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Ninety (90) graph-theoretic indices were calculated for a diverse set of 3692 chemicals to test 

the efficacy of using graph-theoretic indices in determining similarity of chemicals in a large, 

diverse data base of structures. Principal component analysis was used to reduce the 90- 

dimensional space to a lo-dimensional subspace which explains 93% of the variance. Distance 

between chemicals in this lo-dimensional space was used to measure similarity. To test this 

approach, ten chemicals were chosen at random from the set of 3692 chemicals and the five 

nearest neighbors for each of these ten target chemicals were determined. The results show that 

this measure of similarity reflects intuitive notions of chemical similarity. 

Introduction 

During the last decade there has been an upsurge of interest in the applications 

of algebraic graph theory in chemistry [2,18,23,24,30,33,35,43,46,50,62,75]. Mole- 

cular structures are, in essence, planar graphs where atoms are represented by ver- 

tices and covalent chemicals bonds are symbolized by edges [27]. Any pair of atoms 

in a molecule is involved in a binary relation: either the pair is bonded or not bonded 

[75]. This pattern of connectedness of atoms in a chemical structure, usually termed 

molecular topology, is adequately depicted by constitutional graphs. Therefore, it 

is not surprising that graph-theoretic formalism has been successfully used to il- 

luminate different aspects of molecular structure and properties. To mention just 

a few, the graph-theoretical approach has found applications in chemical documen- 

tation [36,59,60], isomer discrimination and characterization of molecular bran- 

ching [ 19,5 11, enumeration of constitutional isomers associated.. with a particular 

empirical formula [2,27], calculation of quantum chemical parameters [26,50,62], 

structure-physicochemical property correlations [32,34,57, SO], and chemical struc- 

ture-biological activity relationships [7-l 1,13,14,31,32,34,41,53-58,63,65,80]. 
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Chemists have long relied on visual perception in order to relate various aspects 

of constitutional graphs to observable chemical phenomena [42]. But a clear and 

quantitative understanding of the structural (topological) basis of chemistry necessi- 

tates the use of precise mathematical techniques. In recent years, applications of 

matrix theory, group theory, and information theory to chemical graphs have pro- 

duced results which are important in chemistry [6,11,14-17,19,29,31,37-40,44-46, 

49,5 l-53,64-66,75-77]. 

Mathematical characterization of a chemical graph (structure) may be accom- 

plished by a matrix, a set of numbers or a single numerical index [75]. For example, 

the adjacency matrix A(G), the distance matrix D(G), and the incidence matrix 

T(G) of a chemical graph G uniquely determine molecular topology. Among the dif- 

ferent matrices used for the representation of chemical structure the adjacency 

matrix (or connection table) has been most extensively used in chemistry [75]. How- 

ever, connection tables pose a serious problem in chemical documentation because 

as the size of the graph increases, they require a disproportionately large number 

of operations for the testing of graph isomorphism. Specifically, n2 x n! operations 

are required to determine whether two graphs G, and G2 with n vertices are iso- 

morphic [61]. Another limitation of matrices is that they cannot be used as struc- 

tural descriptors in the correlation or prediction of properties. Therefore, one of the 

cherished objectives in contemporary graph-theoretic research has been the dis- 

covery of a graph property, preferably a single numerical characteristic or a set of 

numbers derived from graphs, which would not only be easier to handle than the 

adjacency matrix itself but also uniquely related to molecular topology [61]. Unfor- 

tunately, in spite of numerous attempts, attainment of this goal has remained 

elusive. 

In chronological order, Spialter [70-721 was the first to undertake a search for 

a graph invariant which could uniquely characterize molecular topology. A graph 

invariant is a graph-theoretic property which is preserved by isomorphism [27,61]. 

Spialter [70-721 asserted that the characteristic polynomial of the adjacency matrix 

or atom connectivity matrix of a molecule is uniquely related to its topology. This 

notion was, however, contradicted by later researchers who found that noniso- 

morphic graphs may possess identical characteristic polynomials [ 1,4,28,67]. These 

graphs are called isospectral or cospectral graphs [75]. Later, Randic [48] conjec- 

tured that for tree graphs collections of distance degree sequences (DDS) were suffi- 

cient to determine isomorphism. Subsequently, it was reported that neither DDS nor 

PDS (path degree sequence) could uniquely characterize the topology of tree graphs 

[43,68]. More recently, Randic [47] developed a single numerical index, the mole- 

cular identification number, which was successful in the unique characterization of 

the topology of a relatively diverse set of structures including constitutional isomers 

and cyclic analogs. However, a counter-example, i.e. different chemical structures 

with the same identification number, has already been reported [47]. 

Under these circumstances, there are two distinct trends in chemical graph- 

theoretic index research: (a) the simultaneous use of more than one index, i.e., a 
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superindex to better characterize chemical structure as compared to a single numeri- 

cal invariant [17], and (b) the development of indices with more discriminating 

power [3,5]. Success of the latter approach is evident from the increasing popularity 

of different topological indices in structure-property relationship (SPR) and struc- 

ture-activity relationshio (SAR) studies [7-l 1,13,14,17,3 1,32,34,53-58,631. This is 

mainly due to the fact that graph-theoretic molecular descriptors (indices) can be 

calculated for any real or hypothetical molecular structure whereas physicochemical 

parameters used in SPR or SAR are not uniformly available [73]. It has also been 

pointed out by Randic [47] that the nonuniqueness of graph invariants is not a very 

serious handicap for SPR or SAR. For example, in the alkane series properties like 

boiling point and octane number are not mutually well correlated and lie in different 

numerical scales. Therefore, a unique topological index, if discovered, cannot 

simultaneously correlate with both properties. On the contrary, if a graph-theoretic 

index shows excellent correlation with a specific property of a congeneric series, 

then this relationship can help to elucidate the structural (topological) origin of that 

property. This is an interesting possibility in light of the concept of ‘graph like state 

of matter’ proposed by Gordon and Kennedy [23], who found that physico-chemical 

properties of molecules can be predicted by a general formula 

where P is a property, aj are coefficients determined empirically or calculated by 

combinatorial methods, and 7;: are the topological invariants. This LCGI approach 

holds for all properties [23] and is more general as compared to Smolenski’s additi- 

vity function [62,69]. 

