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SUMMARY

Cell fusion is essential for fertilization, myotube
formation, and inflammation. Macrophages fuse
under various circumstances, but the molecular
signals involved in the distinct steps of their fusion
are not fully characterized. Using null mice and
derived cells, we show that the protease MT1-MMP
is necessary for macrophage fusion during osteo-
clast and giant-cell formation in vitro and in vivo.
Specifically, MT1-MMP is required for lamellipodia
formation and for proper cell morphology and
motility of bone marrow myeloid progenitors prior
to membrane fusion. These functions of MT1-MMP
do not depend on MT1-MMP catalytic activity or
downstream pro-MMP-2 activation. Instead, MT1-
MMP null cells show a decreased Rac1 activity and
reduced membrane targeting of Rac1 and the
adaptor protein p130Cas. Retroviral rescue experi-
ments and protein binding assays delineate
a signaling pathway in which MT1-MMP, via its cyto-
solic tail, contributes to macrophage migration and
fusion by regulating Rac1 activity through an associ-
ation with p130Cas.

INTRODUCTION

Cell fusion is fundamental in processes such as fertilization and

vertebrate myogenesis (Chen et al., 2007), and may also be

important in inflammation (Johansson et al., 2008; Nygren

et al., 2008). Under certain circumstances, cells of the mono-

cyte/macrophage lineage can fuse, giving rise to osteoclasts

(OC) in bone or giant cells (GC) in inflamed soft tissues. These

multinucleated derivatives acquire specialized functions in

bone resorption and engulfment of pathogens and foreign

bodies, respectively (Vignery, 2005). Several diseases of the

adult skeleton are related to disturbances in OC function, either

through increased activity (bone metastasis, osteoporosis,

Paget’s disease) or decreased activity (osteopetrosis).
Deve
Molecules can contribute to cell fusion by either directly

participating in membrane fusion or by affecting earlier steps in

the process (Oren-Suissa and Podbilewicz, 2007; Primakoff

and Myles, 2007). The signaling pathways involved in cell-cell

fusion have mostly been characterized in yeast and inverte-

brates; much less is known about the regulation of fusion by

mammalian cells, and by macrophages in particular (Chen

et al., 2007). For example, EFF-1 and AFF-1 act as direct

membrane fusogens during Caenorhabditis elegans develop-

ment (Mohler et al., 2002; Sapir et al., 2007), but the mechanisms

by which proteins such as DC-STAMP, the d2 isoform v-ATPase,

and CD200 contribute to macrophage fusion remain undefined

(Cui et al., 2007; Lee et al., 2006; Yagi et al., 2005). One central

issue is how competent cells come into contact. In the case of

myotubes, the myogenic precursors are already in close prox-

imity, whereas sperm-egg fusion is dependent on sperm motility;

however, the mechanisms by which OC and GC precursors

achieve proximity are poorly understood.

MMPs (matrix metalloproteinases) are endopeptidases capa-

ble of degrading a variety of extracellular matrix components

and of modulating the activity of several secreted and cell-

surface proteins (Page-McCaw et al., 2007). MT1-MMP

(membrane type 1-MMP) is a membrane-anchored collage-

nase that plays important roles in pathophysiological settings,

including the development of skeletal, lung, and adipose

tissue, angiogenesis, and tumor invasion (Chun et al., 2006;

Holmbeck et al., 1999; Oblander et al., 2005; Sabeh et al.,

2004; Zhou et al., 2000). Here we report that MT1-MMP, inde-

pendent of its catalytic activity, regulates Rac1 signaling in

myeloid cells, thereby contributing to their migration and fusion

during osteoclastogenesis and GC formation in vitro and

in vivo.

RESULTS

MT1-MMP Null Myeloid Cells Are Defective
for OC Multinucleation In Vitro and In Vivo
MT1-MMP participates in leukocyte migration (Matias-Roman

et al., 2005; Yang et al., 2006), and we therefore analyzed hema-

topoietic development in MT1-MMP null mice. These mice die

2 weeks after birth, so 8-day-old mice were used for all anal-

yses. Flow cytometry showed that the percentage of cells
lopmental Cell 18, 77–89, January 19, 2010 ª2010 Elsevier Inc. 77
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doubly positive for Mac-1 (macrophage-1 antigen; CD11b/

CD18; aMb2 integrin; CR3)dull and c-fms (CSF1R, colony-stimu-

lating factor-1 receptor) was significantly higher in bone marrow

(BM) from MT1-MMP null mice (2.5% ± 1.4% versus 1.3% ±

0.9%; p < 0.0324; n = 20). Because this population might be

a common myeloid progenitor able to generate OC, and MT1-

MMP null mice display bone defects, we explored this point

further.

