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Abstract 

The purpose of this paper is to describe and evaluate a new algorithm for optimization. The new algorithm is named the Genetic 
Flock Algorithm.  This algorithm is a type of hybrid of a Genetic Algorithm and a Particle Swarm Optimization Algorithm. The 
paper discusses strengths and weaknesses of these two algorithms. It then explains how  the Genetic Flock Algorithm combines 
features of both and gives details of the algorithm. All three algorithms are compared using eight standard optimization problems 
that are used in the literature.  It is shown that the Genetic Flock Algorithm provides superior performance on 75% of the tested 
cases.  In the remaining 25% of the cases it outperforms either the Genetic  Algorithm or the Particle Swarm Optimization 
Algorithm; it is never worse than both. Possible future improvements to the Genetic Flock Algorithm are briefly described. 
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1. Introduction 

This paper describes the Genetic Flock algorithm. This algorithm is a hybrid between a Genetic Algorithm and a 
Particle Swarm Optimization Algorithm. An evaluation of all three algorithms on some standard optimization 
problems is given.  

Popularized by John Holland in the mid-1970’s [1], the Genetic Algorithm (GA), ties together biologically 
inspired theories of evolution, genetics, natural selection, and mutation into a computer algorithm that heuristically 
searches for an optimal solution to a problem. A possible solution to a problem is characterized by a genome that 
normally consists of  a single chromosome. The chromosome contains values called genes. Mutation and crossover 
are used to change chromosomes. Mutation consists of random small changes to chromosomes. Crossover involves 
swapping large amounts of genetic material. 

In a GA a population of chromosomes is evolved in the following way. The population is randomly initialized. 
New generations are produced by repeatedly selecting the fittest individuals and subjecting them to mutation and 
crossover. This process continues until one of the chromosomes has satisfactory fitness or until a limit on the 
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number of generations is reached. Details and variations of this algorithm are discussed in many places, for example 
in Engelbrecht [2]. 

More recently, James Kennedy and Russell Eberhart developed a fascinating new heuristic optimization 
algorithm they called Particle Swarm Optimization [3]. Details  and modern variations of this algorithm are also 
given in Engelbrecht [2]. Like the Genetic Algorithm, this algorithm is inspired by biological phenomena.  

In Particle Swarm Optimization (PSO),  a swarm of particles is used. Each particle represents a potential solution 
to the given optimization problem. The particles are "flown" in discrete time steps through a multidimensional 
search space where the position of each particle is adjusted according to its own experience and that of its neighbors 
to find the best value of a given function.  

In the second section of this paper, we describe the Genetic Flock Algorithm. In the third section we compare all 
three algorithms using eight standard optimization problems that appear in the literature.  In the final section we give 
our conclusions and possible future improvements to the Genetic Flock Algorithm, (GFA). 

2. The genetic flock algorithm 

2.1. Comparison of GA and PSO 

2.1.1. Similarities 
There is an obvious correspondence between a GA and a PSO that makes a hybrid algorithm possible.  They both 

consist of  groups of potential solutions to the problem of interest. Usually chromosomes are bit strings; however, 
they can be arrays of real numbers. A particle in a PSO, on the other hand, has a location in a high dimensional 
space, which is usually a collection of real numbers. With some modification, the location can be given by a 
collection of bits [2]. In this paper, we will consider both chromosomes and particle locations as arrays of real 
numbers. Chromosomes correspond to particle positions.  

Since chromosomes change in each generation, these generations correspond to the discrete time steps in which 
particle locations change.  

The fitness function of a Genetic Algorithm corresponds to the function being optimized in the PSO Algorithm. 

2.1.2. Differences 
The essential difference between the two algorithms lies in the way the individuals change. Chromosomes change 

by random mutation and crossover. Each particle changes by random oscillation about two centers of attraction. One 
of these centers is the particle's best position so far. This is sometimes  called the cognitive component since it is 
based on the experiential knowledge of the particle [2]. The other center for a given particle is the best position 
found by any particle in the given particle's neighborhood. This is sometimes called the social component since it is 
based on socially exchanged information. If a particle's neighborhood is the entire swarm, the method is called 
global best. If the particle's neighborhood is more restricted, the method is called local best.  