Topological features of molecules have been used as independent variables in 

regression models [7-l 1,17,32] and as variables in multivariate pattern recognition 

models [21,41,81]. In regression models, topological features are correlated with 

physiochemical or biological properties. In multivariate models, topological features 

have been used to discriminate between given groups of chemicals or to cluster a 

set of structures into collections of similar structures. In most studies to date, the 

structures have been relatively homogeneous and often the number of topological 

features has been small. 

In this study we calculated 90 graph-theoretic indices for a set of 3692 molecules 

and utilized these indices to determine structural similarity of chemicals. The 3692 

structures were chosen from a larger Environmental Protection Agency data base 

of 25,000 industrial chemicals. Because this set of molecules is neither a collection 

of congeners nor a group of compounds designed for a particular purpose, this data 

base has a much wider range of structural variation than in previous studies. In- 

vestigating 90 indices for 3692 chemicals can be overwhelming. Also, the storage of 

90 indices is particularly inefficient if the indices have highly interrelated informa- 

tion. To reduce the dimensionality of the problem, principal component analysis 

(PCA) is used to reduce the 90 dimensions to 10 uncorrelated linear dimensions 

which explain the significant parts of the variation between chemicals in the 90 
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dimensions. These principal components can, in principle, be used to define a 

distance or dissimilarity between compounds. A distance of zero would imply com- 

plete structural (topological) similarity in this principal component space. 

To test the efficacy of this numerical definition of structural similarity, we ran- 

domly selected ten compounds from our data base and found the five nearest neigh- 

bors for each. These results are presented in this paper along with a critical analysis 

of the utility and limitations of the approach in selecting structural analogs. 

Definitions and basic concepts 

A graph G is defined as an ordered pair consisting of two sets V and R, 

G=[V,R] 

where V represents a finite nonempty set and R is a binary relation defined on the 

set V. The elements of V are called vertices and the elements of R, also symbolized 

by E(G) or E, are called edges. Such an abstract graph is commonly visualized by 

representing elements of V as points and by connecting each pair x=(u;, uj) of 

elements of V with a line if and only if (ui, uj) E R. The vertex ui and line x are inci- 

dent with each other, as are uj and x. Two vertices in G are called adjacent if they 

are connected by a line. A walk of a graph is a sequence beginning and ending with 

vertices in which vertices and edges alternate and each edge is incident with vertices 

immediately preceding and following it. A walk of the form uo, x1, ul, x2, . . . , u, 

joins vertices u. and u, . The length of a walk is the number of occurrences of edges 

(lines) in it. A walk is closed if u. = u,, otherwise it is open. A closed walk with n 

points is a cycle if all its points are distinct and ~23. A path is an open walk in 

which all vertices are distinct. A graph G is connected if every pair of its vertices 

is connected by a path. A graph G is a multigraph if it contains more than one edge 

between at least one pair of adjacent vertices, otherwise G is a linear graph. The 

distance d(u,, u,) between vertices ui and Uj in G is the length of any shortest path 

connecting ui and Uj. The degree of a vertex u, (deg u;) in G is equal to the number 

of lines incident with ui. The eccentricity e(u) of a vertex u in G is given by e(u) = 

max, E v d(u, u). The radius Q of a graph is given by Q = min,, ve(~) = min max,,, ,, 

d(u, u). For a vertex u E V, the first-order neighborhood r’(u) is a subset of V such 

that T’(u) = {U E V / d(u, u) = l}. The first-order closed neighborhood N’(u) of u is 

defined as N’(u) = (u)Url(u) =T()(u)UT’(u) where (u) is the one-point set consist- 

ing of u only and may be looked upon as r’(u). If Q is the radius of a chemical 

graph G, one can construct r’(u) and N’(u), i= 1,2, . . . , Q, for each vertex u in G. 

Two graphs G, and G, are said to be isomorphic (G, = G2) if there exists a one-to- 

one mapping of the vertex set of G, onto that of G2 such that adjacency is preserv- 

ed. Automorphism is the isomorphism of a graph G with itself. 

In depicting a molecule by a connected graph G = [If, El, V symbolizes the set of 

atoms and E represents the set of covalent bonds between adjacent atoms. The set 
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V may contain either all atoms present in the empirical formula [ 11, 14,631 or only 

nonhydrogen atoms [32]. Hydrogen-filled graphs are preferable to hydrogen- 

suppressed graphs when hydrogen atoms are involved in critica steric or electronic 

interactions intramolecularly or intermolecularly or when hydrogen atoms have dif- 

ferent physicochemical properties due to differences in bonding topology. In this 

paper, a single nondirected edge of a graph denotes a covalent bond which is given 

a weight equal to the bond order: 1 for a single bond, 2 for a double bond, etc. For 

an aromatic molecule, a bond joining two atoms involved in delocalization is 

depicted by a single undirected edge with a weight equal to 1.5. Under these condi- 

tions, the majority of stable chemical species can be represented by linear graphs. 

For such molecular graphs the binary relation R depicting the topology of atoms 

(vertices) is symmetric and anti-reflexive, i.e., for any pair (Ui, Uj) of vertices in G, 

(u;, u;) E R * (uj, a,) ER, 

(u;, Uj) E R ~ Ui# Uje 

The hydrogen-filled molecular graph, (G,), and labelled hydrogen-suppressed 

graph, (G,), for acetamide are shown below. The numbers in parenthesis in G, 

represent weights of the different edges. 

H H 

I 
H-C-C-N 

/ 
tC%+N3 

Z (1) 

I II \ (2) 
H 0 H 0 

4 

Gi G2 

The ninety topological parameters used in this paper for the calculation of prin- 

cipal components may be conveniently derived from the adjacency matrix A(G), the 

atom connectivity matrix A’(G) or the distance matrix D(G) of a chemical graph G. 

These matrices are usually constructed from labelled graphs of hydrogen-depleted 

molecular skeletons. For such a graph G with vertex set {u,, u2, . . . , u, }, A(G) is 

defined to be the n x n matrix (a;j), where a,/ may have only two different values as 

follows: 

a,; = 1, if vertices ui and Vj are adjacent in G, 

aq=o, otherwise. 

Since we are considering graphs which are undirected and devoid of any self-loop, 

A(G) is a symmetric (0, I)-matrix in which each diagonal element is zero. It is to be 

noted that A(G) fails to depict vaience bond structures of molecules containing pi 

bonds. 

The distance matrix D(G) of a nondirected graph G with n vertices is a symmetric 
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n x n matrix (do), where d;/ is equal to the distance between vertices Di and Uj in G. 

