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SUMMARY

Timing plays a crucial role in sensorimotor function.
However, the neural mechanisms that enable the
brain to flexibly measure and reproduce time inter-
vals are not known.We recorded neural activity in pa-
rietal cortex of monkeys in a time reproduction task.
Monkeys were trained to measure and immediately
afterward reproduce different sample intervals.
While measuring an interval, neural responses had
a nonlinear profile that increased with the duration
of the sample interval. Activity was reset during the
transition from measurement to production and
was followed by a ramping activity whose slope en-
coded the previously measured sample interval. We
found that firing rates at the end of the measurement
epoch were correlated with both the slope of the
ramp and the monkey’s corresponding production
interval on a trial-by-trial basis. Analysis of response
dynamics further linked the rate of change of firing
rates in the measurement epoch to the slope of the
ramp in the production epoch. These observations
suggest that, during time reproduction, an interval
is measured prospectively in relation to the desired
motor plan to reproduce that interval.

INTRODUCTION

Timing is essential for many different aspects of brain function,

from classical and instrumental conditioning to complex cogni-

tive faculties such as coordinating thoughts and actions in hu-

mans [1–3]. A basic understanding of the neural basis of interval

timing could shed light on how the brain integrates information

about the recent past with plans for the near future, a process

that is at the core of central information processing.

To incorporate knowledge about elapsed time into behavior,

neural circuits must be able to measure and produce time inter-

vals. These capacities are typically discussed under the rubrics

of ‘‘sensory timing’’ and ‘‘motor timing’’ [4]. Animal models of in-

terval timing in the sub-second to seconds range have focused

on relatively simple tasks. Sensory timing tasks are typically con-

cernedwith the ability to anticipate a sensory event [5] or to cate-
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gorize time intervals [6, 7]. Motor timing tasks, on the other hand,

focus on the ability to produce fixed time intervals in ongoing

movements [8] or in actions learned through trace [9, 10] and op-

erant conditioning [11–14]. However, in many natural settings,

sensory and motor aspects of timing are heavily intertwined.

For example, in sports, music, and imitation, humans continu-

ously measure time intervals and use those measurements to

control the timing of their actions. To investigate themechanisms

that flexibly link sensory and motor timing capacities, we devel-

oped a time reproduction task for rhesus monkeys in which the

animals measured an interval demarcated by two time markers

and reproduced it by a proactive saccade.

Neural mechanisms of interval timing engage multiple brain

areas and are thought to depend on timescale [3, 4]. In the

sub-second to seconds range, where temporal processing is

crucial for anticipation, prediction and planning in sensorimotor

function, correlates of interval timing have been reported in

higher cortical areas, the basal ganglia, and the cerebellum [4].

We focused our work on the lateral intraparietal cortex (LIP),

which is thought to play a central role in sensorimotor function

[15–20] and where neurons represent elapsed time during both

sensory [5, 6] and motor timing tasks [13, 21].

We found that single neurons in LIP conveyed information

about the animal’s internal estimate of elapsed time during

both measurement and reproduction of time intervals. The

response profiles associated with themeasurement and produc-

tion of time intervals were remarkably different yet linked such

that modulation of activity during the measurement predicted

the response dynamics during the ensuing production.

RESULTS

Behavior
We trained monkeys on an interval reproduction task [22], which

we refer to as the ‘‘Ready, Set, Go’’ (RSG) task. The task

(Figure 1A) consisted of two successive epochs. In the first

‘‘measurement epoch,’’ monkeys measured a sample interval,

demarcated by two peripheral flashes, a Ready cue (‘‘Ready’’

from here on) followed by a Set cue (‘‘Set’’ from here on). In

the immediately ensuing ‘‘production epoch,’’ monkeys had to

reproduce the sample interval by making a self-initiated

saccadic eye movement to a visual target (i.e., no explicit ‘‘Go’’

cue was presented). On each trial, the sample interval was drawn

randomly from a discrete uniform distribution ranging between

529 and 1,059 ms (Figure 1B). We refer to this distribution as
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Figure 1. The RSG Task and Behavior

(A) Sequence of events during a trial. The monkey fixated a central spot. A saccade target was then presented in the response field (RF) of the neuron (gray zone)

followed in succession by two transiently flashed peripheral cues (Ready followed by Set). The monkey then made an eye movement to the saccade target. To

receive maximum reward, monkeys were required to time their saccade to the target so as to match the time interval between Set and saccade (production

interval) to the interval between Ready and Set (sample interval). The target changed color to green on successful trials.

(B) Sample intervals were drawn from a discrete uniform distribution with 10 values ranging between 529 and 1,059 ms.

