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Subdiffraction-Limit Two-Photon Fluorescence Microscopy
for GFP-Tagged Cell Imaging

Qifeng Li, Sherry S. H. Wu, and Keng C. Chou*
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada

ABSTRACT We report applications of two-photon excitation fluorescence (2PEF) microscopy with subdiffraction-limit resolu-
tion for green-fluorescent-protein-tagged cell imaging. The microscope integrates 2PEF microscopy and stimulated emission
depletion microscopy in one microscope that has the benefits of both techniques: intrinsic three-dimensional resolution, confined
photobleaching, and subdiffraction-limit resolution. The subdiffraction-limit resolution was demonstrated by resolving green-fluo-
rescent-protein-tagged caveolar vesicles located within a distance shorter than the diffraction limit of a regular 2PEF microscope,
which is ~250 nm even with the best optics. The full width at half-maximum of the effective point-spread function for the 2PEF
microscope was estimated to be ~54 nm.
INTRODUCTION

Far-field fluorescent microscopy is widely used in molecular

cell biology for noninvasive and high-specificity imaging.

Over the past century, the resolution of far-field optical

microscopes has been limited by the well known diffraction

limit, which limits the resolution to l=2� NA, where l and

NA denote the wavelength of light and the numerical aper-

ture of the objective lens, respectively. Modern immersion

microscopes have been improving the resolution by using

objective lenses with high NA, but the improvement in the

NA has been limited by the availability of transparent mate-

rials. With all these limitations, the resolution of a far-field

fluorescent microscope is typically in the range 200–300 nm,

which makes it unable to resolve many fine structures in a

cell. Recently, significant efforts have been made to develop

far-field optical microscopy with subdiffraction-limit resolu-

tion, such as stimulated emission depletion (STED) (1), pho-

toactivated localization microscopy (2,3), and stochastic

optical reconstruction microscopy (4). These developments

have achieved lateral resolution of tens of nanometers and

allowed researchers to observe biological structures with

unprecedented resolution (5–8).

Two-photon excitation fluorescence (2PEF) microscopy is

a popular alternative to one-photon excitation fluorescence

microscopy (9). It provides intrinsic three-dimensional reso-

lution and often reduces overall phototoxicity, because the

excitation and photobleaching are confined to the focal

spot. For these reasons, 2PEF microscopy is particularly

useful for optical imaging and manipulations within a local-

ized region. Recently, a 2PEF microscope combined with

STED was demonstrated by Moneron and Hell (10). STED

microscopy is a powerful approach to achieve a subdiffrac-

tion-limit resolution (11,12). In a STED microscope, the
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size of the effective fluorescence spot was reduced by

depleting the spontaneous fluorescence emission in the outer

regions of the excitation area using stimulated emission

(1,13). In this approach, the decrease in the size of the fluo-

rescence spot is equivalent to an increase in the resolution.

Previous work by Moneron and Hell was carried out using

fluorescent dyes. In this work, we study the application of

a 2PEF-STED microscope for imaging green fluorescent

protein (GFP). Although GFP does not have the best bright-

ness or photostability compared to many dyes (14), it is

a particularly important fluorescent label for biological

imaging, because the GFP gene can be fused to the gene

of interest and expressed within the living cells (15,16). In

addition, GFP is noninvasive, whereas many fluorescent

dyes are toxic. By combining 2PEF and STED microscopy

techniques, we have demonstrated a subdiffraction-limit

resolution and resolved single GFP-tagged caveolae, which

function as transported vesicles in many cell physiological

processes, including endocytic and exocytic pathways,

signal transduction, and lipid regulation (17).

