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SUMMARY

Fibroblast growth factor homologous factors (FHFs)
are not growth factors, but instead bind to voltage-
gated Na+ channels (NaV) and regulate their function.
Mutations in FGF14, an FHF that is the locus for
spinocerebellar ataxia 27 (SCA27), are believed to
be pathogenic because of a dominant-negative
reduction of NaV currents in cerebellar granule cells.
Here, we demonstrate that FGF14 also regulates
members of the presynaptic CaV2 Ca2+ channel
family. Knockdown of FGF14 in granule cells reduced
Ca2+ currents and diminished vesicular recycling, a
marker for presynaptic Ca2+ influx. As a conse-
quence, excitatory postsynaptic currents (EPSCs)
at the granule cell to Purkinje cell synapse were
markedly diminished. Expression of the SCA27-
causing FGF14 mutant in granule cells exerted
a dominant-negative reduction in Ca2+ currents,
vesicular recycling, and the resultant EPSCs in
Purkinje cells. Thus, FHFs are multimodal, regulating
several discrete neuronal signaling events. SCA27
most likely results at least in part from dysregulation
of Ca2+ channel function.

INTRODUCTION

The four members of the family of fibroblast growth factor

homologous factors (FHFs; FGF11–FGF14), a subset of the

fibroblast growth factors (FGFs), have received increasing atten-

tion for their unanticipated modulation of voltage-gated Na+

(NaV) channels and regulation of neuronal excitability. Although

FHFs acquired their name because of their homology to FGFs

(Smallwood et al., 1996), several defining features set FHFs apart

from other FGFs. Most notably, lacking a signal sequence, FHFs

are not secreted (Smallwood et al., 1996) and do not appear to

be capable of functioning as growth factors (Olsen et al.,

2003). The physiologic roles of FHFs remained ill defined until

a confluence of experiments identified FHFs as modulators of

NaV channels and regulators of neuronal signaling, and genetic
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data pinpointed FGF14 as the locus for spinocerebellar ataxia

27 (SCA27).

Focus on FHF regulation of neuronal excitability began when

Fgf14–/– mice showed ataxia (Wang et al., 2002), providing

a basis for exploring the implications of a linkage analysis that

identified a F150S missense mutation in a ‘‘b’’ splice variant of

FGF14 (FGF14bF150S; termed FGF14F145S in some studies that

used numbering based on the alternatively spliced FGF14a

variant) as the etiology of the autosomal-dominant SCA27 in

an extended Dutch family (van Swieten et al., 2003). The specific

mechanism(s) by which the human FGF14mutant or knockout of

Fgf14 in mouse affected neuronal signaling and led to ataxia was

subsequently explained by the discovery, via a yeast two-hybrid

strategy, that FGF12 serves as a binding partner for the

C terminus of NaV1.9 (Liu et al., 2001). Several studies then

showed that FHFs, through their interaction with NaV C-termini,

can modulate Na+ channel currents (Liu et al., 2003; Lou et al.,

2005). Moreover, when expressed in cultured hippocampal

neurons, the SCA27 missense mutant FGF14bF150S decreased

NaV channel currents and depressed neuronal excitability in a

dominant-negative manner (Laezza et al., 2007). Ataxia pheno-

types have also been associated with a frame-shift mutation

that caused early termination of FGF14, and a chromosomal

translocation that disrupted FGF14 (Dalski et al., 2005; Misceo

et al., 2009). In addition, some experiments have hinted that

FGF14 can regulate other neuronal processes, such as synaptic

transmission in hippocampal neurons (Xiao et al., 2007). How

FGF14 contributes to these other signaling pathways is not

known, and whether mechanisms other than Na+ channel

dysfunction contribute to the ataxia phenotype has not been

examined.

Here, we focused on the role of FGF14 at the cerebellar

granule cell to Purkinje cell synapse. We discovered that

FGF14 in granule cells is a potent regulator of P/Q-type CaV2.1

Ca2+ channels (the dominant presynaptic Ca2+ channels in

granule cells) and synaptic transmission. Further, the SCA27-

causing mutant FGF14 impaired CaV channels in cerebellar

neurons and affected synaptic transmission at the granule cell

to Purkinje cell synapse. Thus, FGF14 is a regulator of multiple

ionic currents, and the pathogenic effects of mutant FGF14 are

likely mediated by dysregulation of both Ca2+ channels and

Na+ channels.
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Figure 1. Endogenous FGF14 Regulates Ca2+ Channel Currents in

Granule Cells

(A) Example Ca2+ channel current traces (using Ba2+ as the charge carrier)

recorded from a cerebellar granule cell transfected with GFP-control (black),

scrambled control shRNA (gray), or FGF14 shRNA (blue). The currents were

evoked by a ramp protocol from a holding potential of�80 mV to 50 mV in 1 s.

(B) Summary data (mean ± SEM) from granule cells expressing GFP control

(n = 17), scrambled control shRNA (n = 10), or FGF14 shRNA (n = 12).

(C) Example Ca2+ channel current traces recorded from a cerebellar granule

cell transfected with GFP-control (black), scrambled control shRNA (gray), or

FGF14 shRNA (blue). The currents were evoked by a step protocol from a

holding potential of �80 mV to �10 mV in 500 ms.

