L∞(Ω ,FT ,P; C([0, T ]; R+)),

βΠ ∈ L2
F (0, T ; R)k,

γΠ ∈ l2F (0, T ; R)l .
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If the approximate regular BSRDE (4.3) for each α has anFt -adapted unique solution for each
α, there exists a unique solution to the BSRDE for the singular case by Theorem 3.1. Therefore,
Theorem 4.1 holds when the one-dimensional regular BSRDE has anFt -adapted unique solution
in required spaces of H5.

In Kohlmann and Tang [9], the one-dimensional regular BSRDE is studied. They use a
technique developed by Kobylanski [7] to prove the existence of the solution to the regular
BSRDE. Here, instead of the technique of [7], we use Theorem 3.1 to obtain the unique solution
of the one-dimensional regular BSRDE with Lévy processes. It goes without saying that we
can obtain the same result, i.e. the uniform convergence of Π m̃ , the strong convergence of βm̃

Π

and that of γ m̃
Π for the one-dimensional regular BSRDE, independently of whether we use the

approach based on Kobylanski or Theorem 3.1. However we will find that the closeness property
is useful for proving existence of the solution to the one-dimensional BSRDE.

To this end, define an approximating BSRDE as
dΠ p(t) = −G p(t,Π p, β

p
Π , γ

p
Π )dt +

k∑
i=1

β
p
Π

i
dwi (t)+

l∑
i=1

∞∑
j=1

γ
p
Π

i j
dH i j (t)

Π p(T ) = M(T )+
1

p + 1
,

(4.4)

for p ∈ N where

G p(t,Π , βΠ , γΠ ) =

{(
2A +

k∑
i=1

(C i )2 +

l∑
i=1

∞∑
j=1

(E i j )2

)
Π (t−)+ M

+ 2
k∑

i=1

C iβ i
Π + 2

l∑
i=1

∞∑
j=1

E i jγ
i j
Π

}
(t)+ Fp(t,Π , βΠ , γΠ )

=:

(
aΠ (t−)+ M +

k∑
i=1

ciβ i
Π +

l∑
i=1

∞∑
j=1

ei jγ
i j
Π

)
(t)

+ Fp(t,Π , βΠ , γΠ ),

and

Fp(t,Π , βΠ , γΠ ) := sup
Π̃∈R+, ˜βΠ ∈(R)k , ˜γΠ ∈(R)l

[
− F(t, Π̃ , ˜βΠ , ˜γΠ )− p|Π − Π̃ |(t−)

− p

∣∣∣∣∣ k∑
i=1

(β i
Π −

˜β i
Π )

∣∣∣∣∣ (t)− p

∣∣∣∣∣ l∑
i=1

∞∑
j=1

(γ
i j
Π −

˜
γ

i j
Π )

∣∣∣∣∣ (t)
]
.

Then, the following four assertions with respect to the BSRDE (4.4) with Fp are obtained:

(i) quadratic growth in (Π , βΠ , γΠ ),
(ii) monotonicity in p,

(iii) the uniform Lipschitz property and
(iv) the strong convergences of (Π p, β

p
Π , γ

p
Π ).

These assertions can be obtained by adaptation of the proof of Lepeltier and San Martin [15].
By (ii) monotonicity, Fp(t,Π , βΠ , γΠ ) has the relation

0 = F0 > F1 > · · · > Fp > Fp+1 > · · · > F, Fp ↓ F. (4.5)
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By the comparison theorem of Lemma 2.2 and (4.5), the solution of BSRDE (4.4) has the
relation

Π0 > Π1 > · · · > Πp > Πp+1 > · · · , a.s.a.e. (4.6)

Remark 4.1. In Kohlmann and Tang [9], existence of the solution to the one-dimensional regular
BSRDE is proved after they show the positivity of Π p for each p ∈ N. Instead of using the
procedure in Kohlmann and Tang [9] we prove the existence of the solution to the BSRDE with
Lévy processes (4.4) by using Theorem 3.1. As to Fp(t,Π , βΠ , γΠ ), when the positivity of
−Fp(t,Π , βΠ , γΠ ) for each p is satisfied, Theorem 3.1 holds.

Proposition 4.1 (Regular Case). Assume that n = 1 in (1.1) and that M(t) > 0, t ∈ [0, T ],
and N (t) > ε Im×m for some positive constant ε. Then, the one-dimensional BSRDE (1.1) has a
unique Ft -adapted solution (Π , βΠ , γΠ ) with

Π ∈ L∞

F (0, T ; R+) ∩ L∞(Ω ,FT ,P; C([0, T ]; R+)),

βΠ ∈ L2
F (0, T ; R)k,

γΠ ∈ l2F (0, T ; R)l .