Each diagonal element djj of D(G) is equal to zero. Since topological distance in a 

graph is not related to the weight attached to an edge (bond), D(G) does not ade- 

quately represent valence bond structures of molecules containing more than one 

covalent bond between adjacent atoms. 

The atom connectivity matrix A’(G) of an undirected chemical graph G with n 

vertices is a symmetric matrix (a;), where a,> is equal to the bond order of the 

covalent bond connecting atoms i and j [70-721. All its diagonal elements ai; are 

equal to zero. However, sometimes the diagonal of A’(G) is also used to store the 

chemical identity of the vertex. For the labelled graph GZ, the four diagonal 

elements will be: ~;i = C, L& = C, L& = C, ~j, =N and ai = 0. In principle, the off- 

diagonal elements a$ (i+j) of A’(G) may be used to represent almost any type of 

bond, e.g., hydrogen bond or weak bonds present in the transition states of SN, 

reactions [71,72]. However, in this paper such bonds are not considered as edges 

of a graph. It is clear that A’(G) adequately depicts the bonding pattern of a large 

number of molecules, both organic and inorganic. 

The adjacency matrix A(G,), the atom connectivity matrix A’(G,), and the 

distance matrix D(G,) for the labelled graph G, may be written as follows: 

From the adjacency matrix of a graph with n vertices it is possible to calculate 

6i, the degree of the ith vertex, as the sum of all entries in the ith row: 

6i= i au. 
j=l 

(1) 

Zero order connectivity index “x is defined as [32]: 

Ox = c (Bi)p2. 
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Randic’s connectivity index ‘x is defined as [51]: 

IX= C (6;dj)-“2* 

all edges 
(3) 

A generalized connectivity index ha considering paths of the type uo, uI, . . . , uh of 

length h in the molecular graph is calculated as [32]: 

hX = c (6”,6”, ... 6”J “2 

where the summation is taken over all paths of length h. 

Cluster, path-cluster, and cyclic types of simple connectivity indices are calculated 

using the method of Kier and Hall [32]. 

Bonding connectivity indices are based on the atom connectivity matrix of a 

chemical graph. From A’(G) it is possible to calculate the valency of the ith atom 

(vertex) Bb as the sum of all entries in the ith row: 

SF= i al’j. 
j=l 

(5) 

Bonding connectivity indices, hi b, are calculated by replacing 6; in eq. (4) with SF. 

Valence connectivity indices are based on vertex-weighted graphs where the 

weight, Sy, of the ith vertex is calculated as follows [32]: 

a/=Z;-h; (6) 

where Z,! is the number of valence electrons of the atom represented by the ith 

vertex of the chemical graph and hi is the number of hydrogen atoms attached to 

it. Valence connectivity indices, h~v, are calculated by replacing 6; in eq. (4) with 

Sy. It is to be noted, however, that in the case of certain atoms, e.g., chlorine, 

bromine, iodine, fluorine, sulfur etc., the 6” values used are derived empirically 

through calibration with physicochemical properties [32]. The physical and/or 

graph-theoretic basis for these empirical adjustments remains far from clear. 

The three types of connectivity indices described here present a three-tier approach 

to the quantification of molecular structure through the progressive integration of 

the concepts of structural chemistry with the topological aspects of graph theory: 

simple connectivity indices quantify the adjacency pattern of vertices (atoms) with- 

out any regard to their chemical properties or the nature of bonds (edges) connecting 

them, bonding connectivity indices integrate the nature of covalent bonds with the 

topology of atoms, and valence connectivity indices not only take care of electrons 

involved in the formation of covalent bonds but also incorporate lone pairs of elec- 

trons within the framework of graph theory. 

The Kh (h=O, I,..., 10) parameters used in this paper represent the number of 

occurences of paths of length h in the hydrogen-depleted molecular graph G. K. is 

the number of vertices and K, is the number of edges of G. Higher-order Kh terms 

can be calculated using graph-theoretic algorithms. 
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The Wiener [79] index W, the first topological index reported in the chemical 

literature, can be calculated from the distance matrix D(G) of a hydrogen-suppressed 

graph G as the sum of entries in the upper triangular distance submatrix [75]: 

W=) C dij= C h.g, (7) 
i, i h 

where gh is the number of unordered pairs of vertices whose distance is h. 

Information-theoretic topological indices are calculated by the application of in- 

formation theory to chemical graphs [7-l 1,14,3 1,.52,63]. An appropriate set A of 

n elements is derived from a molecular graph G depending upon certain structural 

characteristics. On the basis of an equivalence relation defined on A, the set A is 

partitioned into disjoint subsets Ai of order yli (i = 1,2, . . . , h; Ci n, = n). A probabil- 

ity distribution is then assigned to the set of equivalence classes: 

( 

A,,A2, . . ..A. 

131,P2,...>Ph > 

where pi = ni/n is the probability that a randomly selected element of A will occur 

in the ith subset. 

The mean information content of an element of A is defined by Shannon’s rela- 

tion [18]: 

h 

IC= - c p;logzp;. (8) 
I=1 

The logarithm is taken at base 2 for measuring the information content in bits. The 

total information content of the set A is then n times IC. 

It is to be noted that information content of a graph G is not uniquely defined. 

It depends on the way the set A is derived from G as well as on the equivalence rela- 

tion which partitions A into disjoint subsets Aj. For example, when A constitutes 

the vertex set of a chemical graph G, two methods of partitioning have been widely 

used: (a) chromatic-number coloring of G where two vertices of the same color are 

considered equivalent, and (b) determination of the orbits of the automorphism 

group of G whereafter vertices belonging to the same orbit are considered equi- 

valent . 

Rashevsky [52] was the first to calculate information content of graphs where 

‘topologically equivalent’ vertices are placed in the same equivalence class. In 

Rashevsky’s approach, two vertices u and u of a graph are said to be topologically 

equivalent if and only if for each neighboring vertex ui (i = 1,2, . . . , k) of the vertex 

u there is a distinct neighboring vertex ui of the same degree for the vertex u. Sub- 

sequently, Trucco [76,77] defined topological information of graphs on the basis of 

graph orbits. In this method, vertices which belong to the same orbit of the auto- 

morphism group are considered topologically equivalent. While Rashevsky [52] 

used simple linear graphs with indistinguishable vertices to symbolize molecular 

structure, weighted linear graphs or multigraphs are better models for conjugated 



Determining structural similarity of chemicals 25 

or aromatic molecules because they more properly reflect the actual bonding pat- 

terns, i.e., electron distribution. 
To account for the chemical nature of vertices as well as their bonding pattern, 

Sarkar, Roy and Sarkar [66] calculated information content of chemical graphs on 

the basis of an equivalence relation where two atoms of the same element are con- 

sidered equivalent if they possess an identical first-order topological neighborhood. 