MATERIALS AND METHODS

2PEF-STED microscopy

The layout of the 2PEF-STED microscope is shown in Fig. 1 a. Two-photon

excitation was carried out using a 130-fs Ti:sapphire laser (MIRA 900,

Coherent, Santa Clara, CA) with a wavelength of 850 nm and a repetition

rate of 76 MHz. The depletion beam at 580 nm was obtained by pumping

a home-made intracavity-frequency-doubled optical parametric oscillator

with a second Ti:sapphire laser. The 580-nm beam was coupled into a

40-meter polarization-maintaining single-mode fiber (460HP, Thorlabs,

North Newton, NJ) to stretch the pulse duration from 130 fs to 200 ps. The

doughnut-shaped focal intensity profile of the depletion beam (Fig. 1 b), was

obtained using a spiral phase plate (RPC Photonics, Rochester, NY), which

was proposed by Torok, et al. (13) and used by Hell and his co-workers for

STED microscopy (1,18). Fig. 1, b and c, shows the intensity profiles of the

depletion and excitation beams, respectively, recorded by the scattering light

from a 100-nm gold particle (C-Au-0.100, Microspheres-Nanospheres, Cold

Spring, NY). The two beams were then combined using a dichroic mirror
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FIGURE 1 (a) Experimental setup for 2PEF-STED

microscopy. (b) The doughnut-shaped intensity profile of

the 580-nm depletion beam obtained using the spiral phase

plate shown in a. (c) Gaussian intensity profile of the two-

photon excitation beam at 850 nm. The intensity profiles

were recorded by the scattering light from a 100-nm gold

particle(d) Energy diagram for the 2PEF-STED micros-

copy, (e) Measured 2P fluorescence depletion efficiency

for GFP.
(FF665-Di01-25�36, Semrock, Rochester, NY) before entering the objec-

tive lens (100�, NA 1.4 oil, HCX PL APO CS, Leica, Germany). The

two-photon excitation spot (Fig. 1 c) was then positioned at the center of

the doughnut-shaped depletion beam (Fig. 1 b). Two laser beams were

synchronized and overlapped in time to maximize the depletion of the

2PEF. The 2PEF was then collected with a lens, coupled to a 62-mm optical

fiber, and detected by a photomultiplier tube (R4220P, Hamamatsu, Japan)

and a pulse counter (National Instruments, Austin, TX). All images were ob-

tained with the samples mounted on a three-dimensional piezo-scanning

stage (Nano-LP200, Mad City Labs, Madison, WI). The laser beams were

fixed, while the piezo-scanning stage was scanned at a speed of 5 ms/pixel.

Cell culture and transfection

Chinese hamster ovary (CHO) cells were cultured in Alpha-MEM (Invitrogen

Life Technologies, Carlsbad, CA) containing 10% FBS and 2 mM L-gluta-

mine at 37�C in a 5% CO2 incubator. To establish a stable cell line, CHO cells

were transfected with Plasmid Cav1-GFP (Addgene plasmid 14433) using

lipofectamine 2000 (Invitrogen) according to manufacturer’s instruction,

and cultured in the presence of 1 mg/ml of G418 (Invitrogen) for 3 weeks.

The CHO cells expressing Cav1-GFP were fixed in 2% paraformaldehyde/

PBS for 10 min, washed with 1� PBS, and mounted in glycerol/PBS.

RESULTS AND DISCUSSION

Fig. 1 d shows a typical two-photon (2P) excitation energy

diagram. The 2P excitation from the ground S0 state is

achieved via simultaneous absorption of two near-infrared

photons. The excitation then quickly relaxes to lower vibra-

tional levels in the S1. Without an external field, the popula-

tion in S1 decays to the ground-state S0 via spontaneous

emission. There are many GFP derivatives (19). The
enhanced green fluorescent protein (EGFP), which was

used in this study, is one of the most used mutants, because

it is brighter than the wild-type GFP (20). The absorption and

emission spectra of EGFP peak at 488 nm and 508 nm,

respectively. The 2P excitation mechanism for GFP remains

as an active research area and is not yet fully understood. An

additional peak has been reported near 440 nm in a two-

photon excitation process, but not observed in one-photon

excitation processes (21). Recently, it was proposed that

EGFP has a hidden electronic excited state (S2) for 2P exci-

tations near the lowest excited singlet (S1) (22).

