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Abstract

We investigate the class of rings over which every finitely generated flat right module is projective.
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1. Introduction

A classical theorem of Bass states that every flat right module over &risigrojective
if and only if R is left perfect. It seems natural to askhen, more generally, every finitely
generated flat right module oveé is projective. We refer to rings with this property as
right S-rings, since the answer to this question was first given by Sakhajev. His results date
back to the 70s (cf. [15]). The first proof English, however, appeared only recently in
Facchini, Herbera, and Sakhajev [6].

Examples of righ8S-rings are right noetherian rings, since over such rings every finitely
generated right module is finitely presented and, over any ring, every finitely presented flat
module is projective. It follows from another result of Bass, that every semiperfect ring is
aright and leftS-ring.

A crucial theorem in [6] says that a rirjyis a rightS-ring if and only if every sequence
A1, Ap, ...0f n x n matrices over, suchthatd; ;1 A; = A; for everyi, eventually consists
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of idempotents generating the same principal right ideal in the matrixRingVe say the
sequenceonvergesn this case.

Using this characterization we refresh old and prove new results onSighgs. For
instance, the class of rigistrings is closed under Morita equivalence, under finite direct
products, and under subrings. It follows from the latter that every right Ore domain (in fact,
any right nonsingular ring of finite right Goldie dimension) is a right anddefing, and so
is any free associative algebra over a field. &héveless there are domains that are neither
right nor left S-rings. See Section 3 for all this.

From [6] it follows that we may assign to each sequedge A, ... as above a
projective right moduleP such that this sequence converges if and only ifs finitely
generated. Using this we prove that fyproperty can be lifted modulo any ideal contained
in the prime radical. As a consequence, every ring with right Krull dimension is a right and
left S-ring. Further, a triangular matrix ring is a rightS-ring if and only if each diagonal
component ofR is a rightS-ring. See Propositions 5.8 and 5.9.

The most powerful reduction from matriceselements is due to Vasconcelos [17]. We
reformulate his result as follows: a commutative riRdgs an S-ring if and only if every
sequencas, az, ... of elements (as opposed to matricesRolvith a; 1a; = a; converges
to an idempotent. Using this we prove, in Section 7, that every commutative ring of Goldie
dimension one is af-ring.

Endo [3] proved that a commutative ring is &rring if its localization with respect
to the set of nonzero divisors is a semilocalg, and verified the converse in some
particular cases. We give an example showing that this converse is not true in general,
see Example 7.8 below.

The main question that remains open is the symmetry of the concépting: is every
right S-ring a left S-ring? (Cf. Question 3.9 below.) We give an affirmative answer in the
cases of exchange rings, semihereditangsi and semilocal rings, see Propositions 4.9,
4.10, and 6.4, respectively.

We thank Dolors Herbera for acquainting us with [6], to which our work—though
largely independent—is tightly related. We found some overlap in the next, introductory,
section unavoidable but do believe that our paper may serve as useful complementary
reading. Last but not least, we owe thanks to the referee for his patience and a number
of useful comments improving the presentation of the paper.

2. a-sequences

Let R be an associative ring with 1. A sequeneé¢ = (a1, az, ...) of elements ofR is
said to be aight a-sequencd a;1a; = a; foreveryi =1, 2. ... Atrivial instance of this
is obtained whemr = ¢2 € R is an idempotent: thetg) = (e, e, .. .) is a righta-sequence.
In particular,(0) and(1) are righta-sequences.

We say that twai-sequencesa) and (b) areequivalentwritten (a) ~ (b), if a; = b;
for all but finitely many:.

We collect some basic propertieswfequences.

Lemma 2.1. Let (a) be a righta-sequence.
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(1) If g; is right invertible, theny;, = 1 for everyk > i; in particular (a) ~ (1).
(2) If 1 — q; is left invertible, theru, = O for everyk < i. In particular this is the case if
a; is nilpotent, ora; € JagR).

Proof. (1) Leta;p = 1 for someb € R. Multiplying a;+1a; = a; by b on the right, we
obtaina;+1 = 1. Thena;2a;11 = a;+1 Yields a;12 = 1, and the assertion follows by
induction.

(2) Writing a;a;—1 = a;—1 as (1 — a;)a;—1 = 0 we conclude that;;_1 = 0. Then
ai—2 = a;j—1a;—» = 0, and the first part of the assertion follows by induction. For the second
it remains to notice that i; is nilpotent, ora; € JadR), then 1— q; is invertible. O

Over domains or local rings-sequences have a very simple form.
Lemma 2.2. Let (a) # (0) be a righta-sequence over a ring.