(C) Reward schedule. The width of the window for which animals received liquid reward (green area) scaled with the sample interval (see Supplemental

Experimental Procedures). The amount of reward within this window increased linearly with accuracy, as shown schematically by the size of liquid drops to the

right. No feedback or reward was provided for production intervals outside the green region.

(D) Production interval as a function of sample interval. Mean production intervals (open and filled circles) for the twomonkeys (Yo andWi) are plotted as a function

of sample interval (SEMs are smaller than the circles). Gray histograms show the distribution of production intervals for each sample interval for bothmonkeys. On

average, production intervals deviated from the line of equality (diagonal dashed line) and toward the mean of the sample interval distribution (horizontal dashed

line). The inset shows the magnitude of the bias for the longest sample interval (ordinate) versus the bias for the shortest sample interval (abscissa) across the 58

(legend continued on next page)
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the ‘‘prior.’’ The production interval was measured as the interval

between Set and when monkeys acquired the saccade target. In

timing tasks, the variability of responses usually scales with the

duration of the interval [1]. To compensate for this so-called

‘‘scalar variability,’’ the width of the window in which monkeys

received reward scaled with the sample interval (Figure 1C).

This manipulation made the task difficulty more or less the

same for all the sample intervals. To encourage animals to be

as accurate as possible, we scaled the reward size as a function

of accuracy (see Supplemental Experimental Procedures).

Production intervals increased monotonically with the sample

interval (Figure 1D) and were more variable for longer sample in-

tervals, which is consistent with the scalar variability of timing.

However, production intervals exhibited systematic biases to-

ward the mean of the prior distribution (horizontal line). The

magnitude of the bias was larger for sample intervals at the

long end of the prior distribution (Figure 1D, inset) where mea-

surements are more variable (due to scalar variability). Following

earlier work in humans [22], we found that this trade-off between

bias and variance was accurately captured by a Bayesian model

that optimizes performance by exploiting knowledge about the

prior distribution to reduce the variability associated with uncer-

tain measurements (Figures 1E and 1F).

Physiology
We placed the saccade target in the response field (RF) of indi-

vidual LIP neurons and recorded their spiking activity as the

animals performed the RSG task. Neural responses were modu-

lated during the measurement epoch between Ready and Set,

underwent a reset after Set, and increased before saccade initi-

ation (Figure 2B). These observations were consistent across LIP

and were readily evident in the population-average response

profile (Figures 2C–2E). After the appearance of Ready, which

was well outside the RF, LIP responses initially declined and

stayed low for approximately 500 ms and then increased mono-

tonically until Set was presented (Figure 2C). The appearance of

Set, whichwas also flashedwell outside the RF, triggered a dip in

the activity followed by a monotonic rise (Figure 2D). Activity

associatedwith the dip (100–250ms after Set) did not vary signif-

icantly with the sample interval (regression; beta = 0.44, confi-

dence interval [CI] = [�9.33 10.21], p = 0.46). In the production

epoch, LIP responses increased monotonically and reached a

plateau shortly before saccade initiation (Figure 2E). At the

plateau phase (100–250 ms before saccade initiation), re-

sponses did not vary significantly with the sample interval

(regression; beta = �1.49, CI = [�12.82 9.83], p = 0.40).

Our initial analysis focused on two timewindows, (1) an interval

near the time of Set and (2) an interval between Set and saccade.

The average firing rate near the time of Set (from 50 ms before to
recording sessions for the two animals (open and filled circles). Themagnitude of t

t test, p < 1e�7).

(E) The fit (solid line) of a Bayesian model to the behavior of the twomonkeys. Data

with measurement and production noise derived from the fit of the Bayesian mo

(F) Comparison of the variability and bias of production intervals between the an

Bias’’) wasmeasured as the root-mean square of the production interval bias acro

as the root-mean square of the SD across sample intervals. The data show that th

model fits (ordinate) accurately captures the corresponding values derived from th

all behavioral sessions, showing that monkeys’ behavior was stable across sess
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50 ms after Set) increased monotonically with sample intervals

(Figure 3A), both across the population (regression: beta =

17.90 sp/s/s, CI = [10.92 24.87], p < 1e�6) and for 22 out of

58 individual neurons (t test, p < 0.05). In the interval between

Set and saccade, the buildup rate (estimated 200–500ms before

saccade time) was progressively shallower for longer sample in-

tervals (Figure 3B), both across the population (regression:

beta = �144.62 sp/s/s/s; CI = [�164.15 �125.09], p < 1e�10)

and for 40 out of 58 of individual neurons (t test, p < 0.05). These

analyses indicate that both the activity near the time of Set and

the following ramping activity (i.e., linear increase of firing rates)

during the production epoch provide a correlate of the sample

interval.