It is immediately apparent that GAs are more random than PSOs. If we identify parents with children, a given 
chromosome may not be improved by mutation and crossover. It may have a worse fitness. The fitness of the best 
chromosome can even decline from generation to generation. For this reason, genetic algorithms usually use elitism. 
This method requires the best few individuals in a generation to be preserved unchanged into the next generation. 
PSO's have no need for elitism as previous bests are never lost. 

In some ways PSO's are like more sophisticated versions of hill climbing. The previously found values strongly  
influence  the search.  In GAs the previous values are only a base from which changes are made. They do not affect 
the nature of the changes. Crossover in GAs may combine partial solutions, but it also sometimes disrupts them.  

Our expectation is that a PSO should be faster than a Genetic Algorithm, but less robust in that it may be trapped 
by a sufficiently irregular function to optimize.  

 
 

2.1.3. Genetic Flock 
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It is our belief that an integration of PSO and GA into each individual step of an algorithm is unnecessary and, in
fact, may be detrimental. Instead, we have developed a hybrid of a Genetic Algorithm and a PSO which has separate
PSO and GA phases. We called this a Genetic Flock Algorithm. The main contribution of this paper is to show the
advantages of such a hybrid method with separate GA and PSO phases. This is achieved by comparing it with the 
individual algorithms.

The Genetic Flock works by executing the Genetic Algorithm phase for a fixed number of iterations and then
executing the Particle Swarm Optimization phase for a fixed number of iterations. The number of iterations in each 
phase may be adjusted, but the default is 50 for each. This process is repeated until the maximum number of 
iterations has been reached.

The GA phase uses tournament selection with single point crossover. Mutations are additive and are chosen from
a Gaussian distribution with standard deviation a fixed fraction (typically .01) of the range over which optimization 
is to occur. The default mutation rate is 0.10.

In the PSO phase, particles are grouped together into collections called neighborhoods with a default size of 7.
Particles move to a new location based on inertia, a randomized spring-like force towards the best location the
particle visited, and a similar force toward the best location visited by any other member of its neighborhood. Each 
time the particle moves from one location to another, the spring-like force constants involving the neighborhood and 
personal best locations are modified by random percentages.

A particle’s maximum velocity is not allowed to exceed one half the distance between the particles' boundaries;
that is to say, that a particle is not allow to take a single step of a size that was bigger than one half of the entire 
space being searched.

The algorithm can be set to run for a fixed number of generations or until there is insufficient progress.

2.1.4. Other work
Eberhart and Shi [4] examine the similarities between the Genetic Algorithm and Particle Swarm Optimization

Algorithm, and emphasize that elements from one algorithm should be incorporated into the other. In line with that 
recommendation, Castelli, Manzoni, and Vanneschi [5] reference authors who have incorporated the Particle Swarm 
Optimization element of memory into the Genetic Algorithm. Likewise, Engelbrecht [2] mentions authors who have
integrated mutation into the Particle Swarm Optimization algorithm.

The most similar work to ours is due to Juang [6]. In his work, both the Genetic Algorithm and Particle Swarm 
Optimization Algorithm are fused into a single algorithm. Juang uses this algorithm to assign weights for a Neural
Network (another heuristic algorithm), and evaluates his hybrid algorithm based on the performance of the Neural
Network. In his hybrid algorithm, Juang only performs the Particle Swarm Optimization portion on the best 
performing half of all chromosomes from the Genetic Algorithm – these chromosomes are called “Enhanced Elites”.
Juang then uses the Enhanced Elites to go through selection, crossover, and mutation. The resulting offspring
produce one half of the next generation, with the Enhanced Elites making up the remainder of the next generation.