(1) If R is adomain, thera) is of the form(0,...,0,r,1,1,...), whereO#r € R;
(2) If R is local, then{a) is of the form(0,...,0,r,s,1,1,...), where0 # r € R, and
Sr=r.

Clearly any such sequence) is a righta-sequence.

Proof. (1) Letr = a; be the first nonzero element @f). We rewrite the equality; +1a; =
a; as(l—a;11)a; =0, i.e.,(1—a;+1)r =0. Sincer is adomain, and # 0, it follows that
ai+1 = 1. Butthen by Lemma 2.1y = 1 for everyk > i.

(2) As above we havél — a;1)r = 0. If ;11 € JadR), then 1— ag; 41 is invertible,
hencer = 0, a contradiction. Otherwise, sin®ds local,a; +1 = s is invertible, andr =r.
By Lemma 2.1 we obtain;, = 1 foreveryk >i +1. O

Next we show that every riglat-sequence leads to ascending chain of right ideals of
the ring (whence the notation™”).

Lemma 2.3. Let (a) be a righta-sequence over a rin§. Then

(1) ara; = a; for everyk > i;

(2) a1R CazR C --- is an ascending chain of right ideals &f

(3) if ax € a; R for somek > i, i.e.,a; R = ax R, thena, is an idempotent

(4) if e € R is a central idempotent, thela)e = (a1e, aze, ...) is a righta-sequence.

Proof. (1) (cf. [6, proof of Lemma 3.1]) By induction ok — i > 1. The initial step
k—i=1,ie.,k=i+ 1, follows from the definition.
Now letk —i > 1. By induction hypothesiga;+1 = a;+1. Then

ara; = ax(aj11a;) = (ara;+1)a; = aj110; = a;.

(2) readily follows froma; +1a; = a;.
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(3) (cf. [6, Lemma 3.1]) Letyy = a; g for k > i and some € R. Multiplying by a; on
the right we obtaima; = a;ga;. Butaga; = a; by (1), hencey; = a;ga;. Thusa; g = ay is
an idempotent.

(4) Sincee is centralg;+1e - aje = a;y1a;e = aje. O

We say that a right-sequenceonvergegto the right ideaky R) if the corresponding
ascending chain of right ideals &f stabilizes ati R.
The following is obvious and well known.

Remark 2.4. Let e, f be idempotents of a ring. TheneR C fR if and only if fe =e.
ThereforeeR = fRifand only if fe =e andef = f.

Next we show that every convergent rightsequence eventually consists of idempo-
tents.

Lemma 2.5. A right a-sequencéa) converges if and only if there is an indesuch that
a; = e; is idempotent for every> k ande; - e; =¢; forall j >i > k.

Proof. Both directions follow from Remark 2.4. For the less obvious onegjdt =
ar+1R =---. By Lemma 2.3, every; =¢; is an idempotent. Now;e; =e; (j > i > k)
by Remark 2.4. O

More can be said in the commutative case: every convergsegjuence is eventually
constant.

Lemma 2.6. Let (a) be a convergent righti-sequence over a ringk all of whose
idempotents are central. Théa) ~ (¢) for some idempotenrte R.

Proof. By Lemma 2.5, there is & such that every; = ¢;, i > k, is an idempotent, and
eje; = e; for all j >i > k. Further, by the definition ofi-sequence¢je; = ¢;. Then
ej=ejej=¢cjej=¢j foralli,j >k. O

Now we dualize the notion of right-sequence. A sequen¢k) = (b1, b, ...) of ring
elements is said to beleft d-sequenc b; 1b; =b;+1,i=1,2,....

We collect the properties corresponding to those of Lemmas 2.1 and 2.3 in a lemma,
whose proof we omit, since it is dual to the ones above.

Lemma 2.7. Let (b) be a leftd-sequence over a ring.

(1) If b; is left invertible, therb;, = 1 for everyk < i.

(2) If 1— b; is right invertible, therb; = 0 for everyk > i; in particular (b) ~ (0). This is
the case, for instance, wheénis nilpotent orb; € JadR).

(3) bib; = by for everyk > i.

(4) Rb1 2D Rby 2 ---is adescending chain of left ideals &.

(5) If b; € Rby for k > i, i.e., Rb; = Rbg, thenb; is an idempotent.

(6) If e € R is a central idempotent, thed)e = (b1e, boe, .. .) is a leftd-sequence.
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In particular, any lefd-sequence leads todeescending chain déft ideals, and we can
dually defineconvergencef such a sequences by demanding that this chain stabilize. The
following lemma then corresponds to Lemmas 2.5 and 2.6, and we again omit the proof.
Lemma 2.8. Let (b) be a leftd-sequence over a ring.