To carry out 2PEF-STED microscopy for GFP-tagged cell

imaging, it is critical to verify that the STED technique is

effective for 2P-excited GFP. In STED microscopy, the

spatial extent of the fluorescence spot given by the excitation

profile (Fig. 1 c) is reduced by inhibiting the spontaneous

fluorescence emission in the outer regions using stimulated

emission (1,18,23). To reduce the excited-state population

and the spontaneous fluorescence emission, a laser pulse is

applied to stimulate transitions to the upper vibrational levels

of S0, as indicated by the yellow arrow in Fig. 1 d. The wave-

length of this depletion beam must be sufficiently longer than

that for the single-photon absorption to avoid exciting the

fluorescent molecules. Previously, a 50% depletion of fluo-

rescence from 2P-excited fluorescein in ethylene glycol

and methanol has been demonstrated (24), and a depletion

of 70% was shown using synthesized conjugated fluoro-

phores OM62C (25) designed for enhanced 2P absorption
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cross section (26). In these 2P excitation studies, depletion

beams with a pulse duration of ~2 ps were used, but it has

been shown by Hell and his co-workers that a depletion

beam with a pulse duration of >50 ps is beneficial (10,27).

A depletion period much longer than the vibrational relaxa-

tion time in S0 (typically subpicosecond) also allows the

depletion pulse to stimulate the excited molecules in S1 into

a vibrational state in S0 that is mostly empty. Fig. 1 e shows

the 2PEF intensity from GFP as a function of the fluence of

the depletion beam at 580 nm with a pulse duration of

200 ps. With a fluence of 300 MW/cm2, nearly 95% of the

fluorescence can be depressed. The 580-nm beam also excites

a small portion of GFP. However, the fluorescence excited by

the 580-nm beam has been mostly excluded from the detec-

tion system by using an optical fiber. When the 2PEF was

coupled to the fiber, the core diameter of the fiber (62.5 mm)

was carefully chosen to be ~0.6 Airy units. In this case, the

fluorescence from the doughnut-shaped depletion beam was

mostly filtered by the fiber because the intensity of the deple-

tion beam was nearly zero at the center of the doughnut.

Fig. 2, a and b, shows EGFP-tagged caveolin 1 (Cav1-

GFP) in CHO cells imaged by regular 2PEF microscope

and by the 2PEF-STED microscope, respectively. The

regular 2PEF image was taken with an excitation beam of

1.8 mW at 850 nm. The 2PEF-STED image was obtained

with an excitation beam of 2.7 mW at 850 nm and a depletion

beam of 4.4 mW at 580 nm. The photon count in the 2PEF-

STED was significantly lower than that in the 2PEF image,
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because the intensity of 2P fluorescence decreased as the

size of the fluorescent spot was reduced by the depletion

beam. A higher 2P excitation power was used to partially

compensate for the fluorescence signal reduction, but over-

all, a trade-off exists between the fluorescence intensity

and the resolution: a better resolution can be obtained with

a smaller fluorescent spot, but a smaller fluorescent spot

produces less fluorescence. Because of the lower photon

count, images obtained by STED microscopy are often

smoothed or restored by various filters to remove noise

(18,28–30). Fig. 2, c and d, are the same images as in

Fig. 2, a and b, respectively, after image restoration with the

Tikhonov-Miller filter (16,31). Fluorescence spots of various

sizes can be seen in Fig. 2 because caveolins exist in different

cellular structures in the cytoplasm. Caveolin 1 is the major

structural protein on the surface of caveolae (17). Cav1-

GFP has been shown to exist in caveolae, protein-lipid

complexes, and larger cellular structures such as the Golgi

complex, caveosomes, and early endosomes (32). The small

Cav1-GFP domains are presumed to be caveolar vesicles or

protein-lipid chaperon complexes, which have diameters of

50–100 nm under an electron microscope (33).