Linking Neural Activity to Behavior
To assess the link between the neural activity and behavior, we

first focused on the production epoch. Computing a reliable es-

timate of the buildup rate from spike times of individual neurons

in single trials is challenging. To tackle this problem, wemodeled

the ramping activity by a non-homogeneous Poisson process

with a linear rate function and used the spike times 200–

500 ms before saccade time to estimate the linear rate function,

which corresponds to the slope of the buildup rate. Using this es-

timate, we found a significant negative correlation between the

buildup rate and the production interval for every sample interval

(correlation coefficient =�0.26 ± 0.04 [mean ± SE], p < 0.005 for

all 10 intervals). Importantly, the correlation analysis was per-

formed for each sample interval independently so that the pair-

wise relationships could not be attributed to an indirect effect

of the sample interval on the firing rates and the behavior (see

Figure S1 for an alternative analysis combining values across

all trials). This significant negative correlation indicates that,

for every sample interval, trials with a steeper buildup rate

were followed by shorter production intervals, consistent with

previous electrophysiological recordings in motor timing tasks

[12, 21, 23–26].

We then asked whether the activity in the measurement epoch

predicts the buildup rate in the production epoch. We measured

the trial-by-trial correlation between the buildup rate and the

activity at the time of Set and found that the quantities were

negatively correlated for every sample interval (correlation coef-

ficient = �0.23 ± 0.02 (mean ± SE), p < 1e�6 for all 10 intervals).

Again, by performing the correlation analysis for each sample in-

terval independently, we ensured that the pairwise correlation

was not due to an indirect effect of the sample interval (see Fig-

ure S1 for an alternative analysis combining values across all

trials). Moreover, this correlation was not explained by an auto-

correlation in LIP firing rates within a trial because there was

no significant correlation between buildup rate and LIP activity
he bias was significantly larger for the longest sample interval (37.08 ± 5.55ms;

points are replicated from (A). The inset shows theWeber fractions associated

del to each behavioral session (see Supplemental Experimental Procedures).

imals’ behavior and the Bayesian model across sessions. The bias (‘‘Average

ss all sample intervals. The variability (‘‘Average Var1/2’’) was similarly measured

e Average Bias (black) and the Average Var1/2 (red) predicted from the Bayesian

e animal’s behavior. The inset is a plot of Average Var1/2 versus Average Bias for

ions.
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Figure 2. LIP Electrophysiology in the RSG Task

(A) Recording site. Top: a macaque brain is shown schematically along with a coronal plane through the intraparietal sulcus (ips). Bottom: the structural MRI of a

coronal section of one of the monkeys (Yo) after the placement of the recording cylinder. All recorded neurons were within the ventral portion of area LIP along the

lateral bank of the ips (red).

(B) Raster plot of the spiking activity of a single neuron from before the onset of the saccade target through completion of the saccadic eyemovement. Each trial is

displayed as a row of spikes (black tics) aligned to the time of Set. Colored symbols mark the times of target onset (blue), Ready (red), Set (orange), and when the

saccade reaches the target (green). Trials are sorted by duration of the sample interval; the order was random in the experiment.

(C) Response averages (N = 58) aligned to the onset of Ready. Sample intervals are indicated by colors (see legend for E). Each trace terminates at the time of the

corresponding Set, indicated by a filled circle. After an initial decline, activity increased monotonically with elapsed time.

(D) Response averages aligned to the time of Set. After Set, responses underwent a stereotyped dip and then diverged according to the sample interval. Filled

colored circles are identical to those in (A).

(E) Response averages aligned to the time of saccade. Firing rate increased toward a common plateau approximately 200 ms before saccade initiation. The

buildup of firing rate was shallower for longer sample intervals.

In (C)–(E), error bars indicate SEM.
early in the measurement epoch or during the dip after the Set

(p > 0.05).