Since properties of atoms or reaction centers are often modulated by physico- 

chemical characteristics of distant neighbors, i.e. neighbors of neighbors, it was 

deemed essential to extent this approach to account for higher-order neighbors of 

vertices. This can be accomplished by defining open spheres for all vertices of a 

chemical graph. If r is any non-negative real number and u is a vertex of the graph 

G, then the open sphere S(u,r) is defined as the set consisting of all vertices u, in 

G such that d(u, 0;) <r. Obviously, S(o, 0) = 0, S(u, r) = u for 0< r< 1, and S(u, r) is 

the set consisting of u and all vertices ui of G situated at unit distance from u, if 

1 <r<2. 

One can construct such open spheres for higher integral values of r. For a par- 

ticular value of r the collection of all such open spheres S(u,r), where u runs over 

the whole vertex set V, forms a neighborhood system of the vertices of G. A suitably 

defined equivalence relation can then partition I/ into disjoint subsets consisting of 

topological neighborhoods of vertices up to rth order neighbors. Such an approach 

has already been initiated and the information-theoretic indices calculated are called 

indices of neighborhood symmetry [63]. 

In this paper chemical species are symbolized by weighted linear graphs. Two ver- 

tices z+, and ug of a molecular graph are said to be equivalent with respect to rth 

order neighborhood if and only if corresponding to each path u~,u,, . . . ,uI. of 

length r there is a distinct path uo, u,, . . . , u, of the same length such that the paths 

have similar edge weights, and both u. and u. are connected to the same number 

and type of atoms up to the rth order bonded neighbors. The detailed equivalence 

relation is described in our earlier studies [34,63]. 

Once partitioning of the vertex set for a particular order of neighborhood is com- 

pleted, IC, is calculated by eq. (8). It is clear that the vertices of a graph belonging 

to the same equivalence class in terms of the above relation may be permuted with- 

out disturbing the relation already defined on the vertex set. Therefore, as pointed 

out by Mowshowitz [37-401, measures of molecular complexity give information 

content of structures in relation to a system of transformations leaving the structure 

invariant. 

Subsequently, Basak, Roy and Ghosh [14] defined another information-theoretic 

measure, structural information content (SIC,), which is calculated as: 

SIC,= ICJlog, n (9) 

where IC, is calculated from eq. (8) and n is the total number of vertices of the 

graph. It is noted that SIC, is related to Brillouin’s [20] measure of redundancy of 

a system. 
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Another information-theoretic invariant, complementary information content 

(CIC,), is defined as [ll]: 

CIC, = log, n - IC,. (10) 

CIC, represents the difference between maximum possible complexity of a graph 

(where each vertex belongs to a separate equivalence class) and the realized topo- 

logical information of a chemical species as defined by IC,. 

The information-theoretic index on graph distance, ZF is calculated from the 

distance matrix D(G) of a chemical graph G as follows [19]: 

ID”= Wlogz W- c g,*hlog,h. (11) 
h 

Table 1. Variable definition and symbols. 

W 

w 
ID 

-U’ 
ID 

IC, 

SIC, 

CIC, 

hX 

h 
XC 

h 
XPC 

hXCH 

hXb 

hX: 

h b 
XPC 

hXkl 

h Y 
X 

hXZ 

hX;;C 

hX& 

0 

Kh 

Half-sum of the off-diagonal elements of the distance matrix of a graph. 

Information index for the magnitudes of distances between all possible pairs of vertices 

of a graph. 

Mean information index for the magnitude of distance. 

Mean information content or complexity of a graph based on the rth (r=O, 1, _.. ,6) order 

neighborhood of vertices in a graph. 

Structural information content of a graph based on rth (r = 0, 1, ,6) order neighborhood 

of vertices. 

Complementary information content of a graph G calculated from rth order (r = 0, 1,. ,6) 
neighborhood of vertices. 

Path terms of hth order (h=O, 1, . ...6) calculated from values. 

Cluster terms of hth order (h =3, ,6) based on values. 

Path-cluster terms of hth order (h = 4, ,6). 

Chain or cycle terms of different orders (h = 3, . ,6) based on values. 

Bonding connectivity type path terms of hth order (h=O, 1, . ...6) calculated from b- 

values. 

Bonding connectivity type cluster terms of hth order (h = 3, . ,6) based on b-values. 

Bonding connectivity type path-cluster terms of hth order (h = 4, . ,6). 

Bonding connectivity type chain or cycle terms of hth order (h = 3, . ,6). 

Valence connectivity type path terms of hth order (h = 0, ,6) calculated from v-values. 

Valence connectivity type cluster terms of hth order (h = 3, . ,6) based on v-values. 

Valence connectivity type path-cluster terms of hth order (h = 4, . ,6). 

Valence connectivity type chain or cycle terms of hth order (h = 3, . . . ,6). 

Order or neighborhood when IC, reaches its maximum value. 

Number of paths of length h (h =O, 1, . . . . 10) in the hydrogen-deleted graph. 
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The mean information index, IF, . is found by dividing the information index, ZF, 

by W. 

Because the distance matrix of a graph does not account for the chemical nature 

of edge multiplicity of vertices, indices of neighborhood symmetry are capable of 

characterizing chemical structure more efficiently as compared to Zr or Z/. 

The set of 90 topological parameters used in this paper are shown in Table 1. 