Proof. We prove the existence and uniqueness of the solution to the one-dimensional regular
BSRDE with Lévy processes (1.1).

(i) Existence. Consider an approximating BSRDE (4.4). Since the approximating
BSDE (4.4) with above assertions has an Ft -adapted unique solution for each p
by Lemma 2.1 in Section 2 obtained by Bahlali [1], we have the limit solution
by Theorem 3.1 when (Π p, β

p
Π , γ

p
Π ) is the unique solution in (L∞

F (0, T ; R+) ∩

L∞(Ω ,FT ,P; C([0, T ]; R+)),L2
F (0, T ; R)k, l2F (0, T ; R)l). We can obtain that (Π p, β

p
Π , γ

p
Π )

is the unique solution on the Banach space by Lemma 2.1, and therefore (β p
Π , γ

p
Π ) is in

(L2
F (0, T ; R)k, l2F (0, T ; R)l). Furthermore we already know that Π p(t) is in L∞

F (0, T ; R+) ∩

L∞(Ω ,FT ,P; C([0, T ]; R+)) by Lemma 3.3.
(ii) Uniqueness. Consider the one-dimensional regular BSRDE with Lévy processes

(1.1). Assume that (Π , βΠ , γΠ ) and (Π̃ , β̃Π , γ̃Π ) are two Ft -adapted solution triplets
in (L∞

F (0, T ; R+) ∩ L∞(Ω ,FT ,P; C([0, T ]; R+)),L2
F (0, T ; R)k, l2F (0, T ; R)l), respectively.

Then, we have

dδΠ (t) = −

(
aδΠ (t−)+

k∑
i=1

ciδβ i
Π +

l∑
i=1

∞∑
j=1

ei jδγ
i j
Π + δF

)
(t)dt

+

k∑
i=1

δβΠ
i (t)dwi (t)+

l∑
i=1

∞∑
j=1

δγΠ
i j (t)dH i j (t)

dδΠ (T ) = 0,

where a(t), ci (t) and ei j (t) are the same as in (4.4), δΠ := Π − Π̃ , δβ i
Π := β i

Π −
˜β i
Π ,

δγΠ
i j

:= γΠ
i j

− γ̃
i j

Π̃
and δF := F(t,Π , βΠ , γΠ )− F(t, Π̃ , β̃Π̃ , γ̃Π̃ ).

By Proposition 3.1, x(s)∗Π (s)x(s) = x(s)∗Π̃ (s)x(s) (i.e. Π (s) = Π̃ (s)) a.s. for all
(s, x) ∈ [0, T ] × R.
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Applying the Itô–Lévy formula to |δΠ (t)|2 with δΠ (s) = 0 ∀s ∈ [0, T ], we have

E|δΠ (t)|2 + E
∫ T

0

(
k∑

i=1

|δβΠ
i
|
2
+

l∑
i=1

∞∑
j=1

|δγΠ
i j

|
2

)
(s)ds

= 2E
∫ T

0
|δΠ (s−)|

(
aδΠ (s−)+

k∑
i=1

ciδβΠ
i
+

l∑
i=1

∞∑
j=1

ei jδγΠ
i j

+ δF

)
(s)ds

= 0.

Hence βΠ = β̃Π̃ and γΠ = γ̃Π̃ . �

Now we prove the existence and uniqueness for the one-dimensional singular case.

Proof (Theorem 4.1). Consider the BSRDE (4.3) with N = 0. Assume (4.1) and (4.2). By
Proposition 4.1, there exists an Ft -adapted unique solution (Π α, βαΠ , γ

α
Π ) for each α. Therefore

existence of the solution to the BSRDE (4.3) is proved by Theorem 3.1. Uniqueness of the
solution can be obtained by the same procedure as in Proposition 4.1. �

5. Application to an elaborated LQR problem

5.1. Non-homogeneous stochastic optimal control

Consider the following cost function:

J (0, T ; u) = E
[∫ T

0
(x∗Mx + u∗Nu + 2φ∗x + 2ψ∗u)(t)dt

+ x(T )∗M(T )x(T )+ 2φ(T )∗x(T )

]
, (5.1)

and let the controlled process x(t) be a solution of the stochastic process
dx(t) =

(
Ax +

d∑
i=1

Bi u + f

)
(t)dt +

k∑
i=1

(C i x + Di u + Φi )(t)dwi (t)

+

l∑
i=1

∞∑
j=1

(E i j (t)x(t−)+ F i j (t)u(t)+ Ψ i j (t))dH i j (t)

x(0) = x0.