We exposed BM cultures to M-CSF (macrophage colony-

stimulating factor) and RANKL (receptor activator for nuclear

factor-kB ligand). These conditions differentiate progenitors

toward OC, giving rise to typical multinucleated cells expressing

characteristic phenotypic markers, including tartrate-resistant

acid phosphatase (TRAP) (Yagi et al., 2005). The numbers of

TRAP+ cells obtained from wild-type (WT) or MT1-MMP null

BM progenitors were similar; however, MT1-MMP null progeni-

tors generated fewer multinucleated TRAP+ cells (OC), and

these were smaller and contained fewer nuclei (Figure 1A; see

Figure S1 available online). No significant defects were found

in multinucleated TRAP+ cells derived from heterozygous

neonates (unpublished data). Similar results were obtained

when MT1-MMP null sorted Mac-1+ BM cells were differentiated

(Figure 1B), indicating a direct contribution of MT1-MMP in the

progenitors, although a role from stroma in vivo cannot be ruled

out.

The numbers of viable cells in cultures derived from WT or

MT1-MMP null BM were similar (Figure S2A). Furthermore, WT

and MT1-MMP null BM cells or derived OC showed similar rela-

tive mRNA expression of the OC genes PU.1, c-fms, RANK,

TRAP, NFATc1, and calcitonin receptor (Figure S2B). This

suggests that commitment and early differentiation of OC were

not affected by the absence of MT1-MMP. Consistently, serum

levels of TRAP, a measure of early commitment to the OC

lineage, were similar in MT1-MMP null mice and control litter-

mates (MT1-MMP+/+ 8.4 ± 2 U/l and MT1-MMP�/� 8.6 ± 5 U/l;

n = 8).

These data indicate a requirement for MT1-MMP at later

stages of OC differentiation. Accordingly, MT1-MMP mRNA

expression was upregulated by day 4 of OC differentiation in

WT cells (Figure S3), coinciding with the reported initiation of

cell fusion (Saginario et al., 1995).

Retroviral reexpression of human MT1-MMP in deficient BM

progenitors resulted in increased numbers of multinucleated

TRAP+ cells (OC) (Figure 1C), confirming the requirement for

MT1-MMP. Moreover, a mixed culture of WT and MT1-MMP

null progenitors rescued the multinucleation defect (% fusion =

5.5 for WT, 2.6 for null, and 5.5 for mixed) and showed that WT

progenitors can fuse with deficient ones (Figure S4); these data

indicate that the presence of MT1-MMP in one partner allows

efficient multinucleation.

To directly assess the impact of MT1-MMP deficiency on OC

multinucleation in vivo, we analyzed TRAP expression in

sections of femur and tibia from 8-day-old MT1-MMP null and

WT mice (Figure 1D, left). MT1-MMP null bones contained signif-

icantly fewer TRAP+ OC-like cells and a smaller relative TRAP+

area at the cartilage/bone interface (Figure 1D, top right). The

number of nuclei per TRAP+ cell at this interface was also signif-

icantly lower, confirming that decreased multinuclearity occurs

in vivo (Figure 1D, bottom right).
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MT1-MMP Deficiency Results in Decreased OC Function
In Vitro and In Vivo
Because multinucleation correlates with OC functionality (Chen

et al., 2007), we next tested the function of MT1-MMP null OC.

Dentine resorption was significantly impaired in OC differenti-

ated from MT1-MMP null BM progenitors (Figure 1E). These

OC contained fewer nuclei than WT counterparts (unpublished

data), indicating that the defect is matrix independent. Dentine

resorption was rescued by reexpression of MT1-MMP in the

null progenitors (mock = 2 3 105 and pR-MT1 = 6.3 3 105 mm2;

n = 3; p = 0.011).