(D) Summary data (mean ± SEM) from granule cells expressing GFP control

(n = 22), scrambled control shRNA (n = 11), or FGF14 shRNA (n = 10).

(E) Representative Cd2+-sensitive Ba2+ currents evoked by a single APW (top)

command recorded from granule cells transfected with GFP control (black),

scrambled control shRNA (gray), or FGF14 shRNA (blue). The integrated

current (Q) is colored in black, gray, or blue.

(F) Summary data (mean ± SEM) of the integrated current (Q) normalized to

each cell capacitance. Summary results were obtained from granule cells

expressing GFP control (n = 25), scrambled control shRNA (n = 11), or FGF14

shRNA (n = 10). **p < 0.01 versus control.

See also Figure S1.
RESULTS

FGF14 Affects CaV2 Channels in Cerebellar Neurons
Although FGF14 regulates NaV channel currents in granule cells

(Goldfarb et al., 2007), we suspected that additional mecha-

nisms might contribute to the SCA27 phenotype based on our

observation that most SCA-associated channelopathies or the

related episodic ataxias result from perturbed Ca2+ channel

function (Shakkottai and Paulson, 2009), and the observation

that loss-of-function mutations in CaV2.1 underlie the ataxia

phenotype in tottering mice (Fletcher et al., 1996). We therefore

first askedwhether FGF14 affected voltage-gated Ca2+ channels

in granule cells within mixed primary rat cerebellar cultures con-

taining both Purkinje cells and granule cells, which could be

readily distinguished by their characteristic morphology and

membrane capacitance (granule cell: 8.8 ± 0.2 pF, n = 105;

Purkinje cell: 15.4 ± 0.6 pF, n = 50). To assess the effects of

FGF14 on voltage-gated Ca2+ channels in granule cells, we

recorded Ca2+ currents after FGF14 knockdown by small hairpin

RNA (shRNA).

A ramp protocol with 10 mM Ba2+ as the charge carrier, as

shown in Figure 1A, revealed that FGF14 knockdown signifi-

cantly reducedCa2+ channel currents (summary data normalized

to cell capacitance are shown in Figure 1B for FGF14 shRNA,

scrambled shRNA, and a GFP transfection control). Peak inward

Ba2+ currents were also elicited with a step protocol in which

currents were evoked by a 500 ms voltage step from �80 mV

to �10 mV, revealing that FGF14 knockdown significantly

reduced Ca2+ channel current density (Figures 1C and 1D). We

next assessed whether FGF14 affected influx through Ca2+

channels in response to an action potential waveform (APW),

by isolating the Cd2+-sensitive integrated current. We found

that knockdown of endogenous FGF14 by shRNA significantly

decreased the integrated current compared with transfection

with GFP or scrambled shRNA (Figures 1E and 1F).

We validated the efficacy of the FGF14 shRNA construct in

hippocampal neurons, which (because they also express the

related FGF13) allowed us to test specificity. Figure S1A shows

effective knockdown of the axon initial segment (AIS)-enriched

FGF14 by shRNA, but not by a scrambled control. FGF13,

however, was unaffected (Figure S1B). The FGF14 shRNA, but

not the scrambled control, also reduced FGF14 protein

expressed in human embryonic kidney (HEK) 293T cells (Fig-

ure S1C). After confirming the efficacy and specificity of the

FGF14 shRNA, we transfected it (or a scrambled control shRNA

or GFP) into granule cells and recorded the Ca2+ currents.

Since 95%of the somatodendritic Ca2+ current in granule cells

is carried by CaV2.1 P/Q-type channels (Jun et al., 1999), as well

as a similar fraction of presynaptic Ca2+ influx at the granule cell

to Purkinje cell synapse (Mintz et al., 1995), we tested whether

FGF14 specifically affected CaV2.1 P/Q Ca2+ channel currents

in a heterologous expression system. The CaV2.1 pore-forming

a1A subunit and the accessory b2b and a2d subunits were

expressed in HEK 293T cells, and currents were evoked by

step depolarizations with 10 mM Ba2+ as the charge carrier (Fig-

ure 2A). The current-voltage (I-V) relationship shows that coex-

pression of FGF14b increased current density over a broad

range of voltages (Figure 2B) without affecting the kinetics of
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Figure 2. FGF14 Modulates CaV2.1 and CaV2.2 Channels

(A) Example Ca2+ channel current traces (using Ba2+ as the charge carrier)

recorded from HEK 293T cells in which CaV2.1 channels were coexpressed

with GFP control (black) or FGF14WT (red). The currents were elicited by

depolarizing pulses of 300 ms from �80 mV to +60 mV (in 10-mV increments).

(B) Current-voltage relationships (mean ± SEM normalized to cell capacitance)

for cells in which CaV2.1 was cotransfected with GFP control (black) or

FGF14WT (red).

(C) Representative Cd2+-sensitive Ba2+ currents evoked by a single APW (top)

command from HEK 293T cells in which CaV2.1 channels were cotransfected

with GFP control (black) or FGF14WT (red). The integrated current (Q) is colored

with black or red.

(D) Summary data (mean ± SEM) of the integrated current (Q) normalized to

cell capacitance for each cell expressing GFP (n = 9) or FGF14WT (n = 9).