(5.2)

We first introduce the BSRDE (1.1) and the following BSDE:dr(t) = Ξ (t)dt +

k∑
i=1

β i
r (t)dw

i (t)+

l∑
i=1

∞∑
j=1

γ
i j
r (t)dH i j (t)

r(T ) = φ(T ),

(5.3)

where

Ξ (t) = −

[
φ + A∗r(t−)+ Π (t−) f +

k∑
i=1

β i
Π Φi

+

l∑
i=1

∞∑
j=1

γ
i j
Π Ψ i j
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+

k∑
i=1

(C i )∗(β i
r + Π (t−)Φi )+

l∑
i=1

∞∑
j=1

(E i j )∗(γ
i j
r + Π (t−)Ψ i j )

−

(
Π (t−)

d∑
i=1

Bi
+

k∑
i=1

(β i
Π + (C i )∗Π (t−))Di

+

l∑
i=1

∞∑
j=1

(γ
i j
Π + (E i j )∗Π (t−))F i j

)

×

(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)F i j

)−1

×

(
ψ +

d∑
i=1

(Bi )∗r(t−)+

k∑
i=1

(Di )∗(β i
r + Π (t−)Φi (t))

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
r + Π (t−)Ψ i j )

)]
(t).

Theorem 5.1. If Eqs. (1.1) and (5.3) admit the unique solutions (Π , βΠ , γΠ ) and (r, βr , γr ),
then the optimal control problem has an optimal feedback control in L2

F (0, T ; Rm):

û(t) = −

(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)F i j

)−1

(t)

×

{(
d∑

i=1

(Bi )∗Π (t−)+

k∑
i=1

(Di )∗(β i
Π + Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
Π + Π (t−)E i j )

)
x̂(t−)

+

(
ψ +

d∑
i=1

(Bi )∗r(t−)+

k∑
i=1

(Di )∗(β i
r + Π (t−)Φi )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
r + Π (t−)Ψ i )

)}
(t). (5.4)

Proof. Having used completion of squares technique in order to obtain the optimal control of
Proposition 3.1 in Section 3, we consider here the non-homogeneous case by means of the
procedure in [3] with some modification. Though this procedure takes more time than the
completion of squares technique to obtain an optimal control, the BSRDE (1.1) and the BSDE
(5.3) can be derived explicitly.

Let the value function be (5.1) and the controlled process be (5.2). We denote two control
processes as follows:

v(t) := Λ(t)x(t)+ λ(t)+ µ(t), (5.5)

u(t) := Λ(t)x(t)+ λ(t), (5.6)
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where v, u ∈ Rn , Λ ∈ Rn×n and µ ∈ Rn . Denote the controlled processes with these control
processes by x and y which are the solutions of the following stochastic differential equation:

dx(t) =

{(
A +

d∑
i=1

BiΛ

)
x +

d∑
i=1

Bi (λ+ µ)+ f

}
(t)dt

+

k∑
i=1

{
(C i

+ DiΛ)x + Di (λ+ µ)+ Φi
}
(t)dwi (t)

+

l∑
i=1

∞∑
j=1

{
(E i j

+ F i jΛ(t))x(t−)+ F i j (λ(t)+ µ(t))+ Ψ i
}
(t)dH i j (t)

x(0) = x,

dy(t) =

{(
A +

d∑
i=1

BiΛ

)
y +

d∑
i=1

Biλ+ f

}
(t)dt

+

k∑
i=1

{
(C i

+ DiΛ)y + Diλ+ Φi
}
(t)dwi (t)

+

l∑
i=1

∞∑
j=1

{
(E i j

+ F i jΛ(t))y(t−)+ F i jλ(t)+ Ψ i
}
(t)dH i j (t)

y(0) = x .

Defining x̄(t) := x(t)− y(t), then

dx̄(t) =

{(
A +

d∑
i=1

BiΛ

)
x̄ +

d∑
i=1

Biµ

}
(t)dt

+

k∑
i=1

{
(C i

+ DiΛ)x̄ + Diµ
}
(t)dwi (t)

+

l∑
i=1

∞∑
j=1

{
(E i j

+ F i jΛ(t))x̄(t−)+ F i jµ(t)
}
(t)dH i j (t)

x̄(0) = 0.

Define a stochastic process p(t) := Π (t)y(t) + r(t) where p(t) ∈ Rn,Π (t) ∈ Rn×n and
r(t) ∈ Rn . Assume that Π (t) and r(t) are the solutions of the following stochastic differential
equations:

dΠ (t) = Π̇ (t)dt +

k∑
i=1

β i
Π (t)dw

i (t)+

l∑
i=1

∞∑
j=1

γ
i j
Π dH i j (t), (5.7)

dr(t) = ṙ(t)dt +

k∑
i=1

β i
r (t)dw

i (t)+

l∑
i=1

∞∑
j=1

γ
i j
r dH i j (t), (5.8)

where Π̇ and ṙ are the time derivatives of Π and r , respectively. It should be noted that these
equations correspond to the BSRDE (1.1) and the BSDE (5.3), respectively.