To evaluate bone resorption in vivo, we measured serum levels

of the C-terminal COL I telopeptide ICTP (Kiviranta et al., 2005).

Serum ICTP levels were significantly decreased in MT1-MMP

null mice compared with WT (Figure 1F), showing that bone

resorption by OC is less efficient in neonate MT1-MMP null mice.

MT1-MMP Is Required for Macrophage Fusion during
GC Formation In Vitro and In Vivo
To evaluate the generality of the requirement for MT1-MMP in

monocyte/macrophage fusion, we investigated the effect of

MT1-MMP deficiency on GC formation. Formation of multinucle-

ated GC in vitro was induced by stimulating BM progenitors with

IL4 (Helming and Gordon, 2007). The average number of nuclei

per GC was significantly lower in multinucleated cells derived

from progenitors from adult heterozygous mice or MT1-MMP

null neonates (Figure 2A).

Foreign-body reactions were induced in vivo by subcutaneous

implantation of glass coverslips in WT and MT1-MMP heterozy-

gous adult mice. Although the number of cells and fusion effi-

ciency were similar on coverslips from the two genotypes, the

average number of nuclei per GC was significantly lower in

MT1-MMP heterozygous mice (Figure 2B), indicating a role of

MT1-MMP in GC formation in vivo. These findings were

confirmed in similar experiments performed with neonatal

MT1-MMP-deficient mice, in which the formation of GC in

response to a foreign body was almost abolished (Figure 2C).

MT1-MMP Null OC Progenitors Display Impaired
Chemotaxis, Motility, and Morphology
Progenitors within the OC differentiation niche must come into

contact in order to fuse. Chemotactic cues involved include

the cytokine RANKL and the chemokine MCP-1/CCL2 (Henrik-

sen et al., 2003; Kim et al., 2005). We previously showed that

MT1-MMP is involved in human monocyte migration toward

MCP-1/CCL2 (Matias-Roman et al., 2005). Here we analyzed

the chemotactic response of mouse MT1-MMP null BM cells

to RANKL across activated endothelial cell monolayers to model

the BM stromal niche. Compared with WT counterparts, MT1-

MMP null BM cells (total cells or the progenitor-rich Mac-1dull

subpopulation) showed significantly diminished endothelial

transmigration in response to RANKL (Figure 3A).

The effect of MT1-MMP deficiency on the behavior of individual

OC progenitors was next investigated by time-lapse microscopy

of BM cells cultured in the presence of M-CSF and RANKL for

4 days, just before cell fusion starts (Movies S1 and S2). MT1-

MMP null cells moved more slowly than WT (Figure 3B, left),

and whereas WT cells migrated in various directions over rela-

tively long distances, MT1-MMP null cells mostly migrated over
c.
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Figure 1. MT1-MMP Is Required for OC Multinucleation and Function In Vitro and In Vivo

(A) Bone marrow (BM) progenitors from WT or MT1-MMP null mice were differentiated to OC in vitro. Images of TRAP+ cells are shown. The scale bar indicates

100 mm. Histograms show the total number of TRAP+ cells, the number of TRAP+ cells containing R3 nuclei (OC), and the percentage of cell fusion (TRAP+ cells

containing R3 nuclei as a percentage of the total number of TRAP+ cells). Data are arithmetic means ± SE; n = 20.

(B) Mac1+ BM progenitors from WT or MT1-MMP null mice were differentiated to OC as in (A). The histogram shows arithmetic means ± SE of the number of

TRAP+ cells containing R3 nuclei (n = 4).

(C) BM progenitors from WT or MT1-MMP null mice were infected with retrovirus encoding human MT1-MMP and differentiated to OC. Images of TRAP+ cells are

shown. The scale bars indicate 100 mm. Data show arithmetic means ± SE of the number of TRAP+ cells containing R3 nuclei (n = 6) (top right). Human MT1-MMP

expression was detected by RT-PCR and western blot (bottom right). P, particulate fraction; S, soluble fraction. Mock, infection with empty virus.