(E–G) Current-voltage relationships (mean ± SEM normalized to cell capaci-

tance) for cells in which CaV2.2 (E), CaV1.2 (F), or CaV2.3 (G) was cotransfected

with GFP (black) or FGF14WT (red). The current amplitude values were divided
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activation or steady-state inactivation (Figures S2A and S2B;

Table 1). The integrated inward current through CaV2.1 in

response to an APW also increased with FGF14 coexpression

(Figures 2C and 2D). Coexpression of FGF14b also increased

the current density of the other major presynaptic Ca2+ channel,

the CaV2.2 N-type channel (Figure 2E). In contrast, FGF14b did

not affect the CaV1.2 L-type or CaV2.3 R-type channels, which

are predominantly somatodendritic in location (Figures 2F and

2G). Together, these results showed that endogenous FGF14

affected granule cell Ca2+ channels and that FGF14 was capable

of regulating the presynaptic CaV2.1 and CaV2.2 Ca2+ channels.

Because FGF14 did not affect the CaV2.1 kinetics of activation

or steady-state inactivation, we suspected that FGF14 might in-

crease the current density by increasing the number of channels

at the plasma membrane. In HEK 293T cells expressing CaV2.1

channels, we therefore measured the gating charge, with and

without FGF14 coexpression, as a means of assessing the

number of channels at the cell surface. We isolated the gating

charge by depolarizing the cell from a holding potential of

�80 mV to the reversal potential (determined individually for

each cell, average +43.2 mV ± 0.9 mV, n = 27) and eliminated

any remaining ionic current by blocking the channels with Cd2+

(300 mM). Figures 3A and 3B show that coexpression of FGF14b

increased the gating charge by �35% compared with the GFP-

only control, suggesting that FGF14b does increase the number

of channels at the plasma membrane. This increase in gating

charge could be attributed solely to the transfected CaV2.1

channels, and not to FGF14b effects upon endogenous ionic

currents in HEK 293T cells, because transfection of FGF14b in

the absence of CaV2.1 did not increase the gating charge

compared with cells transfected with GFP only (2.2 ± 0.2 fC/pF,

n = 12, and 2.0 ± 0.3 fC/pF, n = 10, respectively; p > 0.05).

Presynaptic FGF14 Regulates Baseline Transmission at
the Granule Cell to Purkinje Cell Synapse
Having established that FGF14 affects CaV2.1 channels, the

predominant presynaptic Ca2+ channels at the granule cell to

Purkinje cell synapse, and given that FGF14 is abundant in

granule cell axons (Wang et al., 2002), we explored whether

FGF14 affected synaptic transmission at the granule cell to

Purkinje cell synapse. We used paired recordings to identify a

granule cell to Purkinje cell synapse in which only the presynaptic

granule cell was transfected with FGF14 shRNA, a scrambled

control shRNA, or GFP (Figure 4A).We then evoked unitary excit-

atory postsynaptic currents (EPSCs) in the presence of 20 mM (�)

bicuculline. Knockdown of FGF14 in granule cells reduced the

EPSC amplitude in Purkinje cells by >80% compared with

EPSCs recorded from pairs in which the granule cell was trans-

fected with GFP only or with the control scrambled shRNA (Fig-

ures 4B and 4C). Because FGF14 is also present in Purkinje cell

somata (Shakkottai et al., 2009), we also checked whether

FGF14 exerted postsynaptic effects in Purkinje cells by

examining glutamate- and GABA-evoked responses after

knocking down endogenous FGF14 by shRNA. We obtained
by the capacitance of each cell to obtain the current density (pA/pF). *p < 0.05,

**p < 0.01 versus control.

See also Figure S2.



Table 1. Summary of Electrophysiology Data for CaV2.1 and

CaV2.2 Channel Activation and Inactivation in HEK 293 Cells

V1/2 (mV) k n

Activation

CaV2.1 control �11.5 ± 0.9 5.9 ± 0.2 31

FGF14WT �12.5 ± 0.5 5.4 ± 0.2 44

CaV2.2 control �4.8 ± 0.8 5.6 ± 0.2 24

FGF14WT �5.2 ± 0.8 5.5 ± 0.2 25

Inactivation

CaV2.1 control �19.3 ± 0.8 17.5 ± 1.4 23

FGF14WT �18.2 ± 2.3 15.1 ± 0.6 20

CaV2.2 control �18.4 ± 1.5 14.8 ± 1.3 15

FGF14WT �20.0 ± 1.5 14.1 ± 0.6 14

Activation kinetics were obtained from fits with a Boltzmann equation of

the form: G = Gmax/[1 + exp(V � V1/2)/k], where Gmax is the extrapolated

maximum Ca2+ conductance, V is the test voltage, V1/2 is the half-

activation voltage, and k is the slope factor. Steady-state inactivation

were obtained from fits with a Boltzmann relationship, I/Imax = (1 +

exp((V � V1/2)/k))
�1.

Figure 3. FGF14 Increases Ca2+ Gating Charge in CaV2.1 Channels

(A) Example Ca2+ channel current traces (using Ba2+ as the charge carrier)

recorded from HEK 293T cells in which CaV2.1 channels were coexpressed

with GFP control (black) or FGF14WT (red). The example traces were elicited by

a 20 ms step from the holding potential (�80 mV) to the reversal potential.