Substituting (5.5) and (5.6) into (5.1), we have

J (0, T ; v) = J (0, T ; u)+ E
∫ T

0
((x̄)∗Mx + (Λx̄ + µ)∗N (Λx̄ + µ))(s)ds

+ Ex̄(T )∗M(T )x̄(T )+ term,
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since E[(x̄(T ))∗Π (T )y(T )+ (x̄(T ))∗φ(T )] = E[(x̄(T ))∗ p(T )], and

term := 2E
[∫ T

0

{
(x̄)∗My + (Λx̄ + µ)∗N (s)(Λy + λ)+ φ∗ x̄ψ∗(Λx̄ + µ)

}
(s)ds

]
+ 2E[(x̄(T ))∗M(T )y(T )+ (x̄(T ))∗φ(T )]

= 2E
[∫ T

0

{
(x̄)∗My + (Λx̄ + µ)∗N (Λy + λ)

+ φ∗ x̄ψ∗(Λx̄ + µ)
}
(s)ds

]
+ 2E

[∫ T

0
d((x̄(s))∗ p(s))

]
,

and

d((x̄(t))∗ p(t)) =

[
(x̄)∗

(
A∗

+

d∑
i=1

Λ∗(Bi )∗

)
p(t−)+

d∑
i=1

µ∗(Bi )∗ p(t−)

+ x̄∗(Π̇ y(t−)+ ṙ)+ x̄∗Π (t−)

{(
A +

d∑
i=1

BiΛ

)
y +

d∑
i=1

Biλ+ f

}

+ (x̄(t−))∗
k∑

i=1

β i
Π {(C i

+ DiΛ)y + Diλ+ Φi j
}

+ (x̄(t−))∗
l∑

i=1

∞∑
j=1

γ
i j
Π {(E i j

+ F i jΛ)y(t−)+ F i jλ+ Ψ i j
}

+

k∑
i=1

[x̄∗((C i )∗ + Λ∗(Di )∗)(β i
Π y(t−)+ β i

r )

+µ∗(Di )∗(β i
Π y(t−)+ β i

r )+ x̄∗((C i )∗ + Λ∗(Di )∗)Π (t−)

× {(C i
+ DiΛ)y + Diλ+ Φi

}

+µ∗(Di )Π (t−){(C i
+ DiΛ)y + Diλ+ Φi

}]

+

l∑
i=1

∞∑
j=1

[(x̄(t−))∗((E i j )∗ + Λ∗(F i j )∗)(γ
i j
Π y(t−)+ γ

i j
r )

+µ∗(F i j )∗(γ
i j
Π y(t−)+ γ

i j
r )+ (x̄(t−))∗((E i j )∗ + Λ∗(F i j )∗)Π (t−)

× {((E i j )∗ + (F i j )Λ)y(t−)+ F i jλ+ Φi j
}

+ µ∗F i jΠ (t−){(E i j
+ F i jΛ)y(t−)+ F i jλ+ Ψ i j

}]

]
(t)dt

+

k∑
i=1

{· · ·}dwi (t)+

l∑
i=1

∞∑
j=1

{· · ·}dH i j (t).

With term = 0, the cost function J (0, T ; v) should be minimized. Therefore, to satisfy that
term = 0, the drift term of term is manipulated as follows:

x̄(t−)∗{(term1)y(t−)+ (term2)} + µ(t)∗{(term3)y(t−)+ term4},
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where

term1 =

{
M + Λ∗NΛ +

(
A∗

+ Λ∗

d∑
i=1

(Bi )∗

)
Π (t−)

+ Π̇ + Π (t−)

(
A +

d∑
i=1

BiΛ

)
+

k∑
i=1

β i (C i
+ DiΛ)

+

k∑
i=1

((C i )∗ + Λ∗(Di )∗){β i
Π + Π (t−)(C i

+ DiΛ)}

+

l∑
i=1

∞∑
j=1

γ
i j
Π (E

i j
+ F i jΛ)+

l∑
i=1

∞∑
j=1

((E i j )∗ + Λ∗(F i j )∗)

× {γ
i j
Π + Π (t−)(E i j

+ F i jΛ)}

}
(t) = 0, (5.9)

term2 =

{
Λ∗Nλ+ φ + Λ∗ψ +

(
A∗

+ Λ∗

d∑
i=1

(Bi )∗

)
r(t−)+ ṙ

+Π (t−)