(1) (b) converges if and only if there exists an indeguch thath; = f; is an idempotent
foreveryk > i,and f; f; = f; forall j >i > k.

(2) If (b) converges and all idempotents & are central, then(b) ~ (e) for some
idempotent € R.

The following exhibits a useful connection betweesequences anftsequences.
Lemma 2.9. (a) is a righta-sequence if and only {fL — ;) is a leftd-sequence.

Proof. Letbh; =1 —q;. If (a) is arighta-sequence, then
biy1ibi=1—-ai+1))1—a;))=1-ai11—a; +aiv1a; =1—aj1=>bi11.

Thus(b) is a leftd-sequence. The proof of the converse is similan

Note that any idempoteate R gives rise to a right-sequencée) and a leftd-sequence
(1—e).

Lemma 2.10. A right a-sequencéa) converges if and only if the left-sequencél — q;)
does.

Proof. Suppose thata) converges. By Lemma 2.5 we may assume that eache; is
an idempotent such thate; =¢; andeje; =¢; for all i < j. Then 1—¢; = f; is an
idempotent. Ifi < j then

f,'fj=(1—€,’)(1—6‘j)=1—6‘[—€j+€i€j=1—e,'=f,',
and also
fifi=A—ej)A—e)=1—ej—e +ejei=1—e;=f;.

R(1—a;) = R(1—aj) follows.
The converse is dual and left to the readen

To conclude this section we state some results that connect the behavior of these
sequences with projectivity—the original topic of interest.

Fact 2.11 [6, Lemma 3.1].Let (a) be a righta-sequence over a rin@. Then the right
ideal P,y =) ;21 a; R is a projective rightR-module. Further{a) converges if and only
if P is finitely generatedghence generated by an idempotegk



G. Puninski, P. Rothmaler / Journal of Algebra 277 (2004) 542-558 547

The following result can be easily derived from [6, proof of Proposition 3.5].
Fact 2.12. Let R be a ring. Then the following are equivalent.

(1) Every cyclic flat rightR-module is projective.
(2) Every righta-sequence oveR converges.
(3) Every leftd-sequence oveR converges.

We call a ringR a right S-ring, if every finitely generated flat righR-module is
projective. The corresponding matrix version of the previous result characterizes such
rings.

Fact 2.13[6, Proposition 3.5]Let R be a ring. Then the following are equivalent.

(1) RisanS-ring.

(2) For eachn, every righta-sequence over the rin@, (of n x n matrices overr)
converges.

(3) For eachn, every leftd-sequence oveR,, converges.

3. Examples

First we prove that the class of rigl§trings is closed under taking subrings, which
yields a rich supply of examples.

Lemma 3.1. Let R be a subring of a ring’" (where the units oR and T need not be the
sam@. If T is a right S-ring, thenR is a right S-ring.

Proof. If the units of R andT are the same, we may use the followingMfis a finitely
generated flak-module such thaw @ g T is a projectivel’-module, thenVg is projective.
But, even in this case, it is instructive to see a proof using the above criterion.

By Fact 2.13, it suffices to prove that every righ-sequence oveR,, converges. Since
T is a right S-ring, (a) converges ovef,. By Lemma 2.10, we may assume that every
a; = e; is an idempotent such thate; = ¢; ande;e; = ¢; holds for all j > i. But then
e;R, =¢jR, foralli, j, hence(a) converges oveR,. O

Example 3.2. Since the free algebra = k(X) over a fieldk, whereX is a set of non-
commuting variables, is embeddable in a skew fidlds a left and rightS-ring.

From Fact 2.12 and Lemma 2.2 it follows that every cyclic flat module over a domain is
projective. We can do better if the domain is also (one-sided) Ore, since such domains are
embedded in a skew field (which obviously is &uming).

Example 3.3. Every right Ore domairR is a right and leftS-ring.
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In fact, we can extend this to a wider class of rings.

Example 3.4. Let R be a right nonsingular ring of finite right Goldie dimension. Then
is a right and leftS-ring.

Proof. SinceRr is right nonsingular, it is embedded in its right maximal quotient rihg
SinceR is of finite right Goldie dimensionQ is a semisimple artinian ring by [11, 13.4].
ThusR is a right and leftS-ring by Lemma 3.1. O

Next we see that the Ore condition cannot be entirely dropped in the above.