Magnification of the integrated gating currents is shown below.

(B) Summary data (mean ± SEM) of the integrated current (Q) normalized to

each cell capacitance for cells expressing CaV2.1 with GFP control (n = 14) or

FGF14WT (n = 13). **p < 0.01 versus control.
glutamate- and GABA-evoked currents by directly applying the

drugs to Purkinje cells. We found that neither glutamate- nor

GABA-evoked inward currents were altered compared with

currents from Purkinje cells transfected with a scrambled control

shRNA or GFP only (Figures S3A and S3B), suggesting FGF14

had no effect on postsynaptic responses.

FGF14 Regulates Vesicular Turnover and Short-Term
Synaptic Plasticity
We hypothesized that FGF14 knockdown in granule cells

reduced EPSCs at the granule cell to Purkinje cell synapse

because of a diminished presynaptic Ca2+ current through

CaV2.1 channels, consistent with the reduced CaV2.1 Ca2+ cur-

rent seen in Figure 2. We therefore tested whether FGF14 might

affect presynaptic Ca2+ influx in granule cells. We assessed this

indirectly by two different means. First, we measured synaptic

vesicular turnover after a 90 s depolarization with 90 mM KCl.

We measured vesicular turnover with FM4-64. Styryl FM

dyes become trapped in vesicles that have undergone

endocytosis following synaptic activity (Ryan et al., 1993),

providing a measure of vesicular turnover that is closely corre-

lated with the amount of presynaptic Ca2+ influx (Evans and

Cousin, 2007; Yamashita, 2012). We transfected the mixed

cultures with shRNA to knock down FGF14 or a scrambled

control shRNA, and quantified FM4-64 uptake in granule cells

after a 90 s depolarization by 90 mM KCl. The styryl dye was

included only during the 90 s depolarization, after which the

neurons were immediately washed then fixed. In these sparsely

transfected cultures, we followed a GFP-positive granule cell

axon until it synapsed with an untransfected Purkinje cell, and

then counted the number of punctae that were positive for

FM4-64 and GFP fluorescence (Figure 5A). In all cases, quantifi-

cation was performed with the experimenter blinded to the

identity of the transfection. Knockdown of FGF14 reduced the

number of recycled punctae by 54% compared with scrambled

control shRNA (Figures 5B and 5C). Second, we assessed
short-term plasticity. Presynaptic Ca2+ influx plays an essential

role in neurotransmitter release in CNS synapses and also con-

tributes to short-term synaptic plasticity. A reduction in presyn-

aptic Ca2+ influx is predicted to increase the paired pulse ratio

(PPR) in response to two closely spaced stimuli (Zucker and

Regehr, 2002). In the presence of 20 mM (�) bicuculline, we

measured the PPR in response to two stimuli at 10 Hz (Figures

5D and 5E) and found that when the granule cell expressed

GFP only or the scrambled control shRNA, the PPR was near

unity (1.03 ± 0.04, n = 16, and 1.05 ± 0.06, n = 10, respectively).

Knockdown of FGF14, however, significantly increased the PPR

(1.45 ± 0.11, n = 27), consistent with an effect on presynaptic

Ca2+ entry. Together with the reduction in vesicular turnover after

FGF14 knockdown, these data provided corroborating evidence

that presynaptic Ca2+ influx was reduced by FGF14 knockdown.

The SCA27-Causing FGF14 Mutant Affects Synaptic
Transmission in a Dominant-Negative Manner
We next addressed the effects of the FGF14bF150S mutant asso-

ciated with SCA27. We chose the ‘‘b’’ splice variant for study

because it is the most abundantly expressed in brain (Wang

et al., 2000). First, we examined whether FGF14bF150S affected

voltage-gated Ca2+ channel currents (with 10 mM Ba2+ as a

charge carrier) by step or ramp depolarization in granule cells.

As shown in Figures 6A–6D, transfection of FGF14bF150S signif-

icantly reduced the Ca2+ channel current density. This decrease

in Ca2+ current was also observed in response to an APW (Fig-

ures 6E and 6F). In contrast, overexpression of FGF14bWT

markedly increased Ca2+ currents in response to a step depolar-

ization, ramp protocol, or an APW. Since FGF14 increased Ca2+

currents above control, these data suggest that the effects of

endogenous FGF14 are not saturated (Figures 6A–6F).
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Figure 4. Endogenous FGF14 Regulates Synaptic Transmission at the Granule Cell to Purkinje Cell Synapse

(A) Evoked EPSCs in an untransfected Purkinje cell were elicited by a 20 ms depolarization of a transfected granule cell from a holding potential of �70 mV

to 10 mV.

(B) Representative EPSC traces recorded from Purkinje cells in which the presynaptic granule cell was transfected with GFP control (black), scrambled control

shRNA (gray), or FGF14 shRNA (blue).

(C) Averaged amplitude of unitary Purkinje cell EPSCs (mean ± SEM) when the presynaptic granule cells expressed GFP control (n = 14), scrambled control

shRNA (n = 25), or FGF14 shRNA (n = 20). **p < 0.01 versus control.