(
d∑

i=1

Biλ+ f

)
+

k∑
i=1

β i (Diλ+ Φi )+

l∑
i=1

∞∑
j=1

γ
i j
Π (F

i jλ+ Ψ i j )

+

k∑
i=1

((C i )∗ + Λ∗(Di )∗){β i
r + Π (t−)(Diλ+ Φi )}

+

l∑
i=1

∞∑
j=1

((E i j )∗ + Λ∗(F i j )∗)× {γ
i j
r + Π (t−)(F i jλ+ Ψ i j )}

}
(t) = 0,(5.10)

term3 =

{
NΛ +

d∑
i=1

(Bi )∗Π (t−)+

k∑
i=1

(Di )∗{β i
Π + Π (t−)(C i

+ DiΛ)}

+

l∑
i=1

∞∑
j=1

(F i j )∗{γ
i j
Π + Π (t−)(E i j

+ F i jΛ)}

}
(t) = 0, (5.11)

term4 =

{
Nλ+ ψ +

d∑
i=1

(Bi )∗r(t−)+

k∑
i=1

(Di )∗{β i
r + Π (t−)(Diλ+ Φi )}

+

l∑
i=1

∞∑
j=1

(F i j )∗{γ
i j
r + Π (t−)(F i jλ+ Ψ i j )}

}
(t) = 0. (5.12)

From (5.11) and (5.12), we have

Λ(t) = −

(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)F i j

)−1

(t)

×

(
d∑

i=1

(Bi )∗Π (t−)+

k∑
i=1

(Di )∗(β i
r + Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
Π + Π (t−)E i j )

)
(t),



K.-i. Mitsui, Y. Tabata / Stochastic Processes and their Applications 118 (2008) 120–152 145

λ(t) = −

(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)E i j

)−1

(t)

×

(
ψ +

d∑
i=1

(Bi )∗r(t−)+

k∑
i=1

(Di )∗(β i
r + Π (t−)Φi )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
r + Π (t−)Ψ i j )

)
(t).

Substituting Λ(t)/λ(t) into (5.9) and (5.10), Π̇ (t)/ṙ(t) can be derived. From (5.7) and (5.8)
with Π̇ (t) and ṙ(t), the BSRDE (5.7) and the associated BSDE (5.8) identify with (1.1) and (5.3),
respectively. Thus, assuming that the BSRDE (1.1) and the associated BSDE (5.3) hold, then we
have the optimal control (5.4) on substituting Λ(t) and λ(t) into (5.6). �

Now we consider the one-dimensional non-homogeneous case with partial observation. A
partial observation problem is that of finding an optimal control for which the controller has
less information than the full information Ft . In particular, the partial observation problem is
useful for constructing an economic model in which there are information gaps among economic
agents, e.g. Øksendal [18], Kohlmann and Xiong [8].

Assume that the control process u is Ht -adapted where

Ht ⊆ Ft for all t ∈ [0, T ],

and the admissible set for this control is denoted by UH = L2
H(t, T ; R).

Then we have the following theorem for the optimal feedback control for the partial
observation case.

Theorem 5.2. Consider the cost function (5.1) and the controlled process (5.2) with n = 1.
Assume that H1–H5 hold. If Eqs. (1.1) and (5.3) admit the unique solutions (Π , βΠ , γΠ ) and
(r, βr , γr ), then the optimal feedback control in UH for the partial observation case is given by

û(t) = −E

[(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)E i j

)
(t)|Ht

]−1

× E

[{(
d∑

i=1

BiΠ (t−)+

k∑
i=1

(Di )∗(β i
Π + Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
Π + Π (t−)E i j )

)
x̂(t−)

+

(
ψ +

d∑
i=1

(Bi )∗r(t−)+

k∑
i=1

(Di )∗(β i
r + Π (t−)Φi )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
r + Π (t−)Ψ i )

)}
(t)|Ht

]
. (5.13)

Proof. We can obtain the feedback control for the partial observation case by following the proof
of Theorem 3.1 in [6], which studies a linear–quadratic problem with jump diffusions including
the partial observation case.
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Since (1.1) and (5.3) admit unique solutions, the cost function (5.1) becomes

J (0, T ; u) > E
[∫ T

0
K (t)(u(t)+ K (t)−1 R(t))2dt + Π (0)x2

0 + 2r(0)x0

]
=

∫ T

0
Ẽ[(u(t)+ K (t)−1 R(t))2]dt + Π (0)x2

0 + 2r(0)x0

=

∫ T

0
Ẽ[Ẽ[(u(t)+ K (t)−1 R(t))2|Ht ]]dt + Π (0)x2

0 + 2r(0)x0,

where

K (t) =

(
N +

k∑
i=1

(Di )∗Π (t−)Di
+

l∑
i=1

∞∑
j=1

(F i j )∗Π (t−)E i j

)
(t)