Example3.5. Letk be afield, and leR be the (honcommutativé}algebra with generators
x,y,u,v,x’,y',u, v and the relation

x oy (X YY_(1 0
u v uw v ) \0 1)
ThenR is neither a right nor a lef§-ring.

Proof. Shepherdson [16] proved th&tis a domain which is not stably finite (see also
[11, 81.1, Exercise 18]). By Corollary 4.8 belo®,is neither a right nor a leff-ring. O

The next example was suggested to us by D. Herbera.

Example 3.6. There is a domairR that is, though a left and rigt#t-ring, not embeddable
in a skew field (and hence not Ore).

Proof. By [5, Example 5.7] there is a hereditary semilocal donfainhich is embeddable
in a simple artinian ring?’ (of length 2), but not in a skew field. Siné¥ is a left and right
S-ring, R is a left and rightS-ring by Lemma 3.1. O

For the following, note that semiperfectness is a left-right symmetric property of rings
generalizing that of (one-sided) perfectness.

Example 3.7 (Bass, see alsid 1, 84, Exercise 21]). Every semiperfect riRgs a right and
left S-ring.

Proof (with Ivo Herzog. Let M be a finitely generated flat module ovRr By semi-
perfectnessM has a projective cover: P — M (cf. [10, Proposition 24.12]). Then the
kernelK is a pure small submodule of the projective modBleThe assertion will follow
once we showkK = 0. For this we may as well assume (by adding on an appropriate
direct summand) thaP is free, which allows us to use [11, Theorem 4.23] as follows.
Given anyk € K, there is an endomorphisphof P fixing kK whose image is irk. Then

k e ker(1— f). Sincec(1— f) =c, as is easily verified, properties of the projective cover
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(cf. [10, Propositio 24.10]) force the endomorphisid — f) to be an automorphism,
hence kefl — f) = 0. But thenk = 0 and therefor&k = 0, as desired. O

We conclude this section with two more presgtion properties and an open question.
Lemma 3.8.

(1) The property of being a righ§-ring is preserved under Morita equivalence.
(2) Afinite direct product of ringsk = [/'_; R;, is a right S-ring if and only if eachr; is
aright S-ring.

Proof. (2) is obvious and so is (1), for being flat, being finitely generated, and being
projective are Morita invariant propertieso

Lemma 4.5 below shows that the class of rifhtings is not closed under infinite direct
products (as any such ring would contain an infinite set of orthogonal idempotents).

Question 3.9. Is every rightS-ring a left S-ring? (We do not even know the answer for
domains.)

We will answer this question by verifying symmetry in various particular cases, see 4.9,
4.10, 6.4, below.

4. S-ringsviaidempotents

Lemma 4.1. Let R be a ring with the a.c.c. on right annihilators of elements or the d.c.c.
on left annihilators of elements. Then evergequence eventually consists of idempotents.

Proof. Suppose thaR has the d.c.c. on left annihilators of elements. Then the ascending
chainaiR C azR C --- gives rise to a descending chain of left annihilators,zan) 2
anrg(a2) 2 - - -. By hypothesis, this chain stabilizes, i.e., there i$ anch that anp(a;) =
anrg (ay) for everyk > i.

Now aia; = a; implies 1— a; € anrg(a;) = anrg(ax). Then(1 — ay)ax = 0 shows that
ax is an idempotent.

Analogously if R has the a.c.c. on right annihilators of elements, just consider a left
d-sequenceb) instead. O

The following proposition shows that over many classical rings at least cyclic flat
modules are projective.

Proposition 4.2. Let R be a ring with the a.c.c. on right annihilators of elements or the
d.c.c. on left annihilators of elements. Then every cyclic flat rigimiodule is projective.

Proof. Otherwise there exists a divergent rightequencéa) over R. By Lemma 4.1,
we may assume that evedy = ¢; is an idempotent. Sincg:) diverges, we may suppose
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that every inclusions; R C ¢; 1R is proper. Note tha; R is a right annihilator of 1- ¢;.
Hence, ifR has the a.c.c. on right annihilators of elements, we obtain a contradicti®n. If
has the d.c.c. on left annihilators of elements, we obtain a contradiction considering the
descending chaiR(l—e1) DR(1—e2) D---. O

Corollary 4.3. Let R be a ring such that every ring,, has the a.c.c. on right annihilators
of elements or the d.c.c. on left annihilators of elements. Th&na right S-ring.

Remark 4.4. The d.c.c. part of this is contained in [6, Corollary 3.6], and the a.c.c. part in
Zhus’s [18, Proposition 9]. However, the proofs of the three previous results show that they
hold true for rings with apparently weaker chain conditions and thus strengthen both of the
cited results (with a uniform proof). Namely, all we used was the d.c.c. on left annihilators
of right a-sequences or the a.c.c. on right annihilators ofde$equences.