Data base 

The U.S. Environmental Protection Agency Research Laboratory-Duluth is com- 

piling a data base for approximately 25,000 chemicals selected from the Toxic Sub- 

stance Control Act inventory of industrial chemicals. Current entries in the data 

base include physicochemical properties (e.g., n-octanol/water partition coeffi- 

cients), biological endpoints (e.g., lethal concentrations), Chemical Abstracts 

Registry number, and molecular descriptors (e.g., connectivity indices). In order to 

minimize the cost of evaluating the utility of topological indices as discriminators 

of structural similarity, we decided to investigate only a subset of compounds. Faced 

with making a choice of which compounds to use in these modeling studies, we 

decided to use compounds which had at least one measured value for boiling point, 

melting point, or vapor pressure. A subset of 3692 compounds satisfies these 

criteria. A tabulation of the chemical characteristics for this set of 3692 compounds 

is given in Table 2. In this table we report the number of occurrences of various im- 

portant chemical functional groups. The compound 2-(ethylamino)ethanol, 

C,HiiNO, contains both the alcohol and amine functional groups and thus is in- 

cluded in the count for both categories. It is to be noted that this is a very 

heterogeneous set of compounds. Only 97 compounds are hydrocarbons, that is, 

Table 2. Chemical characteristics of the data base of 3692 industrial chemicals. 

No. of 

0cc”rrences 

Functional 

group 

No. of 

occurrences 

Functional 

grow 

221 nitro 

853 amine 

123 nitrile 

451 carboxylic acid 

14 acid halide 

363 ester 

18 azo 

15 imine 

94 sulfide 

61 thiol 

3 sulfate 

19 sulfonate 

917 halide 

15 phosphate 

739 alcohol 

60 

55 

22 

8 

94 

20 

14 

133 

318 

lactone 

lactam 

anhydride 

imide 

amide 

peroxide 

isocyanate 

carbonic ester 

aldehyde 

ketone 
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containing only hydrogen and carbon atoms. Approximately one-half of the com- 

pounds are aromatic; 40% of the compounds are acyclic. The molecular mass range 

is 26-958 atomic mass units; the average molecular mass is 169 amu. Tables 2 and 

5 and Fig. 5 give some indication of the nature of the complexity and diversity in 

this data base of 3692 chemicals. 

Methods 

The data for this investigation can be viewed as n = 3692 vectors (chemicals) in 

p = 90 dimensions (indices). These data can be represented by a matix X which has 

3692 rows and 90 columns. The data matrix has 90 variables and 3692 cases. Each 

chemical is represented by a point in lR9’. If each chemical could be represented in 

R*, one could plot and investigate the extent to which similar chemicals are situated 

near each other according to the two descriptors. In R9’ such simple analyses are 

not possible. However, since the indices are highly interrelated, the 3692 points in 

R9’ will lie nearly on a subspace of lower dimension than 90. The method of prin- 

cipal component analysis (PCA) or the Karhunen-Loeve transformation is a stan- 

dard linear method for reduction of dimensionality. This method is described in 

textbooks on multivariate statistics (e.g., Gnanadesikan [22] or Greenacre [25]), or 

in discussions of pattern recognition (e.g., Varmuza [78]). Other nonlinear methods 

of reduction of dimensionality and graphical representation such as multidimen- 

sional scaling are also possible (e.g., see again Gnanadesikan [22] or Varmuza [78]). 

However, PCA is the logical starting point in terms of simplicity, ease of interpreta- 

tion, and ease of computation. 

8 
6 

7 

-61 
-4 -2 0 2 4 

first axis 

Fig. 1. Sample PCA with ten hypothetical points in two dimensions: Original points. 
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As an introduction to principal component analysis, consider the 10 points in two 

dimensions in Fig. 1. The first principal component (PC) is the line which comes 

closest to the points in the sense of minimizing the sum of the squared Euclidean 

distances from the points to the line. The one-dimensional representation of the 

points would be the projection of the points onto this line of closest approximation. 

Equivalently, projections of the points on the first principal component have max- 

imum variance among all possible linear coordinates. The points in Fig. 1 were con- 

structed so that the mean or center of gravity of both measurements is zero and the 

closest fitting line is the line passing through (0,O) at an angle of 45 degrees. The 

values of principal component number one are given by the projection of the points 

onto this line. The second principal component is given by projections onto the basis 

vector orthogonal to the first principal component. Fig. 2 shows the points plotted 

with the principal components as the axes. The points in Fig. 2 are merely a rotation 

of the points in Fig. 1. 

In general, for points in R”, the first r principal components give the subspace 

which comes closest to approximating the n points. The first principal component 

is the first axis of the points. Successive axes are the major directions orthogonal to 

previous axes. Since the closest approximating hyperplane must pass through the 

center of gravity of the points (Greenacre, [25, p. 44]), the first step in finding 

PC’s is to shift the origin to the center of gravity by subtracting the column average 

from each column of the n xp matrix X. Let ,u be the p x 1 vector of means. 

Then the translated matrix is X-1,~’ where 1 is an n x 1 vector of ones. The 

principal components are then the eigenvectors of the p xp covariance matrix 

(n-1))‘(X- lpT)yX-lpT). 

6‘ 

4 

2 t 

Rotated Points 

1 

I 

.” ii 0 

2 o- 9 41 5 8 

8 3 2 7 8 

$ 

-2 - 

-4 - 

-6 
-4 0 2 4 

first axis 

Fig. 2. Sample PCA with ten hypothetical points in two dimensions: Rotated points. 
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The PC’s are the closest approximating hyperplane and because they are calcu- 

lated from eigenvectors of ap xp matrix, the computations are relatively accessible. 

However, there are important scaling choices. First, the principal components de- 

pend on the scaling of the original variables. If the values of Xl in Fig. 1 were multi- 

plied by say 106, the best fitting line would very nearly be the line which minimizes 

the sum of the horizontal squared distances from the line to the points. As another 

example, if Xl and X2 are uncorrelated, then the first principal component is the 

variable with the larger variance. Thus, the first PC is scale dependent. To control 

this dependence, the most commonly used convention is to rescale the variables so 

that each variable has mean zero and standard deviation one. The effect of this 

scaling is to make each value correspond to the number of standard deviations from 

average. The covariance matrix for these resealed variables is the correlation matrix. 

The values of Xl and X2 in Fig. 1 have been standardized so that each has mean 

zero and variance one. 

In addition to changes in linear scaling, nonlinear changes in scale such as loga- 

rithmic scale affect the principal components analysis. Outliers will have a large 

effect on a best fitting plane when using Euclidean distance. For distributions which 

are positive and highly skewed by large values, a log transformation can be useful 

in reducing the importance of outliers and approaching a more elliptical pattern 

such as in Fig. 1. For the data in this investigation, the indices have been transform- 

ed by taking the log of the index plus one and then standardizing to mean zero and 

variance one. 