R(t) =

{(
d∑

i=1

BiΠ (t−)+

k∑
i=1

(Di )∗(β i
Π + Π (t−)C i )

+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
Π + Π (t−)E i j )

)
x̂(t−)+

(
ψ +

d∑
i=1

(Bi )∗r(t−)

+

k∑
i=1

(Di )∗(β i
r + Π (t−)Φi )+

l∑
i=1

∞∑
j=1

(F i j )∗(γ
i j
r + Π (t−)Ψ i )

)}
(t)

and

dP̃
dP

∣∣∣∣∣
Ft

=
1

K (t)
.

When û(t) = −Ẽ[K (t)−1 R(t)|Ht ], we can minimize the value of Ẽ[(K (t)(u(t)+ R(t)))2|Ht ].
Therefore, by the Kallianpur–Striebel formula (e.g. Lemma 4.1.2 of [3])

û(t) = −Ẽ[K (t)−1 R(t)|Ht ] = −
E[R(t)|Ht ]

E[K (t)|Ht ]
.

Thus we have the optimal feedback for the partial observation case (5.13). �

5.2. Application to a financial problem

An application of the stochastic control (BSDE approach) to a financial problem pricing a
contingent claim, which is a target random variable at maturity, is studied in Yong and Zhou [25],
Kohlmann and Zhou [13] and so on. The approach in Kohlmann and Zhou [13] is to find an
optimal control of the following stochastic control problem:

V (t, û) = min
u

J (y, u) = min
u

1
2

E[|y(T )|2],

where y(t) = x(t) − E[ξ |Ft ] is the controlled process of the difference between the portfolio
process x(t) and the contingent claim ξ taking expectation with the martingale representation.

The optimal control û ∈ Rm for this problem is

û j (t) = −P(t)−1 B j (t)
∗
[P(t)y(t)∗ + φ(t)] − P(t)−1β j (t)+ z j (t), j = 1, . . . ,m,
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where (P(t), φ(t), β(t)) ∈ C([0, T ]; Ŝn
+) × L2

F (0, T ; Rn) × L2
F (0, T ; Rn×m) is a solution

of the Stochastic Riccati Equation (SRE) and the associated BSDE, which are subclasses of
BSRDE (1.1) and (5.3), respectively. We rewrite this optimal control with the approximate price
p(t) := −P−1(t)φ(t),

û j (t) = −P(t)−1 B j (t)
∗ P(t)[x(t)∗ − p(t)] + q j (t), j = 1, . . . ,m,

where (p(t), q(t)) is a solution pair for the following BSDE:dp(t) = −

[
A(t)p(t)−

m∑
j=1

B j (t)q j (t)+ f (t)

]
dt +

m∑
j=1

q j (t)dW j (t),

p(T ) = ξ.

The advantage of this BSDE approach is that the option price can be obtained by the solution
of the BSDE p(t) with the optimal hedging strategy û. Furthermore, from the financial point
of view (in the Black–Scholes model), the optimal hedging strategy consists of two components:
The replicating portfolio for the claim ξ and the Merton portfolio for the terminal utility function
u(x) = x2 (see Remark 5.2 in Kohlmann and Zhou [13]).

Our objective is to implement the BSDE approach with Lévy processes. Let x(t) ∈ R be a
solution of the stochastic differential equation (5.2). We need the martingale representation and
the unique solution of the BSDE for Lévy processes. Bahlali et al. [1] prove the representation
theorem and unique solution for the more general Teugel’s martingales. The martingale
representation for Teugel’s martingales is based on the chaos decomposition and is obtained in
Nualart and Schoutens [17]. Moreover, Løkka [14] similarly obtained the Clark–Ocone formula
by means of the chaos expansion (decomposition). Further, the unique solution for Teugel’s
martingales is proved in Nualart and Schoutens [16]. More generally, the unique solution for
the BSDE decomposed explicitly into Brownian motion and Teugel’s martingales is obtained in
Bahlali et al. [1].