Zhu, in fact, works with another a.c.c., the a.c.c. on right annihilators of sequences of
ring elements of the form1, bob1, babab1, . ... However,d-sequences are clearly of this
form, and so his a.c.c. may be slightly stronger than ours (on right annihilators of left
d-sequences).

Note that Zhu’s a.c.c. is equivalent to the a.c.c. on right annihilators of sequences
of ring elementscy, ¢2, c3, ... such thatRc1 2 Rcz 2 Rez 2 ---. The corresponding
d.c.c. is that on left annihilators of sequences of ring elementsy, as, ... such that
a1R CazR CazR C ---,ad.c.c. that seems slightly stronger than ours (on left annihilators
of right a-sequences).

We are going to answer Question 3.9 for the case of exchange rings and for the case of
semihereditary rings and show symmetry for these.

To this end we first establish the fact th&trings are/-finite in the sense that they
contain no infinite set of orthogonal (nonzero) idempotents.
Lemma 4.5. If every cyclic flat rightR-module is projective, theR is I-finite.

Proof. Suppose thatq, ez, ... is an infinite set of orthogonal idempotents Bf Set
ai=e1+---+e.Then

ai+1a; =(e1+---+e +er1)(er+---+e)=e1+---+e =a,

hence (a) = (a1,a2,...) is a right a-sequence. Buu;a;+1 = a; # a;+1 hence, by
Lemma 2.5(a) diverges. O

Corollary 4.6. If R is a right S-ring, then for every:, the ring R,, is I -finite.

Proof. SinceR is an S-ring, R, is an S-ring for everyn. Now the result follows from
Lemma4.5. O

Corollary 4.7. A von Neumann regular ring is a rigist-ring if and only if it is semisimple
artinian (if and only if it is a leftS-ring).
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This also follows from the fact that every module over a von Neumann regular ring is
flat.

Recall that a ringr is calledDedekind finitéf »s = 1 forr, s € R impliessr = 1. If the
same property holds for every pair ofx n matrices ovemR, the ringR is calledstably
finite. Corollary 4.6 together with [11, Proposition 6.60(2)] yields at once

Corollary 4.8. Every rightS-ring is stably finite.

Now we are in a position to prove that for exchange rings (see, e.g., [13]}pneperty
is indeed left-right symmetric (cf. Question 3.9 above). Note that the concept of exchange
ring is itself left-right symmetric. A proper subclass of that of exchange rings is the class
of semiregular rings, i.e., ring® such thatkR/ JagR) is von Neumann regular and whose
idempotents may be lifted modulo J&. For example, endomorphism rings of pure-
injective modules are semiregular. More generally, Guil Asensio and Herzog [7] proved
that endomorphism rings of cotorsion modules are semiregular as well.

Proposition 4.9. An exchange ring is a righ-ring if and only if it is semiperfecif and
only if it is a left S-ring).

Proof. Right S-rings arel -finite by Lemma 4.5. But Camillo and Yu Hua-Ping [1] proved
that /-finite exchange rings are semiperfect. It remains to apply Example 817.

We conclude this section by showing that symmetry also holds for (one-sided)
semihereditary rings.

Proposition 4.10. A right semihereditary ringR is a right S-ring if and only if R,, is I -finite
for everyn, if and only if it is a leftS-ring. In this caser is also left semihereditary.

Proof. If R is arightS-ring, Corollary 4.6 shows that every rirg), is I-finite.

SinceR is right semihereditary, by [11, 7.63], the right annihilator of any matrigjin
is generated by an idempotent. So if, conversRlyjs I-finite, it has the a.c.c. on right
annihilators of elements. Hendeis a rightS-ring by Corollary 4.3, this proving the first
equivalence.

On the other hand, by [12, Proposition 5.4.3], fefinite rings semi-heriditarity is a left-
right symmetric property. S® is two-sided semihereditary. But then, sirfcéiniteness of
R, is left-right symmetric, the first equivalence (on the other side) shows that it also is
equivalent to the fact thak is a leftS-ring. O

5. Lifting the S-property
The following fact helps to lift theS-property modulo various (two-sided) ideals.

(Although the statement differs from that of the original lemma, it is precisely what is
proved there.)
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Fact 5.1 [8, Proposition 2.1]Let P be a projective right module over an arbitrary ring).
If I'is anilideal such thatP/P1I is cyclic, thenP is cyclic.