The points in Fig. 2 are merely a rotation of the points in Fig. 1. Hence, distances 

of points from the origin in Fig. 2 are the same as in the original Fig. 1. In terms 

of straight Euclidean distance, point 9 is farther from the origin (near point 5) than 

is point 0. However, in another sense, point 0 is about as far from the general ellip- 

tical pattern of points. Another resealing possibility is to rescale the principal com- 

ponents so that each has standard deviation one. Fig. 3 shows the result of this 

resealing. Point 9 and point 0 are now about the same distance from the origin. 

Distances from points to the origin in Fig. 3 correspond to distances from the points 

to the origin (Greenacre [25, p. 1121) in the original Fig. 1. Mahalanobis distance 

imposes a metric defined by the inverse of the covariance matrix and ‘sphericizes’ 

the cloud of points so that variances of points along any direction through the cen- 

troid is a constant, 1.0. 

As an extreme example of the difference between scaling and not scaling the PC’s, 

consider the case of three variables (X1,X2,X3) where Xl =X2 and X3 is uncor- 

related with Xl and X2. Assume all three variables have mean zero and variance 

one. The first PC is (\/z/2)(X1 +X2) = \iz(Xl), and the second PC is X3. The 

squared distance from a point to the origin in either the original scale or in terms 

of these PC’s is 2(X1)2 + (X3)2. The redundant variable is used in the distance com- 

putation. If the PC’s are resealed, the first PC is Xl, and the second PC is X3. The 

squared distance to the origin is (Xl)* + (X3)2. The standardized PC’s have elimi- 

nated the redundant variable. 
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Scaled Principal Components 

I------- 

0 
2- 

4 

; o- 
9 

1 5 

3 2 

-2 - 

8 

6 

7 

-3 -2 -1 0 1 2 3 

PC1 

Fig. 3. Sample PCA with ten hypothetical points in two dimensions: Scaled Pricipal Components 

No scaling convention for the original variables or the PC’s is by definition cor- 

rect. The task is to find a convention which works for the problem at hand. The 

choice made in this investigation was to standardize the log transformed indices and 

to use standardized principal components. 

Another choice in the reduction of dimensionality is to choose the number of 

principal components retained. Using standardized variables, the variances of the 

unstandardized PC’s are given by their eigenvalues, and the sum of the eigenvalues 

is p, the trace of the correlation matrix or the sum of the variances of the individual 

standardized variables. If all p standardized variables were uncorrelated, all eigen- 

values would be 1 .O. The eigenvalue of a PC divided by p is referred to as the 

variance explained by that PC. The cumulative variance explained by the first r PC’s 

is the sum of their eigenvalues divided by p. The hope of PCA is to explain a large 

percentage of the total variance using a small number of PCs. In choosing the 

number of PC’s retained, there are a number of possible conventions. The conven- 

tion chosen here was to retain the PC’s with eigenvalues greater than one [74]. 

After reducing the dimensionality of the problem, the question remains as to 

whether the information in these PC’s is useful in picking analogs for a given 

chemical. A negative answer could indicate either that (1) original indices did not 

have the required information, (2) linear reduction in dimensionality with PC’s was 

inappropriate, or (3) the choice of some scaling or dimension convention was in- 

appropriate. 

To test the ability of these PC’s to find analogs in this heterogeneous data base, 

ten compounds were chosen at random from the data base of 3692 chemicals, and 
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the five nearest neighbors to each of the target chemicals were found. In finding 

nearest neighbors, the distance between two points (chemicals) X, and X, is given 

by 

l/2 

D = 
I 

F [PC;(X:) - PC,(X,T)]* 
(12) 

i= I 1 
where PC, is the ith scaled principal component. This defines a numerical measure 

of dissimilarity which is calculated solely from the chemical structure. A visual in- 

spection of the resulting ‘similar’ structures can be used to evaluate the utility and 

limitations of this approach in selecting structural analogs. 

Results 

To compute principal components, each of the 90 variables was transformed by 

the logarithm of the variable plus one. The principal components were then extracted 

from the correlation matrix, corresponding to finding PC’s after standardizing the 

log transformed variable to mean zero and standard deviation one. Table 3 shows 

the resulting eigenvalues and percent of variance explained by the eigenvalues for 

components with eigenvalues greater than 1.0. The first ten components explain 

92.6% of the variance. Correlation of the variables with the ten highest principal 

components is given in Table 4; for brevity only the ten most highly correlated 

variables are shown for each of the ten principal components. PC, is highly cor- 

related (0.96 > r> 0.69) with the path and cluster molecular connectivity indices and 

with W, IO, w TF, Kh and 0. Accordingly, this principal component is related to the 

size and shape of the molecular graph. It should be noted that PC, is also highly 

correlated Q-=0.81) with molecular weight in this data base. The information- 

theoretic indices (IC,, CIC,, and SIC,) are, as a group, highly correlated with PC2 

with r,,,- - 0.80. On the other hand the remaining 69 variables are very poorly cor- 

related with PC2 (r<0.29). PC, can be interpreted as an axis that represents the 

Table 3. Summary of principal components 

PC Eigenvalue 

Percent of 

variance 

Cumulative 

percent 

2 

3 

4 

5 

6 

1 

8 

9 

10 

39.6 44.0 44.0 

14.6 16.2 60.2 

9.9 11.0 71.2 

6.4 1.1 78.3 

3.3 3.1 81.9 

3.2 3.5 85.5 

1.9 2.1 87.6 

1.8 1.9 89.5 

1.5 1.7 91.2 

1.2 1.3 92.6 
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symmetry of a molecular graph. Symmetry here is taken to mean the degree of 

redundancy of the neighborhoods of vertices in the molecular graph [63]. Molecular 

graphs with a high value of PC, are highly asymmetrical while those with a low 

value are symmetric. PC, is most highly correlated with cluster (0.55 <r<0.69) and 

path/cluster (0.27<r<0.59) connectivity indices. Since these indices have tradi- 

tionally been associated with branching [19,51] in a molecular graph, PC, is a 

measure of the degree of branching in a molecular graph. Both acyclic and cyclic 

graphs having cluster and path/cluster subgraphs may be considered to be branched. 

As shown in Table 4, PC4 is clearly correlated with cyclic terms of the molecular 

connectivity indices. A more detailed description of these PC’s appears in Basak et 

al. [12]. 