For our purpose, we introduce a financial market with one risk-free asset P0(t) and m risky
assets P i (t), i = 1, . . . ,m, whose prices at time t ∈ [0, T ] are given by the following SDEs:

dP0(t) = P0(t)r f (t)dt

dP i (t) = P i (t−)µi (t)dt +

m∑
j=1

P i (t−)σ i j (t)dw j
+

m∑
j=1

∞∑
k=1

P i (t−)γ i jk(t)dH jk(t),

where r f (t) is the risk-free rate, µi (t) is the rate of return on i-th asset and w j (t) and H jk(t)
are one-dimensional Wiener process and Teugel’s martingale on the filtered probability space
(Ω ,F, {Ft }t>0,P), and σ i j (t), γ i jk(t) are in R. Assume that there exists a positive constant ε
such that

m∑
j=1

σ j (t)σ j (t)∗ +

m∑
j=1

∞∑
k=1

γ jk(t)γ jk(t)∗ =: σ(t)σ (t)∗ +

∞∑
k=1

γ k(t)γ k(t)∗ > ε Im×m,

where σ(t), γ j (t) ∈ Rm×m . Let ξ be a random variable in L2(Ω ,FT ,P) and have decomposition
by the martingale representation theorem in Bahlali et al. [1]. Let N i (t) be i-th asset shares at t .
Then by using P i (t), i = 0, 1, . . . ,m, the portfolio process x(t) is given by

dx(t) =

m∑
i=0

N i (t)dP i (t)
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=

{
(r f )x +

m∑
i=1

(µi
− r f )N i P i (t−)

}
(t)dt

+

m∑
i=1

m∑
j=1

(σ i j N i P i (t−))(t)dw j (t)

+

m∑
i=1

m∑
j=1

∞∑
k=1

(γ i jk N i P i (t−))(t)dH jk(t)

=: ((r f )x + µ̃∗π)(t)dt +

m∑
j=1

((σ j )∗π)(t)dw j (t)

+

m∑
j=1

∞∑
k=1

γ jk(t)∗π(t)dH jk(t), (5.14)

where µ̃(t) = (µ1(t) − r f (t), . . . , µm(t) − r f (t))∗ and π(t) = (N 1(t)P1(t−), . . . , N m(t)Pm

(t−))∗.
Since the optimal control problem is to minimize the expected value of the difference between

x(T ) and ξ , the control problem is given by

P4
: V (0, û) := min

u∈L2
F (0,T ;Rm )

E|x(T )− ξ |2. (5.15)

P4 corresponds to the case where in the cost function (1.3), M(t) = 0, 0 6 t < T , M(T ) = 1
are assumed. We make the following assumption.

Assumption 1. Consider the controlled process (5.2). Assume that in (5.2), d = 1, k = m,
l = m, the coefficients are as follows:

A(t) = r f (t), B(t) = µ̃(t)∗, f (t) = 0,

C i (t) = 0, Di (t) = σ i (t)∗, Φi (t) = 0,

E i j (t) = 0, F i j (t) = γ i j (t)∗, Ψ i j (t) = 0,

u(t) = π(t),

and N (t) = 0 for all t , M(t) = 0 for 0 6 t < T , M(T ) = 1, where N (t),M(t) are in the cost
function.

Under Assumption 1, the BSRDE (1.1) and the associated BSDE (5.3) become

dΠ (t) = −(2Π (t−)r f (t)− F(t,Π , βΠ , γΠ ))dt

+

m∑
i=1

β i
Π (t)dw

i (t)+

m∑
i=1

∞∑
j=1

γ
i j
Π (t)dH i j (t), (5.16)

where

F(t,Π , βΠ , γΠ ) =

(
Π (t−)µ̃∗

+

m∑
i=1

β i
Π σ

i
+

m∑
i=1

∞∑
j=1

γ
i j
Π γ

i j

)
(t)
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×

(
m∑

i=1

(σ i )∗σ i
+

m∑
i=1

∞∑
j=1

(γ i j )∗γ i j

)−1

(t)

×

(
µ̃Π (t−)+

m∑
i=1

(σ i )∗β i
Π +

m∑
i=1

∞∑
j=1

(γ i j )∗γ
i j
Π

)
(t),

and

dr(t) = −

[
φ + (r f )r(t−)−

(
Π (t−)µ̃+

m∑
i=1

β i
Π (σ

i )∗ +

m∑
i=1

∞∑
j=1

γ
i j
Π (γ

i j )∗

)

×

(
m∑

i=1

σ iΠ (t−)(σ i )∗ +

m∑
i=1

∞∑
j=1

γ i jΠ (t−)(γ i j )∗

)−1

×

(
µ̃r(t−)+

m∑
i=1

σ iβ i
r +

m∑
i=1

∞∑
j=1

γ i jγ
i j
r

)]
(t)dt

+

m∑
i=1

β i
r (t)dw

i (t)+

m∑
i=1

∞∑
j=1

γ
i j
r (t)dH i j (t). (5.17)

Theorem 5.3. Let us consider a financial market as mentioned. Let us make Assumption 1,
i.e. the controlled process (the portfolio process) is (5.14), the BSRDE is (5.16) and the associated
BSDE is (5.17). Then the optimal control is given by