Lemma 5.2. Let I be a nil ideal of a ringR such that every cyclic flat righk /7-module
is projective. Then every cyclic flat rigi®-module is projective.

Proof. Let (a) be a righta-sequence oveR. By Fact 2.11 it suffices to prove that the
projective rightR-moduleP = P, is finitely generated.

Since every cyclic flat rightR/I-module is projective, the right-sequencga) =
(a1, az, ...) over R/I converges. Hence the projective rigRy/-module P = Pg is
cyclic. But P = P/PI, and so the previous fact implies thtis also cyclic. O

It is not known if being nil passes over to matrices (in fact, this is equivalent to Kothe's
conjecture), but being included in the prime radical does, and so we may infer that the
S-property can be lifted modulo (nil) ideals contained in the prime radical.

Corollary 5.3. Let I be an ideal contained in the prime radical of a rirR) (e.g., any
nilpotent idea). If R/I is a right S-ring, thenR is a right S-ring.

Now that we know one can lift th&-property modulo the prime radical we turn to the
problem of lifting it modulo the Jacobson radical. Here we have only partial results, based
on the following

Fact 5.4 [8, Lemma 2.4]Let P be a projective right module over an arbitrary ring. If
P/ P JacqR) is finitely generated and so 8/ P I for every prime ideal, thenP is finitely
generated.

If, in the above proof, Fact 5.1 is replaced by this fact (from the same paper), we at once
obtain the next result. (Note that here passing to matrix rings is no problem.)

Proposition 5.5. Let every prime factor of the rin@ be a rightS-ring. If R/ JaqR) is a
right S-ring, thenR is a right S-ring.

Since, being embeddable in a semisimple artinian ring, a prime right Goldie ring is an
S-ring, this readily yields

Corollary 5.6. Let every prime factor of the rinf§ be a right Goldie-ring(this is the case,
e.g., wherR has a polynomial identity, in particular, whelis commutative If R/ JadR)
is an S-ring, thenRr is an S-ring.

We are ready to give some more exampl&aings.

Example 5.7. Endomorphism rings of a right artinian modules are left and righhgs.
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Proof. If R is the endomorphism ring of an artinian modulé, then R, is the
endomorphism of the artinian moduM”. So it suffices to prove that every cyclic flat
right or left R-module is projective.

By [4, Propogtion 10.6] R contains a two-sided nilpotent ide&l such that every chain
of left annihilators of the ringR/H is uniformly bounded. Then every chain of right
annihilators ofR/H is uniformly bounded. Hence, by Proposition 4.2, every cyclic flat
left or right R/ H-module is projective, and it remains to apply Lemma 5.2

It is easy to show (see the remark in the introduction) that every right noetherian ring is
a rightS-ring. It turns out that it must be also a leftring. In fact, more can be said.

Proposition 5.8. Any ring with right Krull dimension is a left and rigtt-ring.

Proof. Let N be the prime radical oR. By Corollary 5.3 it suffices to prove tha&/N
is anS-ring. But by [4, Corollary 7.19]R/N is a semiprime Goldie ring, hend®/N is
embeddable into a semisimple artinian ring. It remains to apply Lemma 811.

Next we investigate when triangular matrix rings &reings.

Proposition 5.9. Let gk M7 be anR-T-bimodule, and letV = (’é ’}4) be a triangular matrix
ring. ThenU is a right S-ring if and only if R and T are right S-rings.

Proof. If U is a rightS-ring, thenR andT are rightS-rings by Lemma 3.1. Now assume
that R and S are rightS-rings. Note thatV = (8 ’g) is a nilpotent (of index 2) ideal off
such that//N = R @ S. Hence we may apply Corollary 5.3 (and Lemma 3.8)

If M is anR-R-bimodule, thenthering(") | r € R, m € M} is calledtrivial extension
(of M).

Proposition 5.10. Let M be anR-R-bimodule. Then the trivial extension &f is a right
S-ring if and only if R is a right S-ring.

Proof. Similar to Proposition 5.9. O

6. L-rings

Following Z6schinger [19], a ring is an L-ring, if it has the following property. IfP
is a projective rightR-module such thaP/Jad P) is finitely generated, ther is finitely
generated.

Zdschinger [19] proved that the property is two-sided. He also gave the following
characterization.

Fact 6.1[19, Satz 2.3]The following are equivalent for any ring.
(1) RisanL-ring.

(2) If F is a finitely generated flat righR-module such thaf/F JaqR) is a projective
right R/ JacR)-module, ther¥ is projective.
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Corollary 6.2. Every rightS-ring is an L-ring.