The results from the simple pairwise correlation analyses is

consistent with a model in which the sample interval controls

the activity at the time of Set (Figures 2D and 3A), which in turn

sets the buildup rate (Figures 2E and 3B), which in turn forecasts

the saccade initiation time. However, with four interrelated vari-
2602 Current Biology 25, 2599–2609, October 19, 2015 ª2015 Elsevi
ables (sample interval, Set activity, buildup rate, and production

interval), it is important to ascertain that pairwise correlation be-

tween any two variables is not explained by their association with

the other two variables. Thus, we performed a partial correlation

analysis looking at the strength of association between each pair

of variables while the variation in the other variables are ac-

counted for—for example, the correlation between buildup rate
er Ltd All rights reserved
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Figure 3. Representation of the Sample In-

terval in the RSG Task in LIP Activity

(A) Average firing rate from 100 ms before to 50 ms

after Set (Set activity), as a function of sample in-

terval. Firing rate near the time of Set increased

monotonically with elapsed time. Error bars are

SEM (N = 58 neurons). For each neuron, we

computed the slope of the regression line relating

Set activity to sample interval. Inset histogram

shows the distribution of slopes across 58 neu-

rons. Dashed line indicates the mean regression

slope; filled bars indicate slopes significantly

different from zero (regression; t test, p < 0.05 for

22 out of 58 cells).

(B) Average buildup rate of the neural response

from 500 to 200 ms before the saccade, as a

function of sample interval. The buildup was more

gradual with longer sample intervals. Error bars are SEM (N = 58 neurons). Inset histogram shows the distribution of regression coefficient in a linear regression of

the buildup rate against sample interval for 58 neurons. Dashed line indicates mean; filled bars indicate slopes significantly different from zero (regression; t test,

p < 0.05 for 40 out of 58 cells).
and the production interval while accounting for the sample inter-

val and Set activity. Table 1 shows the magnitude of the simple

pairwise correlations (top right) and pairwise partial correlations

(bottom left). The results of the partial correlation analysis upheld

the original results about the linkage between (1) the sample in-

terval and Set activity, (2) the Set activity and the buildup rate,

and (3) the buildup rate and the production interval. This analysis

also led to two additional findings. First, the association between

sample interval and buildup rate was greatly diminished when

the variations in the Set activity were accounted for. Second,

the correlation between Set activity and production interval

was no longer statistically significant after accounting for buildup

rate and sample interval. Both of these observations strengthen

the interpretation of the pairwise correlations in terms of an asso-

ciation between the buildup rate with the production interval and

an association between the Set activity with the sample interval.

Response Dynamics in LIP
LIP responses preceding saccade initiation increased approxi-

mately linearly (Figure 2E). This ramping activity is consistent

with an increase in the salience of the saccade target [27, 28]

mediated by an evolving motor plan [21] or an expectation of

reward [18]. In contrast, the response dynamics in the measure-

ment epoch (Figure 2C) is unexpected. In this epoch, neither the

motor plan nor the reward times were known before the appear-

ance of Set.More specifically, it is unclear why the responses un-

derwent a slow and prolonged suppression until approximately

500 ms after Ready and why they increased with a decelerating

nonlinearity until the time of Set.

One possibility is that LIP response dynamics are explained by

modulations of attention, induced by the sensory and motor

events in the task, irrespective of computations needed for inter-

val reproduction. For example, visual flashes could modulate

exogenous attention. Similarly, the firing rate dynamics after

Ready could be due to a slow shift of endogenous attention to

the saccadic target. To examine these possibilities, we designed

a control task, which we refer to as the Ready-Go (RG) task (Fig-

ure 4). The sequence of events in the RG task were identical to

the RSG task: fixation followed by the presentation of Ready

and Set (demarcating an interval sampled from the prior), fol-
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lowed by a proactive saccade to a visual target, followed by

reward for accurately timed saccades. However, in the RG

task, monkeys had to produce a fixed 1,588-ms interval from

the time of Ready, irrespective of when Set was presented (Fig-

ure 4A). Importantly, the RG task maintained the spatial and

temporal structure of sensory and motor events but inverted

the relationship between the duration of two epochs such that

longer Ready to Set intervals were followed by shorter Set to

saccade intervals. Accordingly, if LIP responses were explained

bymodulations of attention due to sensory andmotor events, we

would expect to see the same response dynamics in the two

tasks.

Both monkeys learned the RG task, as evidenced by the in-

verted relationship between the duration of the two epochs:

the interval between Set and saccade was progressively shorter

for longer Ready-Set intervals (Figure 4B). There were, however,

systematic biases away from the target 1,588 ms. In particular,

saccades were initiated earlier when Set occurred shortly after

Ready and later when Set occurred at a longer interval. This

counterintuitive observation is predicted by a Bayesian model

similar to the RSG task in which knowledge about the prior dis-

tribution of the time of Set helps to reduce variability and improve

performance (Supplemental Experimental Procedures).