See also Figures S1 and S3.
We next examined whether the FGF14bF150S mutant affected

presynaptic Ca2+ influx in granule cells by using FM4-64-labeled

vesicular recycling as an indicator. Compared with control, the

SCA27 mutant reduced vesicular recycling (Figures 7A–7C). In

contrast, overexpression of FGF14bWT increased vesicular

recycling (Figures 7A–7C), consistent with the observed effects

on total Ca2+ current. Finally, we used paired recordings to

measure EPSCs in Purkinje cells after stimulation of a granule

cell transfected with FGF14bF150S, which allowed us to measure

directly the effect of FGF14bF150S on synaptic transmission. As

shown in Figures 7D and 7E, expression of FGF14bF150S in a

granule cell exerted a dominant-negative effect and markedly

reduced the EPSCs’ amplitude in Purkinje cells by 63%.

Overexpression of FGF14bWT, in contrast, markedly increased

the EPSCs by 317%, which also suggests that the effects of

endogenous FGF14 were not saturating.

DISCUSSION

Since the initial discovery of FHFs (Smallwood et al., 1996),

understanding of their physiological roles has evolved greatly.

The recognition of FHFs as NaV channel binding partners and

modulators, demonstration that Fgf14–/– mice displayed ataxia,

identification of FGF14 as the locus for SCA27, and demons-

tration that FHFs cannot activate FGF receptors redirected

most attention to the influence of FHFs intracellularly and specif-

ically focused attention on their roles in neuronal excitability (Liu

et al., 2001, 2003; Olsen et al., 2003; van Swieten et al., 2003;

Wang et al., 2002). Further focus on modulation of NaV channels

followed the demonstration that the SCA27 mutant version of

FGF14 acted as a dominant negative to suppress NaV currents

and excitability in hippocampal neurons (Laezza et al., 2007),

and that granule cells from Fgf14–/–;Fgf12–/– mice displayed a

deficit in intrinsic excitability and altered NaV channel inactivation

properties (Goldfarb et al., 2007). The ataxia phenotype common
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to Fgf14–/– mice and patients with the dominant-negative

FGF14bF150S mutation has thus been suspected to result from

NaV channel dysfunction in granule cells or Purkinje cells

(Goldfarb et al., 2007; Shakkottai et al., 2009).

Nevertheless, several observations suggest that FHFs might

possess capabilities beyond NaV channel regulation. For

example, CA1 synapses in Fgf14–/– mice have fewer total and

docked vesicles (Xiao et al., 2007), and Fgf13 knockdown in

Xenopus oocytes influences neuronal development by affecting

bone morphogenetic protein receptor activation of the MEK5-

ERK5 pathway (Nishimoto and Nishida, 2007). Moreover, certain

FHFs localize to the nucleus (Munoz-Sanjuan et al., 2000), a

subcellular location in which FHFs are unlikely to influence NaV
channels, and FHFs appear to have binding partners other

than NaV channels, such as kinase scaffolds (Schoorlemmer

and Goldfarb, 2001). In this context, our demonstration that

FGF14 regulates CaV2.1 channel currents and synaptic trans-

mission at the granule cell to Purkinje cell synapse adds an

additional dimension to FHF function. How FGF14 affects these

processes is unclear, but we suspect that the mechanism differs

from how FHFs affect NaV channels, which involves direct

binding with the NaV C terminus (Wang et al., 2012). In contrast,

wewere unable to detect direct interactions between FGF14 and

CaV2 channels by either coimmunoprecipitation or recombinant

protein-binding studies targeting intracellular domains of CaV2

channels or their auxiliary subunits. Consistent with our

observations, FGF14 was not annotated as a component of

the CaV2-anchored proteome in a recent analysis (Müller et al.,

2010). Thus, we hypothesize that the FGF14 acts indirectly, or

possibly transiently, to increase the number of CaV2 channels

at the plasma membrane.

Importantly, our data provide a mechanism by which FGF14

could affect synaptic transmission at a granule cell to Purkinje

cell synapse, thereby offering insight into the etiology of the

disease phenotypes in humans with SCA27 and the ataxia



Figure 5. Endogenous FGF14 Regulates Vesicular Recycling and

Short-Term Synaptic Plasticity

(A) Confocal images from cultured cerebellar neurons expressing GFP

(left), scrambled control shRNA (middle), or FGF14 shRNA (right) that

were loaded with FM4-64 by a 90 s depolarization using 90 mM KCl. Scale

bar: 5 mm.

(B) Distribution of FM4-64 punctae per synapse within a 453 45 mm2 region of

interest (ROI) in neurons transfected with control GFP (black, n = 81), scram-

bled control shRNA (gray, n = 49), or FGF14 shRNA (blue, n = 87). The data for

each group were fit to a Gaussian distribution.
phenotype in Fgf14–/– mice. We have shown that the mutant