Lemma 6.3. Let R/ JagR) be a rightS-ring. ThenR is a right S-ring if and only if R is
an L-ring.

Proof. By Corollary 6.2 we need to prove that#fis anL-ring, thenRr is a rightS-ring.
By Fact 6.1 it suffices to check th&t = F/F JadR) is a projectiveR’ = R/ JadR)-
module for every finitely generated flat rigRtmoduleF .
Clearly F’ is a finitely generate®’-module. SinceF’ = F ® R’, this R’-module is
also flat. ButR’ is a rightS-ring, soF’ is indeed projective. O

The symmetry of the property of being dnring allows us to prove symmetry as
addressed in Question 3.9 for the casearhilocalrings, i.e., ringsk such thatkR/ JadR)
is semisimple artinian. This is implicit also in [6, Remark 3.7].

Proposition 6.4. A semilocal ring is a rightS-ring if and only if it is a leftS-ring.

Proof. SinceRr is arightS-ring, R is anL-ring by Corollary 6.2. Sinc®/ JacR) is a left
S-ring, R is a leftS-ring by Lemma 6.3. O

Not every semilocal ring is as-ring. Indeed, the first author has an example of a
semilocal ring of Goldie dimension one (on both sides) which is nat-aimg, [14]. Such
a ring can be neither a left nor a rigtring (cf. Lemma 6.3).

However, if we add an extra condition, we do get f¥property. To this end, calR
homogeneous semilodélR/ JadR) is a simple artinian ring. For examples of such rings
see Corisello and Facchini [2].

Example 6.5. Every homogeneous semilocal ring is a right and $efing.

Proof. Lemma 6.3 tells us that we need only prove tRdt anL-ring.

By [2, Theorem 2.3] every projective riglR-module P is a direct sum of copies of
a unique cyclic indecomposable projectiRemodule. Thus ifP is not finitely generated,
then P/ JadR) is not finitely generated either.o

7. Commutative S-rings

In the commutative case things considerably simplify due to a result of Vasconcelos.

Fact 7.1 [17, Corollary 1.7].Let R be a commutative ring such that every cyclic flat
R-module is projective. TheR is an S-ring.

Thus, in the commutative case evergequence of square matrices converges whenever
everya-sequence of ring elements does.

Further, one easily reduces the generahouwtative case as follows to that of rings
without nontrivial idempotents.
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Lemma 7.2. Let R be an/-finite ring such that all idempotents &f are central. TherR
is a finite direct sum@’_; R; of rings without nontrivial idempotents. Moreové,is an
S-ring if and only if eachr; is an S-ring.

Proof. We say that a nonzero idempotent R is anatom,if the ringeRe = eR contains
no nontrivial idempotents (other then 0 a#)d

It is easy to prove that two distinct commuting atoms are orthogonal. Hence there are
only finitely many atoms (forR is I-finite), saye1,...,e,. If e =e1 + --- + ¢, then
R=elR®---®de,R D (L— e)R is the desired decomposition. It remains to invoke
Lemma 3.8. O

Not all commutative rings without idempotents atgings, as we exemplify next.

Example7.3. Let R be a commutative algebra over a figdlevith generators, xo, ... and
relationsy;+1x; = x;. Then

(1) R isreduced.
(2) R has no nontrivial idempotents.
(3) RisnotanS-ring.

Proof. Every element € R has a canonical fornfip + Zle fi,wherefp ek, andf; is a
polynomial inx; whose free term is equal to zero, for af: 1.

(1) and (2). Ifn > 0 is the degree off; in the above representation efe R, then
r'™=go+ Zle gk, where the degree af; is equal tomn. Hence neither = 2 nor isr
nilpotent.

(3) Clearly x1, x2, ... is an a-sequence inR. If it stabilized, it would follow that
eventually either; =0, orx; = 1, a contradiction. O

Next we prove thatz-sequences over commutative rings of Goldie dimension one
behave like those over local rings, that is, we prove Lemma 2.2(2) for the commutative
Goldie dimension one case.

Proposition 7.4. Every commutative ring of Goldie dimension one isSaring. Moreover,
every nonzero right-sequence over such aring is of the fai@n0, ..., 0,r,s,1,1,1,...),
where0O#r € R andsr =r.

Proof. Assuming the contrary, we would have ring elements: 0, a2 # 0, 1, andaz # 1
such that(0,0,...,0,a1,a2,a3,1,1,1,...) is a righta-sequence. This would lead to a
contradiction as follows.

Fromazay = a; it follows that (1 — a2)a; = 0. Hence the annihilator of (the nonzero
element) 1- a2 in R is nonzero.