In the RG task, LIP activity began to rise shortly after Ready

(Figure 4C), underwent a transient dip after Set (Figure 4D),

and continued its climb to a maximum firing rate shortly before

saccade initiation (Figure 4E). Notably, responses increased

with an approximately constant buildup rate in both Ready-Set

and Set-saccade epochs. The response dynamics in the RSG

and RG tasks differed in two important ways (Figure 5). First,

the responses immediately after Ready were remarkably

different. Unlike the RSG task where responses were sup-

pressed for nearly 500 ms, in the RG task, responses underwent

a rapid dip and recovery, whichwas similar to how LIP responses

changed after Set in the RSG task. Second, unlike in the RSG

task, where responses increased nonlinearly 500 ms after

Ready, in the RG task, responses exhibited a ramp-like activity

with firing rates increasing linearly until the time of Set. The linear

rise of activity before Set in the RG task was similar to the ramp-

ing activity of the RSG task before saccade initiation.
609, October 19, 2015 ª2015 Elsevier Ltd All rights reserved 2603



Table 1. Simple and Partial Pairwise Correlations between the

Sample Interval, the Activity near the Time of Set, i.e., the Set

Activity, the Buildup Rate Prior to Saccade Initiation, and the

Production Interval

Sample

Interval

Set

Activity

Buildup

Rate

Production

Interval

Sample interval – 0.13* �0.27* 0.62*

Set activity 0.07a,* – �0.26* 0.11*

Buildup rate �0.04a,* �0.23a,* – �0.37*

Production interval 0.58a,* �0.03a �0.26a,* –

The pairwise correlations are shown in the upper right triangle of the table

and the partial correlations in the bottom left triangle (see footnote below).

The partial correlation between each pair of variables is measured after

accounting for the effect of the other two variables. The asterisks (*) corre-

spond to correlation values that are significantly different from zero

(p < 0.01). The diagonal values (dashes) correspond to correlation of a

variable with itself.
aPartial correlation
Importantly, the differences between the response dynamics

in the two tasks are not explained by a difference in the

baseline activity or response gain of the recorded neurons,

as evidenced by the similar average firing rate in both

tasks early in the measurement epoch (Figure 5). Since the

RG and RSG tasks had identical sensory and motor compo-

nents, the striking differences in firing rate modulations

associated with the two tasks rule out an interpretation of

the prolonged suppression in the RSG task in terms of

low-level sensory interactions or gradual shifts of attention

from Ready to the RF in anticipation of the saccade. Instead,

the differences in firing rate dynamics must be related to

the differences in temporal demands of the two tasks: in the

RG task, the desired production interval (1,588 ms) was

known through the trial, whereas in the RSG task, the desired

interval changed depending on the time between Ready

and Set.

Computational Models of Response Dynamics in the
Measurement Epoch
We considered several computational models to explain the

response profile in the measurement epoch of the RSG task.

Each model sought to predict the observed dynamics based

on the dynamics of a candidate variable such as the anticipation

of Set or the anticipation of reward. In all models, we allowed our-

selves the freedom to scale and offset the predicted dynamics to

fit the neural data. This procedure ensures that the nonlinearities

in the neural data could only be explained by the variable of inter-

est and not the model parameters (see Supplemental Experi-

mental Procedures).

Anticipation of Set

The earliest time when Set was presented was 529 ms, which

matches the observed 500-ms delay in the rise of LIP responses

after Ready. Based on this observation and motivated by previ-

ous work [5, 29], we asked whether LIP responses represent a

hazard function of the time of Set (the probability that Set will

occur now, given that it has not yet occurred). As evident from

Figure 6A, the best fit of this model is inadequate since the

hazard function associated with a uniform prior distribution in-
2604 Current Biology 25, 2599–2609, October 19, 2015 ª2015 Elsevi
creases expansively, whereas LIP firing rates exhibited a

compressive nonlinearity.

Anticipation of Reward

Since reward expectation modulates LIP activity [18], we asked

whether the observed response dynamics represent the proba-

bility of expected reward. Since the animal never received

reward before the time of Set, we can reject the strongest

form of this hypothesis—that firing rates represent the instanta-

neous probability of reward. However, we considered a more

nuanced version of this hypothesis in which the firing rate

before Set represents the probability that the animal will receive

reward at the end of that trial (see Supplemental Experimental

Procedures), which we estimated directly from the average

reward the animal received. The response dynamics predicted

by this model also do not match the observed LIP dynamics

(Figure 6B).