FGF14bF150S acts as a dominant negative, reducing Ca2+ chan-

nel currents in granule cells in a manner similar to the effect of

shRNA knockdown of endogenous FGF14. The dominant-nega-

tive effect of FGF14bF150S on Ca2+ currents in granule cells and

the consequent reduction in EPSCs in Purkinje cells are both

consistent with the observation that the mutant also acts as a

dominant negative to reduce Na+ channel currents in hippo-

campal neurons (Laezza et al., 2007). Our data measuring

gating charge point to a potential role for FGF14 in trafficking

Ca2+ channels to, or regulating removal from, the plasma mem-

brane. As such, FHFs may have a broader role in trafficking ion

channels, since we recently demonstrated that endogenous

FGF13 increases the number of cell-surface NaV1.5 Na+ chan-

nels in cardiomyocytes (Wang et al., 2011). On the other hand,

our data also underline the concept that individual FHFs confer

channel-specific regulatory effects. For example, although

FGF14 regulated CaV2.1 and CaV2.2, the major presynaptic

Ca2+ channels, FGF14 did not affect currents through CaV1.2

or CaV2.3, which are mainly restricted to the somatodendritic

compartments. Such data argue against the possibility that

FGF14 mediates its effects via interaction with a Ca2+ channel

auxiliary protein, which would be common to all Ca2+ channels,

but could suggest that FGF14 controls a regulator, such as

a kinase, that has effects specific to individual types of Ca2+

channels.

The FGF14bF150S-induced reduction in Ca2+ channel currents

fits well with the observation that most SCA-associated channe-

lopathies or the related episodic ataxias result from perturbed

Ca2+ channel function (Shakkottai and Paulson, 2009), and the

observation that loss-of-function mutations in CaV2.1 underlie

the ataxia phenotype in tottering mice (Fletcher et al., 1996).

Thus, the previously identified actions of FGF14 on granule cell

NaV currents (Goldfarb et al., 2007), together with its effects on

granule cell CaV currents and the consequences for Purkinje

cell EPSCs described herein, suggest that altered Purkinje cell

output from the cerebellum in FGF14 loss-of-function or

dominant-negative mutations derives from multiple mecha-

nisms. Along with the previously demonstrated FGF14bF150S-

dependent reduction in NaV currents and channel availability

(Laezza et al., 2007), these data suggest that FGF14 is trulymulti-

modal and the ataxia phenotype caused by mutant FGF14

results from several independent mechanisms.

EXPERIMENTAL PROCEDURES

Molecular Biology

Mouse FGF14b or FGF14bF150S was cloned into pIRES2-AcGFP1. The F150S

mutation in FGF14b was generated with QuikChange (Agilent). Constructs
(C) Average punctae per 45 3 45 mm2 ROI (mean ± SEM) for neurons over-

expressing control GFP, scrambled control shRNA, or FGF14 shRNA.

(D) Representative EPSCs evoked by a paired-pulse protocol (indicated in

inset; 80 ms interstimulus interval) when the presynaptic granule cells

expressed GFP control (black), scrambled control shRNA (gray), or FGF14

shRNA (blue).

(E) Averaged paired-pulse ratio (mean amplitude ± SEM of the second EPSC

divided by the amplitude of the first EPSC). **p < 0.01 versus control.

See also Figure S1.
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Figure 6. The SCA27 FGF14 Mutant Reduces Granule Ca2+ Currents

(A) Example Ca2+ current traces (using Ba2+ as the charge carrier) recorded

from a cerebellar granule cell transfected with GFP control (black), FGF14WT

(red), or FGF14bF150S (green). The currents were evoked by a ramp protocol

from a holding potential of �80 mV to 50 mV in 1 s.

(B) Summary data (mean ± SEM) from granule cells expressing GFP control

(n = 17), FGF14WT (n = 25), or FGF14bF150S (n = 16).

(C) Example Ca2+ channel current traces recorded from a cerebellar granule

cell transfected with GFP control (black), FGF14WT (red), or FGF14bF150S

(green). The currents were evoked by a step protocol from a holding potential

of �80 mV to �10 mV in 500 ms.

(D) Summary data (mean ± SEM) from granule cells expressing GFP control

(n = 22), FGF14WT (n = 37), or FGF14bF150S (n = 13).

(E) Representative Cd2+-sensitive Ba2+ currents evoked by a single APW (top)

command recorded from granule cells transfected with GFP control (black),

scrambled control shRNA (gray), or FGF14 shRNA (blue). The integrated cur-

rent (Q) is colored in black, red, or green.

(F) Summary data (mean ± SEM) of the integrated current (Q) normalized to

each cell capacitance. Summary results were obtained from granule cells

expressing GFP control (n = 25), FGF14WT (n = 28), or FGF14bF150S (n = 16).

**p < 0.01 versus control.
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were sequenced in both directions. A complementary DNA (cDNA) for CaV2.1

(Kraus et al., 1998) was kindly provided by A. Lee (University of Iowa) by

permission of J. Striessnig (University of Innsbruck). A cDNA for CaV2.3

(Bannister et al., 2004) was kindly provided by Brett Adams (Utah State Univer-

sity). The cDNAs for CaV1.2, b2b and a2d were previously described (Wang

et al., 2007). Hairpins targeted to FGF14 were designed with Invitrogen’s

RNAi Designer. The sequences were synthesized via Integrated DNA Technol-

ogies and subsequently cloned into pLVTHM (Addgene). Neurons were trans-

fected with the different constructs followed by immunocytochemical staining

to determine the efficacy and specificity of knockdown. The most effective

shRNA has the sequence 50 - CGCGTGGAGGCAAACCAGTCAACAAGTG

CATTCAAGAGATGCACTTGTTGACTGGTTTGCCTCCTTTTTTAT-30 and was

used for the experiments described in this work. A scrambled shRNA

that exhibits no significant homology to genes in rodent genomes was used

as a control. This scrambled shRNA was previously described (Wang et al.,

2011).