Similarly azaz = a2 implies (1 — az)az = 0, whence the annihilator of (the nonzero
element), is nonzero as well.
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Since R has Goldie dimension one, there is a nonzemR such that(1 — ap)s =0
andazs = 0 (this is where commutativity is used). But ther= (1 — az)s + a2s = 0,
a contradiction. O

The following fact is known, but will be improved on below.
Fact 7.5[17]. Every semilocal commutative ring is &rring.

Proof. By Corollary 5.3 it suffices to prove tha&/N is anS-ring, whereN is the prime

radical of R. Thus we may assume thAtis semilocal and reduced. Théhis embedded

into a finite product of local rings (localizations &fwith respect to maximal ideals).
Now every local ring is ar$-ring, and every subring of agtring is anS-ring. O

After Proposition 6.4 above we mentionadexample of a (noncommutative) semilocal
ring R of Goldie dimension one which is not @haring. Thus neither Proposition 7.4 nor
Fact 7.5 hold in general.

In order to generalize the previous result, let N&x denote the set of maximal ideals
of (the commutative ringR endowed with the topology induced by the Zariski topology
on the prime spectrum at. Then for every: € R, the setV (a) = {I e Max(R) |a € I} is
closed, and every closed set of M&3 is an intersection of such sets.

Proposition 7.6. Let R be a commutative ring such thMax(R) has the a.c.c. or the
d.c.c. on subsets of the for¥(a), wherea € R. ThenR is an S-ring.

Proof. By Corollary 5.6 it suffices to prove tha&/ JagR) is anS-ring. SinceR/JadR)
has the a.c.c. (the d.c.c.) on subsets of the fétm) iff R does, we may assume that
JadR) = 0 from the very beginning.

Let ay, ap, ... be ana-sequence oveR. PutV; = V(a;) andW; = V(1 — g;). Then
VinWw; =@, forif I e V; " W;, thena; € I, and 1— a; € I, hence Je I, a contradiction.

Further,V; U W; 1 = Max(R) for everyi. Indeed, from1 — a;;1)a; = O it follows that
for everyl € Max(R), either 1— a; ;1€ 1,i.e.,I € Wjy1,0ra; €l,i.e.,l € V;.

We see thatvy € W» C - - - is an ascending chain:

Wi=W,NMax(R) =W; N (V;UW;11) =(W; N V) UW; N Wip1) = W; N Wi

If Max(R) has the a.c.c. on subsets of the fovitu), thenW; = W; 1 = --- for somei.

We may assume tha¥y = Wo = ---. Then for everyi, V; U W;;1 = Max(R) implies
Vi U W; = Max(R). It follows thata; (1 — a;) € I for every maximal ideal, therefore
ai(1—a;) € JagqR) =0.

Thus everyu; = ¢; is an idempotent. Aiming for a contradiction, we may assume that
all inclusionse; R C ¢;+1R are proper. But them®R contains an infinite set of orthogonal
idempotents, which clearly violates the a.c.c.

If Max(R) has the d.c.c. on subsets of the fovitu), the argument is analogous, using
the descending chaivh 2 Vo O --- instead. O
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Remark 7.7. The hypotheses on the topological space M&xn this proposition are met

once this space is artinian or noetherian. The latter is true in case the commutative ring
R is noetherian; but we know already that even one-sided noetherian rings are two-sided
S-rings, see Proposition 5.8 and the remarks preceding it.

We conclude with two more examples. Foetfirst one, recall thahe (total) quotient
ring Q(R) of a commutative ringr is the localization ofR with respect to the set of all
nonzero divisors. Endo [3] proved thatdf(R) is semilocal, therR is anS-ring and asked
if the converse were also true [3, p. 289]. The answer is no, as the next example shows.

Example 7.8. Consider theZ-Z-bimoduleM = EBP 7/ pZ and its trivial extensiorR =

{(§7) 1z €Z,m € M}. ThenR is an S-ring, whose total quotient rin@(R) = R is not
semilocal.

Proof. SinceZ is anS-ring, so isk, by Proposition 5.10. Further, sinZes not semilocal,
neitherisR.ButQ(R)=R. O

Example 7.9. There is a commutativ-ring which is a Goldie ring and whose rirp of
2 x 2 matrices does not have the a.c.c. on right annihilators.

Proof. Kerr [9] constructed an example of a commutative Goldie riagof Goldie
dimension two) such thakt, does not have an a.c.c. on right annihilators. SiRdeas the
a.c.c. on annihilators, by Proposition 4.2, every cyclic Ranodule is projective. ThuR

is anS-ring by Fact 7.1. O
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