In our view, even Juang's algorithm is unnecessarily complicated. Our objective in this paper is to show that a
simple phased algorithm is already sufficient to compensate for the weaknesses in the GA and PSO methods.

3. Tests

A total of eight test problems were used to evaluate the performance of the three algorithms. These problems
span from simple to complex in an attempt to develop a well-rounded picture of how well each algorithm performs.
These particular test problems are known benchmark algorithm evaluation problems, which were designed for the
purpose of testing the performance of optimization algorithms[7,8,9]. The following test problems were used. 

1. Spherical

2. Ackley
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3. Griewangk

4.  Michalewicz

5. Rastrigin  

6. RosenBrock 

7. Schwefel

8.  Shekel   

where

 

   
The goal was to minimize f. The minimum value was zero for each f. ff In each case, a value of n = 10 was used in

the above equations.
Population size was chosen to be 56 based on some trial runs. Since n was 10, this represented chromosome size 

and also the number of PSO dimensions. 
In order to generate comparison numbers for the algorithms, each algorithm was run 50 times on each of the test 

problems. Each run of the algorithm on a given problem consisted of 50,000 steps. After each run, the algorithm’s 
best performing element was recorded. Then for each algorithm, these values were averaged across all runs. This
approach allowed for analysis of the average performance of each algorithm on each test problem.

3.1. Typical Dynamic Behavior

Runs that show typical time behavior are discussed below. Due to space limitations only a brief description of 
results in each case is given. For more details see Brooks [10]. 

For the Spherical test problem the Particle Swarm Optimization Algorithm got off to a quick start and built a lead 
that the other two algorithms were not able to overcome. The Genetic Flock Algorithm realized most of its 
improvements while it was operating in the Particle Swarm Optimization mode, which allowed it to distance itself 
from the Genetic Algorithm. Both the Genetic Algorithm and Genetic Flock algorithms continued to improve 
throughout their iterations; however, neither was able to match the pace set by the Particle Swarm Optimization 
algorithm. 

For the Ackley problem, the Particle Swarm Optimization Algorithm got off to a rapid start; however, it was soon 
trapped in a local minima and stopped improving. This can occur if the entire population gets bound within a local
minimum, and the best locations (both neighborhood and personal) all fall within the local minimum. The other two
algorithms continued to show progress through their iterations, with the Genetic Flock Algorithm realizing faster 
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progress than the Genetic Algorithm. Both algorithms produced a lower result than the Particle Swarm Optimization 
Algorithm, with the Genetic Flock Algorithm finding the lowest result of the three algorithms. 

On the Griewangk equation, the Particle Swarm Optimization algorithm jumped out to an early lead. The Genetic 
Flock algorithm was able to close the distance between the two when it switched to Particle Swarm Optimization 
mode. Later, it was able to overtake the Particle Swarm Optimization Algorithm. The Genetic Algorithm showed 
continual improvement, however it was not able to catch either of the other algorithms. 

The Particle Swarm Optimization algorithm performed poorly in comparison to the Genetic Flock and the 
Genetic Algorithm on the Michalewicz problem. While the Particle Swarm Optimization Algorithm continued to 
improve over time, the other two algorithms did so much faster. The Genetic Flock and Genetic Algorithm remained 
close initially, but the Genetic Flock Algorithm was able to stay in front and reach a lower value than the Genetic 
Algorithm. 

The results for the Rastrigin equation mirrored that of the Michalewicz equation. The Particle Swarm 
Optimization improved throughout its iterations; however, its improvement was noticeably slower than the other 
two algorithms. Between the Genetic Algorithm and Genetic Flock, the Genetic Flock was able to reach a lower 
average value. 

For the RosenBrock equation, the Particle Swarm Optimization Algorithm obtained an early lead. The Genetic 
Algorithm and Genetic Flock Algorithm looked similar in the early iterations. Eventually the Genetic Flock was 
able to catch up and outperform the Particle Swarm Optimization Algorithm. The Genetic Algorithm had a steady 
improvement trajectory; however it was not able to keep pace with the other two algorithms. 