Primary Cerebellar Culture and Transfection

Primary dissociated cerebellar cultures were prepared using minor modifica-

tions of a previously described procedure for preparation of hippocampal

cultures (Wang et al., 2007). Briefly, the cerebellum cortex was dissected

on ice from P0–P1 male or female Wistar rat pups, digested with 0.25%

trypsin for 10 min at 37�C with Dulbecco’s modified Eagle’s medium

(DMEM; Sigma), and dissociated into single cells by gentle trituration. The

cells were seeded onto coverslips coated with 50 mg/ml poly-D-lysine (Sigma)

and 25 mg/ml laminin (Sigma) at a density of 2.5–3.0 3 105 cells/coverslip

(12 3 12 mm coverslip) in DMEM supplemented with 10% heat-inactivated

fetal bovine serum (FBS). The cells were maintained in a humidified incubator

in 5% CO2 at 37�C. After 15–16 h, the medium was replaced with basal

medium Eagle (BME; Sigma) supplemented with 2% B27 (Invitrogen), 1%

or 5% FBS, 25 mM uridine, 70 mM 5-fluorodeoxyuridine, and 20 mM KCl. After

5–7 days in vitro (DIV) culture, the neurons were transiently transfected with

1 mg plasmid DNA per coverslip with calcium phosphate, as described previ-

ously (Wang et al., 2007). Experiments were carried out 7–12 days after

transfection.

HEK 293T Cell Culture and Transfection

HEK 293T cells were maintained in DMEM containing 10% FBS at 37�C in a

5% CO2 incubator. The cells were plated in 60-mm tissue culture dishes,

grown to 65%–75% confluency, and transfected with Lipofectamine 2000

(Invitrogen) in serum-reduced medium (Opti-MEM; Invitrogen) following the

manufacturer’s instructions. The total amount of cDNA used per dish was

8 mg, which included 3 mg of CaV2.1, CaV2.2, CaV2.3, or CaV1.2 subunits

(a1A, a1B, a1E, or a1C, respectively); 2.2 mg of b2b; 1.8 mg of a2d; and 2 mg of

the empty pIRES2-acGFP1 vector or FGF14b in 5 ml transfection medium.

After 24 h of transfection, the cells were replated on coverslips coated with

50 mg/ml poly-D-lysine (Sigma) at a low density for recording.

Electrophysiological Recordings

Whole-cell voltage-clamp recordings were obtained from cultured cerebellar

granule cells and Purkinje cells 7–12 days after transfection. The granule

cells and Purkinje cells were identified based on their size and morphology.

For paired recording experiments, whole-cell recordings used an Axopatch

200A and 200B amplifier (Axon Instruments), the signal was filtered at

2–5 kHz bandwidth. The data acquisition was performed using a DigiData

1322A (Axon Instruments) digitizer and stored on a personal computer

running pClamp software, version 10. For EPSCs recording, patch pipettes

with 5–6 MU resistances were filled with internal solution containing (in mM)

120 K-gluconate, 10 KCl, 5 MgCl2, 0.6 EGTA, 5 HEPES, 10 phosphocrea-

tine, 50 U/ml creatine-phosphokinase, 2 Mg-ATP, and 0.2 GTP, pH 7.3

with KOH (290–300 mOsm). The external solution contained (in mM) 135

NaCl, 2 CaCl2, 1 MgCl2, 5 KCl, 10 glucose, and 5 HEPES, pH 7.3, with

NaOH (300–310 mOsm). To block GABAA receptor activity, 20 mM (�)

bicuculline was added to the external solution. A brief 5 mV hyper-

polarizing step was performed at the end of each sweep to monitor series

resistance, capacitance, and input (leak) resistance throughout the



Figure 7. The SCA27 FGF14 Mutant in Granule Cells Reduces Pre-

synaptic Ca2+ Influx and EPSCs at a Granule Cell to Purkinje Cell

Synapse

(A) Confocal images from cultured cerebellar neurons expressing GFP (left),

FGF14WT (middle), or FGF14bF150S (right) that were loaded with FM4-64 by a

90 s depolarization using 90 mM KCl. Scale bar: 5 mm.

(B) Distribution of FM4-64 punctae per synapse within a 45 3 45 mm2 ROI in

neurons transfected with GFP (black, n = 81), FGF14WT (red, n = 98), or

FGF14bF150S (green, n = 69). The data for each group were fit to a Gaussian

distribution.

(C) Averaged number of punctae per 45 3 45 mm2 ROI (mean ± SEM) for

neurons overexpressing control GFP (black, n = 81), FGF14WT (red, n = 98), or

FGF14bF150S (green, n = 69).

(D) Representative EPSC traces recorded from Purkinje cells evoked by a

20 ms depolarization of the granule cell from a holding potential of �70 mV to
experiment. Cells were rejected from analysis if the series resistance

changed by >15%–20%.