Anticipation of the Expected Time of Reward

This is a timing model, but one in which firing rates adopt a slope

that is predictive of the expected time (as opposed to the prob-

ability) of reward. This schemewasmotivated by the observation

of response dynamics in the production epoch of the RSG task

where the buildup rate was adjusted such that the ramping activ-

ity reached a terminal firing rate shortly before the expected time

of reward. We formulated this model by a first order linear differ-

ential equation that adjusts the instantaneous slope of firing rate

according to the expected time of reward (see Supplemental

Experimental Procedures). As shown in Figure 6C, this model

predicts a decelerating response dynamics after 529 ms, which

is consistent with our data. However, it additionally predicts a lin-

early rising activity in the early part of the measurement epoch,

which is similar to what we observed in the RG task (Figure 4C),

but not in the RSG task.

Bayesian Estimate of the Sample Interval

Our analysis of behavior showed that the production interval was

based on a Bayesian estimate of the sample interval (Figures 1E

and 1F). This finding motivates a model in which the activity dur-

ing themeasurement epoch reflects the Bayesian estimate of the

sample interval. This idea is appealing because the Bayesian es-

timate is bounded by the range of the prior distribution, which

could explain the �500-ms delay in the rise of responses after

Ready. Moreover, the Bayesian regression toward the mean of

the prior might explain the nonlinear response dynamics begin-

ning �500 ms after Ready. As evident in Figure 6D, this scheme

is broadly consistent with a rise of firing rates after approximately

500 ms and the decelerating nonlinearity, albeit somewhat

different from the LIP response profile. This difference, however,

might be due to our particular implementation of the Bayesian

model (see Discussion).

Preplanning the Production Dynamics

A simple observation from LIP response dynamics is that both

the instantaneous slope of the activity as a function of sample in-

terval before Set and the slope of the ramping activity after Set

decrease progressively with longer sample intervals. We there-

fore considered a ‘‘preplanning’’ hypothesis in which the slope

of activity in the measurement interval is predictive of the slope

of activity in the production epoch. This is an attractive

computational strategy as it obviates the need to rapidly

compute the buildup rate during the transition between the mea-

surement and production epochs. Based on this scheme, the
er Ltd All rights reserved
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Figure 4. The RG Control Experiment

(A) Task design. The animal had to make a saccade to visual target 1,588ms after Ready. Tomake the sensory events of the RG and RSG tasks identical, we also

presented a Set cue in the RG task. The interval between Ready and Set was drawn randomly from the same distribution used in the RSG task (Figure 1B).

(B) Animals’ behavior in the RG task. The behavior is plotted in the same format as in the RSG task (Figure 1D); i.e., the Set-saccade intervals as a function of the

Ready-Set interval. In this task, maximum reward was given when the Ready-saccade interval (i.e., the sum of the Ready-Set and Set-saccade intervals) was

1,588 ms (anti-diagonal). As expected, the Set-saccade intervals were on average shorter for longer Ready-Set intervals. However, saccade times exhibited

systematic biases away from the anti-diagonal.

(C–E) The time course of average population activity (N = 39) plotted in the same format as in Figures 2C–2E.
instantaneous slope of activity at the time of Set should provide

an estimate of the buildup rate after Set. To test the hypothesis,

we constructed a model in which the instantaneous slope of

activity at the time of Set was linearly related to the buildup

rate after Set (Experimental Procedures). This model captures

the response dynamics in the measurement epoch better than

the other models we considered (Figure 6E).

The preplanning model has the additional virtue that it pro-

vides a common framework to explain responses in both the

RSG and RG tasks. To demonstrate this point, we developed a

data-driven analog of the preplanning model in which we aimed

to fit the firing rate dynamics prior to Set based on the observed

slope of the ramping activity after Set. To do so, we constructed

a piecewise linear function in which the slope of each line

segment was derived directly from the corresponding slope after
Current Biology 25, 2599–2
Set. As shown by the red traces in Figure 4, the piecewise linear

functions constructed in this way matched the observed

response dynamics for both tasks remarkably well (R2 = 0.98

and 0.95 for RSG and RG tasks, respectively). This result indi-

cates that the response profiles before Set in both tasks are

consistent with the preplanning hypothesis.

DISCUSSION

Previous animal studies of interval timing havemainly focused on

either sensory or motor aspects of timing [4]. To understand the

mechanisms by which sensory and motor aspects of timing are

coordinated, we recorded neural activity in area LIP of monkeys

performing a time interval reproduction task. Monkeys repro-

duced time intervals by making saccades toward a visual target
609, October 19, 2015 ª2015 Elsevier Ltd All rights reserved 2605
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Figure 5. Comparison of LIP Responses in the RSG and RG Tasks