Ten compounds were chosen at random. The names and formulas of these target 

compounds are found in Table 5. A plot of PC, versus PC2 for all 3692 compounds 

is given in Fig. 4; the ten compounds chosen at random are indicated. The hydrogen- 

suppressed structures for these ten target compounds, labeled 1.0, 2.0, etc., are 

given in Fig. 5. Five nearest neighbors were selected for each target compound using 

the distance formula from the preceeding section. The names and formulas of the 

nearest neighbors for each target compound are found in Table 6 and their structures 

are given in Fig. 5. The notation used in Table 6 and Fig. 5 is: n.0 (n = 1,2, . . . , 10) 

identifies the n th target compound while rz.j (n = 1,2, . . . , 10; j = 1,2, . . . ,5) identifies 

the five nearest neighbors for the nth target compound. 

Discussion 

The purpose of this investigation was to test the efficacy of graph-theoretic in- 

dices in the selection of similar structures from a set of diverse chemicals. Path 

numbers and other topological features of chemical graphs have already been used 

to determine structural similarity of congeners [21,80,81]. At the heart of any SPR 

or SAR method is the tacit assumption that similarity in structure results in similar 

physiocochemical or biomedicinal properties [73]. Topological indices correlate well 

Table 5. Ten randomly selected chemicals used as target chemicals. Structures shown in Fig. 5 

No. Formula Name 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

Ethane 

Eormic acid, butyl ester 

2-Propenoic acid, 3-(2.hydroxyphenyl)-, (E)- 

Benzeneacetic acid, 4-chloro- 

Benzenemethanol 

Benzaldehyde, 3.4.dichloro- 

Benzene, pentafluoromethoxy- 

Benzene, I-isocyanato-3-(trifluoromethyl)- 

I-Naphthalenol, acetate 

Butanamide, N-phenyl- 
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I 
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-51’ 
-4 -2 0 2 4 

PC1 

i 

Fig. 4. PC, versus PC2 for 3692 chemicals. The ten chemicals chosen randomly are indicated with a 0. 

with the properties of different congeneric sets of chemicals [7-14, 14,321. These 

results, derived from groups of molecules of limited structural variety, indicate that 

numerical graph invariants are quantifiers of structural similarity or dissimilarity 

which strongly determines the behavior of chemical species. However, to our know- 

ledge, topological indices have not been used to select structural analogs from a 

heterogeneous collection of molecules. This encouraged us to use the topologically 

derived structure-space in the quantitation of structural similarity. 

The ninety topological parameters calculated for 3692 chemicals encode informa- 

tion regarding the size, shape, bonding type, and branching pattern associated with 

molecular structures. To determine structural similarity one could plot chemicals as 

points in the 90-dimensional space and use Euclidean distance between a given pair 

of chemicals in this space to quantify structural similarity. However, we have found 

that many of the indices are highly intercorrelated and ten principal components 

derived from the 90 x 90 variable matrix explain 92.6% of the variation in the 

original data [ 121. Therefore, we decided to determine structural similarity of mole- 

cules in terms of their distance in a lo-dimensional structure-space where 10 PC’s 

constitute individual coordinates. This reduction of dimensionality diminished the 

magnitude of the problem retaining, at the same time, most of the original structural 

information. 

Fig. 5 depicts hydrogen-suppressed graphs of ten randomly selected target mole- 

cules and five nearest neighbors for each of them in the trial universe of 3692 

chemicals. It is clear from the results that the family of topological indices con- 

sidered in this paper has a considerable power of rejecting dissimilar structures. 

However, some of the neighbors selected by our method have functional groups dif- 

ferent from the target species. Consequently, the reactivity profile of a target and 

its nearest neighbor could be quite different. 
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Fig. 5. Hydrogen-suppressed structures of ten target chemicals chosen randomly and their five nearest 

neighbors. Target chemicals are labeled 1 .O, 2.0, etc. Nearest neighbors are labeled 1.1, 1.2, 1.3, 1.4, and 
1.5 for compound 1; 2.1, 2.2, . , 2.5 for compound 2, etc. 



Determining structural similarity of chemicals 31 

6.0 6.1 6.2 6.3 6.4 6.5 

9.0 9.1 

4 0 

c, 
,o*c*o 

c 
c’ 

9.2 

0 

93 9.4 

0 0 

F 
? 

A c 0 

95 

8 

0 

I 
,c* c 0 

10.0 10.1 10.3 10.4 105 

Fig. 5 (contd.). 



38 S. C. Basak et al. 

Table 6. Ten random target chemicals with their five nearest neighbors. Structures shown in Fig. 5. 

Target 

chemical No. Formula Distance Name 

3 3.0 C9H803 

3.1 C9Hx04 

3.2 C8H1003 

3.3 C9hG4 

3.4 c1oH1004 

3.5 C9H1003 

4 4.0 CxH7C102 

4.1 CRHxCINO 

4.2 CsHsBrNO 

4.3 CxH8N02 
4.4 CsH7Foz 
4.5 C9H9NOz 

5 5.0 C7HxO 

5.1 C,HYN 

5.2 C7HyN 

5.3 C7H60 

5.4 CBHXO 

5.5 C8H9N 

6 6.0 C,H,CI,O 

6.1 C,HSBr02 

6.2 C7H5102 

6.3 C,H4C120 

6.4 C6HsClzN 

6.5 C7H4ClzO 

1 1.0 C2H6 

1.1 CZH4 

1.2 CzH2 

1.3 C3H4 

1.4 CzH60 

1.5 CHjN 

2.0 C5H1002 

2.1 C~HIINO 

2.2 C4HuNzO 

2.3 C6H 1202 

2.4 C6HlOO 

2.5 C5H9N0 

7.0 C7H,FsO 
7.1 C,HFG& 
7.2 C+,HFsO 

7.3 C9H1005 
7.4 C,CIFs 

7.5 C6HsN308 

0.817 

2.147 

2.614 

2.773 

3.203 

0.293 

0.430 

0.48 1 

0.488 

0.497 

0.386 

0.626 

0.683 

0.733 

0.804 

0.230 

0.486 

0.488 

0.520 

0.584 

0.129 

0.204 

0.306 

0.322 

0.326 

0.225 

0.294 

0.355 

0.394 

0.395 

0.468 

0.486 

0.984 

1.071 

1.104 

Ethane 

Ethene 

Ethyne 

1,2-Propadiene 

Methane, oxybis- 

Methanamine 

Formic acid, butyl ester 

Ethanol, 2-(ethylamino). 