Neuronal Ca2+ currents were recorded using an EPC 10 USB patch

amplifier (HEKA Elektronik). The signal was filtered at 2.9 Hz and

digitized at 20 Hz. To record currents through voltage-gated Ca2+ channels,

we used a bath solution containing (in mM) 124 NaCl, 20 TEA-Cl, 1 MgCl2,

10 BaCl2, 5 HEPES, and 10 glucose, pH 7.3, with NaOH (300–310 mOsm).

The internal solution contained (in mM) 115 CsCl, 20 TEA-Cl, 1 CaCl2,

2 MgCl2, 10 HEPES, and 2 Mg-ATP, pH 7.3, with CsOH (290–300 mOsm).

To block Na+ currents, 1 mM tetrodotoxin (TTX) was supplemented in the

external solution.

Whole-cell voltage-clamp recordings were obtained from HEK 293T cells at

room temperature 2–3 days after transfection using external and internal

solutions as described above. The liquid junction potential and series

resistance for these recordings were not corrected, and cells were discarded

if series resistance was >10 MU.

Protocols and Data Analysis

Data analysis was performed using PatchMaster, FitMaster, and

Clampfit 10.2 software. All averaged data presented the mean ± SEM.

Statistical significance was determined using Student’s t test or one-

way ANOVA. In whole-cell voltage-clamp mode, unitary EPSCs were

obtained by stimulating a transfected presynaptic granule cell and

recording from a neighboring untransfected postsynaptic Purkinje cell

7–12 days after transfection (Figure 4A). To elicit unitary EPSCs, the two cells

were both held at �70 mV membrane potential and a 20 ms depolarization

pulse was delivered to the granule cell. The EPSC amplitude was determined

by an average of five to ten EPSCs from each cell. The neuronal Ca2+ current

was obtained by 500 ms step depolarization from a holding potential

of �80 mV to �10 mV or by ramp from a holding potential of �80 mV

to +50 mV in 1 s. The current amplitude was normalized to each cell’s

capacitance.

Recombinant HEK 293T cells were voltage clamped at a holding potential

(Vh) of �80 mV, and CaV2.1, CaV2.2, CaV2.3, or CaV1.2 current ICa was

elicited by depolarizing pulses of 300 ms from �80 mV to +60 mV (in

10 mV increments). Peak ICa amplitude during the test pulse was divided

by the corresponding cell capacitance to obtain a measure of current density

(pA/pF). Current density-to-voltage (I-V) relationships were plotted. CaV2.1

currents were also evoked by an APW command. The APW was modified

from a previous study (Borst et al., 1995). In brief, the APW began

at �80 mV and peaked at +33 mV with a 2 ms half-amplitude duration.

The maximal rising and falling slopes were +127 V/s and �52 V/s, respec-

tively. Ca2+ channel currents were defined as the CdCI2 (300 mM) sensitive

fraction. The gating charge was obtained by depolarization from the holding

potential (�80 mV) to the reversal potential (40–50 mV, determined individu-

ally for each cell) for 20 ms.

FM dye staining was performed on cultured cerebellar neurons. On

day 6 (DIV), the neurons were transfected with pIRES2-AcGFP1 (control),

scrambled control shRNA, FGF14 shRNA, FGF14bWT, or FGF14bF150S.

FM4-64 (Molecular Probes) dye loading was performed 9 days after

transfection (15 DIV). The neurons were first washed in Hank’s balanced

salt solution (HBSS [in mM]: 139 NaCl, 2.5 KCl, 10 HEPES, 10 glucose, 2

CaCl2, and 1.3 MgCl2, pH 7.3, 300 mOsm), and then depolarized for 90 s

at room temperature with 90 mM KCl solution (in mM: 48.5 NaCl, 90 KCl,

10 glucose, 10 HEPES, 2 CaCl2, 1.3 MgCl2, 0.05 APV, and 0.02 DNQX)

containing 15 mM FM4-64. The neurons were immediately washed for 2 min

with a calcium-free HBSS containing 0.1 mM Advasep-7 (Sigma) and then

rinsed three times with HBSS to remove all nonspecific membrane bound

FM4-64. Finally, the cells were fixed for 10 min with 4% paraformaldehyde/

4% sucrose.
10 mV in which the presynaptic granule cell was transfected with GFP (black),

FGF14WT (red), or FGF14bF150S (green).

(E) Averaged amplitude of Purkinje cell EPSCs (mean ± SEM) when the pre-

synaptic granule cell expressed GFP control (n = 14), FGF14WT (n = 19), or

FGF14bF150S (n = 10). **p < 0.01 versus control.
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Imaging was performedwith a Zeiss LSM 510 confocal microscope using an

oil immersion 40X objective. GFP and FM4-64 dye were excited at 488 and

543 nm, respectively. All images were collected at 1024 3 1024 pixel resolu-

tion. The nerve terminals of transfected neurons were identified by tracing

the GFP-positive axons. Synaptic punctae incorporation along a traced axonal

process was identified at a region away from the cell body. For quantification,

the experimenter was blinded to the identity of the transfected plasmid. A

45 mm 3 45 mm square region of interest was selected and the numbers of

punctae were calculated using NIH ImageJ software. Particles <0.3 mm in

diameter were excluded from analyses.

For further details regarding the materials and methods used in this work,

see Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION
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