(D) Bones from 8-day-old WT or MT1-MMP null mice were stained for TRAP. The scale bar indicates 100 mm. Histograms show arithmetic means ± SE of the

number of TRAP+ OC-like cells and the relative TRAP area at the cartilage/bone interface (n = 6). Floating bar graphs show distribution and arithmetic

means ± SE of numbers of nuclei per OC in the bone/cartilage interface area of WT or MT1-MMP null mice (n = 6).

(E) BM progenitors from WT and MT1-MMP null mice were differentiated to OC on dentine slides. Data show arithmetic means ± SE of the total area of dentine

resorption (n = 10). Images of TRAP-stained cultures on dentine are shown. The scale bar indicates 100 mm.

(F) The COL I telopeptide ICTP was measured by RIA in serum. Histograms show arithmetic means ± SE of ICTP levels in WT (n = 8) and null mice (n = 16).

See also Figures S1–S4.
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Figure 2. MT1-MMP Promotes Giant-Cell Formation In Vitro and

In Vivo

(A) GC formation by adult (WT and MT1-MMP heterozygotes) and neonate (WT

and MT1-MMP null) BM progenitors was induced in vitro (see Experimental

Procedures). The graph shows the distribution and arithmetic means ± SE of

numbers of nuclei per GC (n = 7 for adults and n = 9 for neonates; on average,

25 cells were counted per condition). Images of the GC obtained are shown.

The scale bar indicates 50 mm.

(B) Foreign-body reaction was induced in WT and MT1-MMP heterozygous

adult mice (see Experimental Procedures). The graph shows the distribution

and arithmetic means ± SE of numbers of nuclei per GC (n = 14; on average,

25 cells were counted per mouse). Pictures show GC in WT and heterozygous

mice (L and FB, Langhans and foreign-body type GC, respectively). The scale

bar indicates 50 mm.

(C) Foreign-body reaction was induced in WT and MT1-MMP null neonate

mice. The graph shows the number of GC per field (n = 8). Pictures show

GC formation in WT and null mice. The scale bar indicates 100 mm.
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shorter distances, correlating with a to-and-fro movement

pattern in the movies. Quantification of velocity and migrated

distance showed that these differences were significant

(Figure 3B, right). Similar defects were observed with MT1-

MMP-deficient Mac1+ BM cells (Figure 3C; Movies S3 and S4).

We then explored whether this defect in progenitor migration

could account for the defect in OC multinucleation by MT1-

MMP null cells. The multinucleation efficiency of MT1-MMP null

progenitors increased with increasing plating density but never

matched that of WT, even when cells were plated in contact

(Figure 3D). Detailed analysis of movies showed that MT1-MMP

null cells had a weaker membrane protrusive activity. Accord-

ingly, MT1-MMP null OC progenitors had a significantly smaller

average adhesive area and a high elliptical factor (EF), an index

of cellular elongation (Figure 3E). These findings demonstrate

that MT1-MMP modulates not only the locomotion of BM OC

progenitors but also other migration-associated parameters

that contribute to fusion such as morphology, spreading, and la-

mellipodia formation. Equivalent phenotypes (decreased adhe-

sive area and increased EF) were observed in similarly treated

MT1-MMP-deficient Mac-1+ BM cells (Figure 3F).

MT1-MMP Catalytic Activity Is Not Essential for Its
Regulation of Myeloid Cell Migration and Fusion
One of the main downstream targets of MT1-MMP is pro-

MMP-2, which is activated by MT1-MMP-mediated proteolysis

(Sato et al., 1994). Genetic evidence indicates that MMP-2 is

involved in bone biology (Martignetti et al., 2001; Mosig et al.,

2007), and we therefore investigated whether the lack of MMP-

2 activation might contribute to the defects observed in MT1-

MMP null cells. MMP-2 null neonate mice and derived cells did

not differ from WT in the numbers of BM-derived TRAP+ OC

in vitro or in the formation of GC in vivo (Figures 4A and 4B). Simi-

larly, MMP-2 null BM myeloid progenitors showed no differences

from WT equivalents in adhesive area, EF, or motility after culture

with M-CSF and RANKL (Figures 4C and 4D). Therefore, the

phenotypes observed in MT1-MMP null myeloid progenitors

appear to be unrelated to the lack of active MMP-2.