π̂(t) = −

(
σσ ∗

+

∞∑
j=1

γ j (γ j )∗

)−1

(t)×

{(
µ̃+

m∑
i=1

σ iβ i
Π +

m∑
i=1

∞∑
j=1

γ i jγ
i j
Π

)
x̂(t−)

+ Π (t−)−1

(
µ̃r(t−)+

m∑
i=1

σ iβ i
r +

m∑
i=1

∞∑
j=1

γ i jγ
i j
r

)}
(t), (5.18)

and the approximate price process p(t) is given by

dp(t) = −

{
Π −2(r f )(2Π (t−)r(t−)+ Π (t−)−1)

−Π (t−)−1(r(t−)(r f )+ φ)− Π (t)−2

(
m∑

i=1

β i
Π β

i
r +

m∑
i=1

∞∑
j=1

γ
i j
Π γ

i j
r

)

−ϑ1ϑ
−1
2

(
(Π −2(r f )− Π (t−)−2r(t−))µ̃

+ Π (t−)−1
m∑

i=1

σ iθ i
1 + Π (t−)−1

m∑
i=1

∞∑
j=1

γ i jθ
i j
2

)}
(t)dt

+

m∑
i=1

θ1(t)
i dwi (t)+

m∑
i=1

∞∑
j=1

θ2(t)
i j dH i j (t) (5.19)

p(T ) = ξ,
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where

ϑ1(t) = Π (t−)µ̃(t)+

m∑
i=1

β i
Π (t)σ

i (t)∗ +

m∑
i=1

∞∑
j=1

γ
i j
Π (t)γ

i j (t)∗,

ϑ2(t) =

m∑
i=1

σ i (t)σ i (t)∗ +

m∑
i=1

∞∑
j=1

γ i j (t)γ i j (t)∗,

θ i
1(t) = Π (t)−2β i

Π (t)− Π (t−)−1β i
r (t),

θ
i j
2 (t) = Π (t)−2γ

i j
Π (t)− Π (t−)−1γ

i j
r (t).

Proof. Since this control problem corresponds to the singular case, (Π , βΠ , γΠ ) follows a
unique triplet of the Ft -adapted solution from Theorem 4.1. By Theorem 5.1, an optimal
feedback control of this control problem is given by (5.18).

The approximate price p(t) is −Π (t)−1r(t). Therefore, the dynamics of p(t) can be written
as

dp(t) = Π (t)−2r(t−)dΠ (t)− Π (t−)−1dr(t)+ Π (t)−2d[Π , r ](t).

Thus by substituting (5.16) and (5.17) into this equation, the approximate price becomes (5.19).
�

Remark 5.1. The optimal control û(t) (5.18) consists of two hedging portfolios. To see this
relationship, let us use the decomposition π̂ =: π0 + π1 where

π0 = −

(
σσ ∗

+

∞∑
j=1

γ j (γ j )∗

)−1

(t)

×

(
µ̃+

m∑
i=1

σ iβ i
Π +

m∑
i=1

∞∑
j=1

γ i jγ
i j
Π

)
(t)(x̂ − p)(t−)

π1 = −

(
σσ ∗

+

∞∑
j=1

γ j (γ j )∗

)−1

(t)Π (t−)−1

×

{
m∑

i=1

σ i (β i
Π − β i

rr(t−))+

m∑
i=1

∞∑
j=1

γ i j (γ
i j
Π − γ

i j
r r(t−))

}
(t).

As we follow the interpretation of these hedging portfolios in Kohlmann and Tang [11],
Kohlmann and Tang [9], π1 is a generalized Merton type portfolio and π0 is the perfect hedging
portfolio for the contingent claim ξ . Each portfolio in our case takes jump risks into account.

Finally, we give the optimal control of the portfolio for the partial observation case. Let us
make assumptions in Theorem 5.3, provided that the control process u is Ht -adapted. Then
the BSRDE for the singular case with n = 1 admits the unique solution by Theorem 4.1. By
Theorem 5.2, we have the optimal feedback control for the partial observation case:

π̂(t) = −E

[(
σσ ∗

+

∞∑
j=1

γ j (γ j )∗

)
(t)

∣∣∣∣∣Ht

]−1



K.-i. Mitsui, Y. Tabata / Stochastic Processes and their Applications 118 (2008) 120–152 151

× E

[{(
µ̃+

m∑
i=1

σ iβ i
Π +

m∑
i=1

∞∑
j=1

γ i jγ
i j
Π

)
x̂(t−)

+ Π (t−)−1

(
µ̃r(t−)+

m∑
i=1

σ iβ i
r +

m∑
i=1

∞∑
j=1

γ i jγ
i j
r

)}
(t)

∣∣∣∣∣Ht

]
.
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