Ethanol, 2-(2.aminoethyl)amino- 

Formic acid, pentyl ester 

2-Hexenal, (E)- 

Butane, l-isocyanato- 

2-Propenoic acid, 3-(2.hydroxyphenyl)-, (E)- 

Acetic acid, (2-formylphenoxy). 

Phenol, 3-(2.hydroxyethoxy)- 

Benzeneacetic acid, 2-carboxy- 

2-Propenoic acid, 3-(4.hydroxy-3-methoxyphenyl)- 

Benzeneacetic acid, 2-methoxy- 

Benzeneacetic acid, 4-chloro- 

Acetamide, N-(4-chlorophenyl). 

Acetamide, N-(4.bromophenyl)- 

Benzeneacetic acid, 4-amino- 

Benzeneacetic acid, 4-fluoro- 

Acetamide, N-(4.formylphenyl)- 

Benzenemethanol 

Benzenemethanamine 

Benzenamine, N-methyl- 

Benzaldehyde 

Benzeneacetaldehyde 

Methanamine, N-(phenylmethylene)- 

Benzaldehyde, 3,4-dichloro- 

Benzoic acid, 2-bromo- 

Benzoic acid, 2-iodo- 

Benzaldehyde, 2,4-dichloro- 

Benzenamine, 3,4-dichloro- 

Benzoyl chloride, 2-chloro- 

Benzene, pentafluoromethoxy- 

Benzoic acid, pentafluoro- 

Phenol, pentafluoro- 

Benzoic acid, 4-hydroxy-3,5-dimethoxy- 

Benzene, chloropentafluoro- 

Benzenediol,2,4,6-trinitro- 
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Table 6 (contd.). 

Target 

chemical No. Formula Distance Name 

9 9.0 

9.1 

9.2 

9.3 

9.4 

9.5 

10 10.0 

10.1 

10.2 

10.3 

10.4 

10.5 

8 8.0 

8.1 

8.2 

8.3 

8.4 

8.5 

0.574 

0.667 

0.922 

0.961 

1.067 

0.378 

0.399 

0.440 

0.484 

0.527 

0.169 

0.215 

0.289 

0.315 

0.344 

Benzene, I-isocyanato-3-(trifluoromethyl) 

Benzene, l-nitro-3-(trifluoromethyl)- 

Benzeneacetic acid, 3-(trifluoromethyl). 

2-Propenoic acid, 3-3-(trifluoromethyl)phenyl- 

Phenol, 3-(trifluoromethyl)- 

Benzenamine, 3-(trifluoromethyl)- 

I-Naphthalenol, acetate 

I-Naphthaleneacetic acid 

1-Naphthaleneacetamide 

2-Naphthalenecarboxylic acid 

Ethanone, I-@naphthalenyl)- 

LNaphthalenecarboxylic acid 

Butanamide, N-phenyl- 

Benzeneacetic acid, ethyl ester 

Phenol, 4-butoxy- 

Benzenepropanoic acid 

Acetic acid, phenylmethyl ester 

2-Propanone, l-phenoxy- 

The term ‘structural similarity’ is not explicitly defined in the chemical literature 

[80]. It is an intuitive concept used by the chemist to classify molecules in terms of 

certain critical structural features relevant to a particular context. Therefore, there 

could be more than one measure of similarity and each could be meaningful in its 

particular context. In this paper we have attempted to derive an operational defini- 

tion of similarity using a group of topological indices. 

Judgements regarding the success of our method must recognize three factors 

which are at play in the selection of nearest neighbors. The first is that analogous 

structures can only be selected if they are present in the trial universe. In some cases, 

the nearest neighbors are not topologically similar because structures analogous to 

the target are absent in the trial universe and accurate selection can only be expected 

from larger sets of chemicals. Fig. 4 clearly shows many sparse areas in the chemical 

space. It is hoped that this method will emerge as a powerful tool in selecting ana- 

logs in drug design where molecular manipulation is carried out with a particular 

‘lead’ structure. Secondly, topological similarity of a target and its neighbors is 

evident in the ability to select similar skeletal graphs, i.e, graphs where the nature 

of the vertices, and bonding pattern are ignored. In cases where chemical intuition 

would dispute similarity between a target and its nearest neighbor, a substantial 

degree of similarity is evident with respect to size, branching pattern, cyclicity, and 

aromaticity. In our studies the data suggest that chemicals which fall within a 

distance of 0.3 to 0.4 from a target possess substantial topological similarity with 
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the target structure. The third factor is that topological indices encode no informa- 

tion about 3-dimensional molecular geometry and little information about elec- 

tronic characteristics of atoms. Consequently, nearest neighbors with isomorphic 

skeletal graphs may have quite different biological properties or chemical reactivity 

profiles. In view of the power of the method in rejecting dissimilar structures, our 

goal is to improve the selection of neighbors which have similar chemical properties 

and biological action. We are continuing our exploration of additional molecular 

descriptors which can be incorporated into structure space coordinates through 

principal component analysis and improve the chemical meaning of distance. 

In all cases, a target and its isomorphic nearest neighbor are not completely simi- 

lar, i.e., their distance is not zero. This is interesting from the viewpoint of chemistry 

because substitution of a given atom of a molecule by another atom of equal valency 

but different electronic nature often drastically alters molecular properties. 

Substitutions of this type will always produce isomorphic molecular graphs. The 

chemically meaningful discrimination of such structures by our PC-space is prob- 

ably due to contributions of valence connectivity and neighborhood indices which 

take into account the chemical nature of vertices. At the same time, if molecular 

topology and chemical reactivity have altogether different bases, it may be necessary 

to select similar chemicals by first selecting a group of topologically similar struc- 

tures, and then order the set of chemicals with respect to biological property or 

chemical reactivity using more sophisticated molecular parameters which take care 

of geometry and electron distribution. 

In conclusion, the structure-space constructed from 10 PC’s contains topological 

information useful in ascertaining structural similarity or dissimilarity of molecules. 

It may be mentioned, however, that none of the topological parameters has any rela- 

tion to the metric aspects (e.g., bond angle, bond distance, steric strain, etc.) of 

molecular architecture. Therefore, our structure-space is incapable of discrimi- 

nating among stereoisomers or taking care of overcrowding effect in molecules with 

vicinal bulky groups. We hope that within these constraints the method developed 

in this paper will provide a quantitative basis for intuitive notions of structural 

similarity. 
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