We directly assessed the requirement of MT1-MMP catalytic

activity by reexpressing WT and catalytically inactive MT1-

MMP in null myeloid progenitors. Retrovirally reexpressed

wild-type MT1-MMP increased the adhesive area and

membrane protrusive activity while decreasing the EF (Fig-

ure 4E); moreover, null cells with restored MT1-MMP expression

also migrated at higher speed, over longer distances, and with

more varied trajectories than mock-infected MT1-MMP null cells

(Figure 4F; Movies S6 and S7). Remarkably, the adhesive area,

EF, membrane protrusive activity, and motility phenotypes

were similarly rescued by reexpression of a catalytically dead

version of human MT1-MMP harboring the E240A mutation

(Figures 4E and 4F; Movie S8). Reexpression of the inactive

MT1-MMP mutant also significantly increased OC formation

(Figure 4G), confirming that catalytic activity is dispensable for

the contribution of MT1-MMP to these events.

MT1-MMP Contributes to the Migration and Fusion of
BM Myeloid Progenitors by Regulating Rac1 Activity
The small-GTPase Rac1 regulates macrophage cell spreading,

membrane ruffling, morphology, and migration, and is implicated
c.
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Figure 3. MT1-MMP Null BM Cells Show Impaired Chemotaxis, Motility, and Morphology

(A) Transmigration of total and Mac-1dull BM cells toward RANKL through activated human endothelial monolayers was analyzed. Data show arithmetic

means ± SE of the total number of cells in the lower chamber. Experiments were run in triplicate (n = 6).

(B) Single-cell track analysis was performed on time-lapse microscopy recordings from WT and MT1-MMP null BM cells cultured with M-CSF and RANKL for

4 days. Individual cell-track analysis was done on at least 100 cells for each genotype, in seven independent experiments with individual mice. Representative

trajectories of WT and MT1-MMP null cells are shown (left). Histograms show arithmetic means ± SE of velocities and total migrated distances (right).

(C) Mac1+ BM cells from WT and MT1-MMP null mice were cultured and analyzed as in (B) (n = 4).

(D) OC differentiation cultures were established from WT or MT1-MMP null BM progenitors at the standard cell density of 1.5 3 105 cells per well or at 3 3 105,

6 3 105, or 1 3 106 cells per well. The histogram shows arithmetic means ± SE of the number of TRAP+ cells containing R3 nuclei (n = 8) (top). Statistical signif-

icance is indicated for MT1-MMP null cells versus WT for each condition. Pictures show MT1-MMP null BM cells on different days after plating at 1 3 106 cells per

well (bottom). The scale bar indicates 100 mm.

(E) F-actin-stained images were analyzed with MetaMorph software. Pictures and mask images for each genotype are shown (left). The scale bars indicate 20 mm.

Histograms show arithmetic means ± SE of average adhesive area (top) and average EF (bottom) for WT and MT1-MMP null BM OC progenitors. A total of

200 cells for each genotype was analyzed (n = 10).

(F) Mac1+ BM cells from WT and MT1-MMP null mice were cultured and analyzed as in (E). The scale bars indicate 20 mm. Histograms show arithmetic

means ± SE of average adhesive area and EF for WT and MT1-MMP null BM OC progenitors. A total of 200 cells for each genotype was analyzed (n = 4).

See also Movies S1–S4.
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Figure 4. MT1-MMP Catalytic Activity Is Not Required for Regulation of Myeloid Cell Morphology, Motility, and Fusion

(A) BM progenitors from WT or MMP-2 null mice were differentiated to OC as in Figure 1A. Images of TRAP+ cells are shown. The scale bar indicates 50 mm. The

histogram shows arithmetic means ± SE of the number of TRAP+ cells containing R3 nuclei (n = 5 for WT and n = 13 for null mice).

(B) Foreign-body reaction was induced in WT and MMP-2 null neonates as in Figure 2C. Pictures show GC formation. The scale bar indicates 50 mm. The histo-

gram shows arithmetic means ± SE of the number of GC per field (n = 4 for WT and n = 7 for null mice).

(C) BM cells from WT and MMP-2 null mice were cultured and analyzed as in Figure 3E. The scale bars indicate 20 mm. Histograms show arithmetic means ± SE of

average adhesive area and EF for WT and MMP-2 null BM OC progenitors. A total of 100 cells was analyzed for each genotype (n = 5 for WT and n = 13 for null

mice).