Fig. 2, e and f, are magnified views of the marked areas in

Fig. 2, c and d, respectively. The regular 2PEF microscope

has a diffraction-limited excitation spot with a full width at

half-maximum (FWHM) of ~250 nm. Consequently, all

features observed in the regular 2PEF images (Fig. 2 c and

e) have FWHMs >250 nm because of the diffraction limit.
FIGURE 2 EGFP-tagged caveolin in

a CHO cell imaged using (a) a regular

2PEF microscope and (b) the 2PEF-

STED microscope described in this

study. (c) Regular 2PEF and (d) 2PEF-

STED images after image restoration

by the Tikhonov-Miller filter. (e) Magni-

fied view of the marked area for the

regular 2PEF image in c. (f) Magnified

view of the same marked area for the

2PEF-STED image in d. (g) Intensity

profiles of the regular 2PEF and 2PEF-

STED images, as indicated in e and f.
The sale bars, 1 mm (a–d) and 200 nm

(e and f). Pixel sizes, 40 nm (e) and 20

nm (f).
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With the 2PEF-STED microscope; however, we could

distinguish two caveolar vesicles located within a distance

smaller than the 250-nm diffraction limit, as shown in

Fig. 2 f and its profile in Fig. 2 g. A single caveolar vesicle

with a FWHM of 68 nm was observed.

The FWHM of the effective point-spread function (PSF)

for the 2PEF-STED microscope can be estimated using the

size of the caveolar vesicles measured by electron micros-

copy, which have diameters in the range 50–100 nm (33).

As described previously, the effective fluorescence spot of

STED microscopy was reduced by depleting the spontaneous

fluorescence emission in the outer regions using stimulated

emission. The size of the subdiffraction-limit fluorescent

spot can be regarded as the effective PSF for the STED

microscopy (12,29). In general, the measured image profile

himagðr.Þ is a convolution of the effective PSF heffðr.Þand the

profile of the object hobjðr.Þ:
himagðr.Þ ¼ heffðr.Þ5hobjðr.Þ: (1)

In this study, an optical fiber was used to couple the fluores-

cence signal into the detector. Therefore, the fluorescence

profile, hfluoðr.Þ, given by the 2P excitation at the entrance

of the fiber, and the size of the fiber aperture Að~r0 Þ need to

be taken into account, and himagðr.Þ can be written as (29)

himagðr.Þ ¼ heffðr.Þ5hobjðr.Þ
�
hfluoðr.Þ5A

�~r0
��

(2)

It has been shown that the effective PSF heffð~rÞ for STED

microscopy can be expressed as (7,12,29)

heffðr.Þ ¼ hfluoðr.Þexpð � hSTEDðr.ÞzÞ; (3)

where hSTEDðr.Þis the depletion STED beam intensity profile

shown in Fig. 1 b, and z ¼ I=Is gives the ‘‘saturation factor’’

of the depletion, where Idenotes the peak intensity of the

STED beam and Is the characteristic intensity at which

the fluorescence intensity is reduced to half (7). Assuming

the smallest vesicle has a diameter of 50 nm, with a uniform

intensity profile hobjðr.Þ, as shown in Fig. 3 a, an image

profile with a FWHM of 68 nm (Fig. 3 c and 3 g) can be ob-

tained using an effective PSF with a FWHM of 54 nm, as

shown in Fig. 3 b. Although there is no theoretical limit on

the resolution of STED microscopy, there is a trade-off

between the resolution and photobleaching. The 2PEF-

STED images shown in this study were obtained with

4.4 mW of depletion beam. Roughly 10–20% of the GFPs

were bleached after one scan. The photobleaching can be

reduced with a decreased depletion beam power and lower

resolution. Experimentally, a resolution of ~100 nm can be

easily achieved with a depletion power of 1–2 mW.

CONCLUSION

A 2PEF microscope with subdiffraction-limit resolution for

GFP-tagged cell imaging was achieved using stimulated-

emission depletion. The subdiffraction-limit resolution was
demonstrated by distinguishing GFP-tagged caveolar vesi-

cles located within a distance shorter than the diffraction

limit of a regular 2PEF microscope. The FWHM of the effec-

tive PSF of the 2PEF-STED microscope was estimated to be

~54 nm.
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