LETTER / Genito-urinary

Retroperitoneal extra-adrenal myelolipoma: Appearance in CT and MRI

N. Butori a,*, F. Guy a, F. Collin b, C. Benet b, S. Causeret c, N. Isambert d

a Department of Medical Imaging, Georges-François-Leclerc Center, 1, rue Pr-Marion, BP 77980, 21079 Dijon cedex, France
b Laboratory of Pathological Anatomy and Cytology, Georges-François-Leclerc Center, 1, rue Pr-Marion, BP 77980, 21079 Dijon cedex, France
c Department of Surgery, Georges-François-Leclerc Center, 1, rue Pr-Marion, BP 77980, 21079 Dijon cedex, France
d Department of Medical Oncology, Georges-François-Leclerc Center, 1, rue Pr-Marion, BP 77980, 21079 Dijon cedex, France

KEYWORDS
Myelolipoma; Fatty tumours; Magnetic resonance imaging; Cytogenetics

A myelolipoma is a rare benign lesion often discovered by chance during a tomodensitometry (CT) examination of the abdomen. It is classically located in the adrenal glands and is easily recognised due to its contingent of adipocytes [1]. Extra-adrenal forms are unusual and cause diagnostic difficulties even with histopathology. We report here the case of a male patient with a retroperitoneal extra-adrenal myelolipoma, which presented very much like a well-differentiated liposarcoma. This observation is the moment to recall the imaging characteristics of retroperitoneal fatty tumours and to emphasize the major role of identifying cytogenetic and molecular abnormalities in characterising them.

Observation

A 55-year-old man, with no notable medical history apart from mood and behavioural disorders, was admitted to the dermatology unit for management of exanthema of the left leg that had been evolving for several months. He had no somatic symptoms apart from pruritus associated with his skin rash.

Abdominal ultrasonography, performed to look for the cause of the exanthema, revealed the presence of a hyperechoic mass under the right kidney. An abdominal CT examination confirmed that there was a voluminous, well-delineated, right retroperitoneal mass, of 10 cm at its widest point, predominantly of dense fatty material, with a second tissue component in the form of poorly demarcated layers, enhanced following intravenous injection of an iodinated contrast agent (Fig. 1). The kidneys and adrenal glands were

* Corresponding author.
E-mail address: butori.noemie@gmail.com (N. Butori).

2211-5684/$ – see front matter © 2011 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
normal. The diagnosis suggested was of a malignant retroperitoneal tumour, such as a well-differentiated liposarcoma (WLD). Several CT guided percutaneous biopsy samples were taken to confirm this.

The histological analysis revealed a lesion formed of mature adipocytes and fibrous septa, altered by oedema and polymorphous inflammatory cells. There was no cellular atypia, and the immunohistochemical study with anti-MDM2 and anti-CDK4 antibodies was negative. Since there were no histological and phenotypic characteristics of liposarcoma, it was hypothesised that the mass was a simple lipoma; however, the quantity of tissue analysed was small and the radiological characteristics leaned more towards a malignant lesion.

Faced with this inconsistency between the anatomical and radiological findings, abdominal MRI was performed. It did not provide any new semeiotic element but confirmed the coexistence of a fatty component with another quantity of tissue forming zones of moderate enhancement, giving weight to the hypothesis of a malignant fatty lesion (Fig. 2). Since there was no specific diagnosis based on the histology, but with radiological and probabilistic reasons (the high probability of malignancy of a retroperitoneal fatty mass) for considering it to be a liposarcoma, it was decided following a multidisciplinary consultation to undertake surgery for initial management of a well-differentiated retroperitoneal liposarcoma.

R0 enlarged exeresis of the retroperitoneal mass was undertaken with right nephrectomy and monobloc right hemicolecctionomy. The pathological anatomy analysis of the mass confirmed the presence of a well-defined lesion of 10.5 × 7 × 3.5 cm, not adhering to either the kidney or the right adrenal gland, limited by a connective capsule and composed of both adipocytes and a haemopoietic contingent, which therefore produced the diagnosis of ectopic retroperitoneal myelolipoma (Fig. 3).

Figure 1. Abdominopelvic CT scan following injection of iodinated contrast agent. It shows a well-delineated right subrenal retroperitoneal mass, surrounded by a fine capsule. Two components are visible: a predominant one of fat and the other of tissue, infiltrating the fat and with indistinct contours (a and b). Reformation (b) shows the normal right adrenal gland (arrow) and separated from it, the extra-adrenal mass (head of arrow).

Figure 2. Abdominal MRI. Within the retroperitoneal mass, the fatty component (black arrow) can be perfectly identified: in T1 hypersignal it looks identical to that of the subcutaneous fat (a), and is cancelled out (b) by the technique of selective saturation of the fat (FatSat). The tissue component (white arrow) is moderately enhanced after injecting contrast agent (b): a: TSE (turbo spin echo) T1-weighted transverse sequence, TR: 550 ms, TE: 11 ms; b: GRE (rapid gradient echo) T1-weighted transverse sequence, TR: 3.2 ms, TE: 1.1 ms, θ: 50°, with selective saturation of the fat signal (FatSat) and after injection of gadolinium (Dotarem).
In histology, distinguishing a lipoma from a WLD can be difficult: it relies on the presence, within the WDL, of immature adipose cells (lipoblasts) and abnormal cells, which are sometimes few in number and heterogeneously distributed. For some years, differential diagnosis between lipoma and WDL has been facilitated by cytogenetics and molecular biology [6], because chromosomal and molecular abnormalities have been consistently and specifically identified in liposarcomas. These abnormalities are supernumerary, giant chromosomes and ring chromosomes that carry an amplification of the MDM2 gene, causing hyperexpression of the protein, detectable by immunohistochemistry. It is therefore possible to detect a specific molecular abnormality of liposarcomas on a routine basis.

The diagnostic value of the absence in our patient of any amplification of the MDM2 gene was not known. The hypothesis of a WDL was considered the most probable diagnosis, whereas it should have been excluded, with consequences on the extent of surgical ablation: the right colectomy and even the nephrectomy could have been avoided.

Two lessons have been drawn from this observation. Firstly, there are atypical presentations of myelolipoma, in particular occurrence in extra-adrenal locations, the unusual nature of which justifies histological evidence. This is obtained provided that the samples analysed contain the three haemopoietic lines, sometimes well concealed within the adipose tissue.

Secondly, this clinical case illustrates the contribution made by cytogenetics and molecular biology to the diagnosis of fatty tumours. It is indeed possible to confirm or quash the diagnosis of liposarcoma owing to immunohistochemical detection of hyperexpression of the protein MDM2.

Finally, we would like to highlight another advantage of the techniques related to MDM2: they allow a dedifferentiated liposarcoma to be recognised, and thus certain non-differentiated mesenchymal tumours to be connected to the adipocyte line, which, by default, are qualified as malignant fibrous histiocytomas, sarcomas with a much bleaker prognosis.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

References