The black and gray traces show the average LIP activity between Ready and

Set in the RSG and RG tasks, respectively. The spike train from each trial was

convolved with a 50 ms boxcar filter, and the smoothed firing rates were used

to compute a running mean across neurons and trials that combined all spikes

elicited after Ready and before 50 ms after Set. The superimposed red curves

are fits based on the preplanning model. Each red trace is a piecewise linear

functionwith ten line segments (for ten sample intervals). The slope of each line

segment was derived directly from the corresponding ramping activity in the

production epoch. Specifically, the slope of the line segment between each

pair of consecutive sample intervals, ti and ti + 1, was equal to the slope of the

ramping activity associated with reproducing ti. We then used linear regression

(i.e., two parameters: offset and scaling) to fit this piecewise linear function to

LIP firing rates.
inside the RF of individual neurons in area LIP. As many previous

studies have shown, this experimental design exploits the

spatial tuning of LIP neurons to investigate the computational

mechanisms of various cognitive functions such as anticipation,

planning, and decision making [13, 18, 28, 30–33]. Here, we

adapted this scheme to study the neural computations associ-

ated with time interval reproduction.

LIP firing rates in both measurement and production epochs

were modulated by the sample interval, and the trial-by-trial

fluctuations of neural activity in both epochs were predictive of

the fluctuations of animals’ production intervals. Our partial

correlation analyses (Table 1) support the presence of associa-

tions between (1) the sample intervals and firing rates in themea-

surement epoch, (2) the firing rates in the measurement epoch

and the ramping activity in the production epoch, and (3) the

ramping activity in the production epoch and the production

intervals.

Response Dynamics
In the production epoch, firing rates leading up to the saccade

increased linearly and reached a fixed plateau regardless of

the duration of the sample interval. This observation was rein-

forced by the RG control experiment. There, the ramping activity

began shortly after Ready, which is consistent with the fact

that the desired interval was specified with respect to Ready.

These observations are not surprising as ramping activity

in anticipation of a potentially rewarding motor response has
2606 Current Biology 25, 2599–2609, October 19, 2015 ª2015 Elsevi
been observed in many previous reaction time and self-timed

tasks [12, 21, 23–26, 34–36]. This pattern of activity either might

be related to the anticipation of an imminent reward or might

reflect an ongoing saccadic motor plan.

The second, more surprising observation was the discovery of

an evolving signal during the measurement epoch of the RSG

task. In this epoch, responses began to rise approximately

500 ms after Ready and increased monotonically until the time

of Set. Our first concern was that these features might be ex-

plained by low-level sensory responses or by attentional modu-

lations during the trial. To evaluate those possibilities, we

designed a control (RG) task that comprised the same exact

sensory and motor elements and compared responses in the

Ready-Set interval. We found striking differences between the

response in the RSG and RG tasks that were not explained by

differences in baseline activity or gain differences (Figure 5).

More generally, no linear transformation of average firing rates

could explain the difference between the profiles of the firing

rate dynamics in the two tasks. This observation suggests that

the activity during the Ready-Set interval of the RSG task is un-

related to low-level stimulus-driven interactions and cannot be

explained by a gradual shift of attention to the location of Set

or the saccade target.

We then formulated a series of models that sought to explain

the response dynamics in the measurement epoch in terms of

anticipation of Set or reward. Anticipation of Set is captured by

a hazard-like function of Set time [5], which predicts an acceler-

ating nonlinearity—opposite to the decelerating nonlinearity

observed in the data (Figure 6A). A model based on experienced

reward [17, 18] also failed because the probability of reward as a

functionof timedidnotmatch theLIP responseprofile (Figure6B).

A thirdmodel that tested the responsedynamics against anantic-

ipation of the time of reward (or the time of saccade, which

occurred at the same time in our study) could predict the decel-

erating nonlinearity in the measurement epoch of the RSG task

(Figure 6C). However, it additionally predicts that LIP responses

should exhibit identical ramping activity in the first 500 ms of

the RG and RSG tasks, which is not supported by data. In sum,

although LIP responses are likely to be influenced by sensory,

motor, or reward anticipations, our modeling results render it

highly unlikely that these functions explain LIP response dy-

namics during the measurement epoch of the RSG task.

Two Novel Hypotheses: Bayesian Estimation and
Preplanning
LIP responses in the measurement epoch of the RSG task

cannot be interpreted as a direct measure of elapsed time

because firing rates do not increasemonotonically with time until

approximately 500 ms after Ready. According to our analysis of

behavior, production intervals were based on the Bayesian esti-

mate of the sample interval. We therefore developed a model

that tested whether LIP responses in the measurement epoch

were consistent with a Bayesian estimate of the sample interval.