(D) BM cells from WT and MMP-2 null mice were cultured and analyzed as in Figure 3B. Histograms show arithmetic means ± SE of velocity and total distance

traveled for WT and MMP-2 null BM OC progenitors. A total of 100 cells was analyzed for each genotype (n = 5 for WT and n = 8 for null mice).

(E) BM progenitors from WT or MT1-MMP null mice were infected with retrovirus encoding human MT1-MMP (pR-MT1) or a catalytically inactive MT1-MMP

mutant (pR-E240A) and cultured and analyzed as in Figure 3E. Histograms show arithmetic means ± SE of average adhesive area (top) and EF (bottom). A total

of 200 cells was analyzed per genotype (n = 4 for WT and n = 6 for null mice).

(F) BM cells were infected as in (E), and analyzed as in Figure 3B. At least 100 cells were analyzed per genotype (n = 4). Representative trajectories are shown

of WT and MT1-MMP null cells. Histograms show arithmetic means ± SE of average velocities (top) and total migrated distances (bottom) for infected WT and

MT1-MMP null cells.

(G) BM cells were infected as in (E) and differentiated to OC. Images of TRAP+ cells are shown. The scale bars indicate 20 mm. Data show the number of TRAP+

cells containing R3 nuclei (n = 6).

See also Movies S5–S7.
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in distinct cell-fusion scenarios (Jay et al., 2007; Pajcini et al.,

2008; Wang et al., 2008; Wells et al., 2004). Rac1 activity and

membrane targeting were significantly reduced in MT1-MMP

null BM progenitors (Figures 5A and 5B). Accordingly, Rac1

nicely decorated the lamellipodia of WT progenitors, colocalizing

with F-actin, in contrast to reduced Rac1 presence at these sites

in MT1-MMP null cells (Figure S5A). This correlates with reduced

numbers of focal complexes at the perimeter of MT1-MMP null

progenitors (Figure S5B).

Retroviral reexpression of MT1-MMP in null BM progenitors

significantly increased Rac1 membrane targeting and activity

(Figures 5C and 5D), demonstrating that MT1-MMP is required

for proper Rac1 activity in these cells. Rac1 activity in null

progenitors was also increased by reexpression of the inactive

mutant MT1-MMPE240A, indicating that the catalytic activity

of MT1-MMP is dispensable for its regulation of Rac1

(Figure 5D).

To assess whether this impaired Rac1 activity contributed to

the observed migration and fusion defects, we expressed

constitutively active Rac1 (Guo and Zheng, 2004) in MT1-MMP

null myeloid progenitors. Retroviral expression of active Rac1

in MT1-MMP null cells replicated the effects of MT1-MMP reex-

pression on cell spreading, morphology, membrane protrusive

activity, and motility (Figures 5E and 5F); accordingly, active

Rac1 expression rescued the OC multinucleation defect of

MT1-MMP null progenitors (Figure 5G).

Association of the MT1-MMP Cytosolic Tail with
p130Cas Is Involved in Its Regulation of Cell
Morphology, Motility, and Fusion in Myeloid Progenitors
MT1-MMP can interact with the focal adhesion protein p130Crk-

associated substrate (CAS) in endothelial cells (Gingras et al.,

2008), and the p130Cas-Crk complex participates in Rac1

membrane targeting in certain cell types (Albert et al., 2000).

The amount of p130Cas in the membrane fraction was signifi-

cantly decreased in MT1-MMP null progenitors (Figure 6A).

In addition, colocalization of p130Cas with the leukocyte

membrane marker MHCII was barely detectable by immunofluo-

rescence in MT1-MMP null progenitors, whereas it was

observed in WT cells (Figure S6). Retroviral reexpression of

MT1-MMP significantly increased the amount of p130Cas in

the membrane fraction of null myeloid progenitors (Figure 6B).

These data suggest that MT1-MMP is required for proper

p130Cas localization at the cell membrane of these cells.