The performance of the Particle Swarm Optimization Algorithm was significantly worse than the performance of 
the other algorithms on the Schwefel problem. To understand why this was so, subsequent executions were run with 
a smaller range of possible values, under which the Particle Swarm Optimization was able to perform considerably 
better. 

The performance of all three algorithms was very close for the Shekel equation. The Particle Swarm 
Optimization Algorithm started the slowest and the Genetic Flock Algorithm separated itself as the best performing 
algorithm when it switched from the Genetic Algorithm mode to Particle Swarm Optimization mode. After which, 
the Genetic Flock displayed the best performance. The Genetic Algorithm and Particle Swarm Optimization 
Algorithm switched places in the early going, but as the iterations progressed the Genetic Algorithm was able to 
outperform the Particle Swarm Optimization. 

3.2. Overall Comparison 

The collective results can be considered in the following table which records the lowest averaged value from all 
repetitions that the algorithms returned. The comparison of averaged values designates which algorithm will 
perform better on average. To make the table easier to interpret, the best values are in bold and worst values are in 
italics. 

Table 1. Lowest Averaged Result For All Test Problems  

Function Genetic Algorithm Genetic Flock PSO 

Spherical 1.74  x 10-5 2.00  x 10-19 0 

Ackley 1.56  x 10-3 1.40  x 10-10 6.67  x10-1 

Griewangk 5.45  x 10-2 5.90  x 10-3 4.30  x10-2 

Michalewicz 4.89  x 10-7 0 4.06  x 10-1 

Rastrigin 8.66  x 10-6 1.71  x 10-15 4.29   

RosenBrock 7.73  x 10-3 9.04  x 10-15 3.66  x 10-3 

Schwefel 5.38  x 10-3 1.27  x 10-4 1.16  x103 

Shekel 2.21  x 10-1 2.21  x 10-1 2.23  x10-1 
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The Genetic Flock Algorithm had the best averaged performance on six of the eight test problems; it tied for best 
on another, and had the second best performance on the remaining test problem. The Genetic Algorithm tied the top 
averaged performance on one problem, was second best on four of the equations, and third on the remaining three 
equations. The Particle Swarm Optimization Algorithm had the best averaged performance on one problem, second 
best on two problems, and third on the remaining five problems. Overall these results confirm our expectations 
concerning these three algorithms.  

4. Conclusions 

Taking the results as a whole, it becomes evident that for the given test problems the Genetic Flock is the best 
performing algorithm. In the final tally, the Genetic Flock algorithm showed top performance in 75% of the 
measurements. Of the remaining 25%, the Genetic Flock outperformed at least one other algorithm. The Genetic 
Flock was the only algorithm to have no instances of being the worst performing algorithm.  

True to their typical characteristics, the Particle Swarm Optimization was very fast; however, it often prematurely 
converged onto local minima instead of finding the global minimum. The Genetic Algorithm was not as likely to get 
stuck in local minima; however, it showed slow improvement in the direction of the global minimum. Yet, when the 
two algorithms acted in unity, neither weakness became as evident as it did when run in isolation. 

The Genetic Flock’s success can be attributed to its ability to realize the best characteristics from each of its 
component algorithms. The results show that the Genetic Flock algorithm’s component algorithms worked together 
to compensate for each other’s weaknesses. This cooperation was able to produce a better result than the component 
algorithms achieved on their own. 

There are several possibilities for future work. An analysis of performance in terms of median and standard 
deviation would be useful in order to characterize the behavior of the algorithm in more detail. One possibility for 
changing the algorithm would be to make the phases of the algorithm dynamic instead of static. Switching between 
phases could be controlled by the absence of sufficient progress in the current phase. Although the benefit of 
separate phases has been shown, a comparison with a more integrated hybrid might prove informative. Finally, each 
separate phase could be fine tuned in order to improve performance. 
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