This model, like themodel associated with the hazard rate of Set,

explains the �500-ms delay in the rise of response after Ready,

and it additionally predicts a decelerating nonlinearity thereafter

(Figure 6D). Although the exact predicted profile was somewhat

different from LIP activity, we think that this model deserves

further investigation. In our implementation of the Bayesian
er Ltd All rights reserved



300 650 1000

26

32

38

Time after Ready (ms)

Fi
rin

g 
ra

te
 (s

p/
s)

r2=0.86 r2=0.81

Set hazard Expected reward

A B

r2=0.93 r2=0.92 r2=0.97

Reward time Bayesian estimate Preplanning

EC D

Figure 6. Model Comparison
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estimator, we assumed that the animal has accurate knowledge

about the prior distribution of sample intervals and uses a least

square cost function. It may be that an alternative implementa-

tion with more realistic assumptions about the prior and cost

function could capture the observed dynamics more accurately.

Future experiments involving multiple prior distributions will pro-

vide a critical test for this possibility.

The last model we considered was motivated by the observa-

tion that both the instantaneous slope of responses before Set

and the slope of the ramping activity after Set decreased with

longer sample intervals. We therefore developed a preplanning

model in which the instantaneous slope of the response during

the measurement epoch anticipates—or preplans—the buildup

rate of the ensuing ramp after the Set and dip in activity. In this

model, it is expected that LIP activity begins to rise with an initial

slope when the earliest Set is anticipated (529ms), and the slope

is reduced dynamically to adjust for the attenuated buildup rate

needed for producing longer production intervals. For this

scheme to work, the brain must possess implicit knowledge of

(1) the fixed delay between Set and the beginning of the ramping

activity, (2) the difference in firing rate at the beginning of the

ramping phase and some threshold level, and (3) the fixed delay

between when responses reach a terminal point and saccade

initiation. When we estimated these values from the average

LIP activity, we found that the preplanning model was able to

capture the observed LIP response profile quite well (Figure 6E).

Moreover, this model readily explains the response dynamics in

both RSG and RG tasks, as evidenced by the quality of fits

derived directly from slopes of ramping activity after the Set (Fig-

ure 5, red). To test this model more definitively, we must record

from multiple neurons simultaneously to have a more accurate

estimate of the instantaneous slope on single trials.

Unresolved Questions
One of the notable features of firing rate dynamics is the pres-

ence of a strong and transient suppression after Set in the

RSG task. The function of this so-called dip, which has been

observed in different oculomotor areas [24, 37–39], is unclear.

In our work, the dip transiently masks the information about

the interval, and it is not clear how this information reappears

after the dip. The suppression during the dip may be due to a
Current Biology 25, 2599–2
temporary shift of exogenous attention to Set [40]. However,

regardless of the source of this suppressive effect, the recovery

of signal after the dip implies that either the recurrent networks in

LIP can maintain an estimate of the buildup rate through the

externally triggered suppression or the signals associated with

the buildup rate are available in other brain areas that do not un-

dergo such strong suppression, or the maintenance of the infor-

mation in mediated by an intrinsic cellular mechanism [41].

An important issue is whether LIP plays a causal role in interval

timing or whether it is modulated indirectly through anatomical

connections that support functions other than timing [5, 6, 13,

15, 18–21, 28, 42–48]. Without a careful causal manipulation,

we cannot distinguish between these two possibilities, nor can

we rule out a third possibility that LIP neurons multiplex behav-

iorally relevant variables [49] including time [5, 6]. Regardless,

however, our analysis of how LIP signals in the measurement

epoch seem to preplan the buildup rate in the production epoch

raises the speculative but intriguing hypothesis that the sense of

time could be established through an embodied scheme that

models the parameters of a motor plan.
EXPERIMENTAL PROCEDURES

General Procedures

Behavioral protocols, animal care, and surgical procedures were all in accor-

dance with the US National Institutes of Health Guide for the Care and Use of

Laboratory Animals and were approved by the University of Washington Ani-

mal Care Committee. We recorded from 97 well-isolated LIP neurons in the

ventral portion of area LIP (LIPv) in the right hemisphere of two monkeys (Yo

and Wi), 58 in the RSG task (35 in Yo and 23 in Wi) and 39 in the RG task (26

in Yo and 13 in Wi). We analyzed the behavior using a Bayesian model

following earlier work [22]. Population, single-cell, and single-trial analyses

were based on either the average firing rates (e.g., at the time of Set) or the

change of firing rate per unit time (e.g., buildup rate before saccade initiation).

General experimental procedures, behavioral tasks, electrophysiological

recording technique, data analysis, and mathematical models are described

in detail in the Supplemental Experimental Procedures.
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