Pull-down assays in myeloid progenitors showed that

p130Cas can bind the cytosolic domain of MT1-MMP; moreover,

the mutant MT1-MMPY573F bound p130Cas less efficiently,

showing that MT1-MMP Tyr 573 participates in the association

(Figure 6C). Retroviral expression of MT1-MMPY573F did not

rescue the OC multinucleation phenotype of MT1-MMP null cells

(Figure 6D), indicating that interaction between MT1-MMP and

p130Cas is required for this event.

The role of p130Cas in the phenotype of MT1-MMP null

myeloid progenitors was analyzed by retroviral infection with

p130Cas, which increases p130Cas expression in both the cyto-

solic and membrane fractions (unpublished data). Overexpres-

sion of p130Cas increased Rac1 activity in MT1-MMP null

myeloid cells, suggesting that p130Cas is a key intermediate

between MT1-MMP and Rac1 in these cells (Figure 6E). Consis-
Deve
tently, p130Cas overexpression increased the adhesive area of

MT1-MMP null cells and decreased their EF (Figure 6F),

increased their velocity and migrated distance (Figure 6G), and

rescued their OC multinucleation defect (Figure 6H), mimicking

the effect of reexpressed MT1-MMP or active Rac1.

DISCUSSION

In this report we identify a new function of MT1-MMP, indepen-

dent of its catalytic activity, in the formation of multinucleated OC

and GC from myeloid progenitors. This function is mediated

by regulation of Rac1 via a novel signaling pathway involving

association of the MT1-MMP cytosolic tail with p130Cas. MT1-

MMP thus regulates the morphology, motility, and fusion of

BM myeloid progenitors.

Macrophage cell fusion occurs in distinct pathophysiological

settings (Vignery, 2005). CD44, CD47 and its ligand MFR/

SIRP1a, DC-STAMP, CD200, and the d2 isoform of v-ATPase

are implicated in macrophage fusion, but the underlying molec-

ular mechanisms are not well defined (Cui et al., 2006, 2007; Lee

et al., 2006; Yagi et al., 2005). Within the metzincin protease

superfamily, members of the ADAM subfamily were suggested

to participate in cell-fusion events, although this remains contro-

versial (Primakoff and Myles, 2007), and MMP-9 participates in

GC formation (Maclauchlan et al., 2009). The demonstration

that MT1-MMP contributes to macrophage multinucleation in

distinct cell contexts identifies a novel participant in this process

and a new function for this protein.

The physiological relevance of these findings is highlighted by

the decreased bone resorption in newborn MT1-MMP null mice,

as indicated by lower amounts of serum ICTP. However, this

impaired OC function does not result in increased bone mass,

in contrast to other mouse models of defective OC fusion such

as DC-STAMP and d2 v-ATPase null mice (Lee et al., 2006;

Yagi et al., 2005). Osteoblast function is also compromised in

MT1-MMP null mice, and this might contribute to the complex

bone phenotype observed, possibly suggesting a dual role for

MT1-MMP in bone development with actions in OC-mediated

bone resorption and also in osteoblast bone deposition. It will

be interesting to dissect this dual role in the future by conditional

MT1-MMP deletion in OC and osteoblasts, once a floxed allele is

available. Furthermore, the drastic reduction of GC formation in

MT1-MMP null neonates and the impairment of this process in

heterozygotes suggest that a minimum amount of MT1-MMP

is required for an effective inflammatory response to foreign

bodies, reinforcing the importance of MT1-MMP in this

inflammatory situation. Hence, cell-type-specific modulation of

macrophage MT1-MMP might have potential in the treatment

of disorders involving either increased OC-mediated bone

resorption (such as osteoporosis and bone metastasis) or

chronic formation of GC (such as granulomatous disease).

Whether MT1-MMP participates in heterotypic fusion events

relevant to inflammation also deserves further work (Johansson

et al., 2008; Nygren et al., 2008).

Cell fusion is a complex process in which several sequential

steps must be finely orchestrated. It is unlikely that MT1-MMP

acts as a direct fusogen (Oren-Suissa and Podbilewicz, 2007),

and we therefore explored alternative mechanisms by which

MT1-MMP might contribute to macrophage fusion, such as the
lopmental Cell 18, 77–89, January 19, 2010 ª2010 Elsevier Inc. 83
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Figure 5. MT1-MMP Regulates Rac1 Activity in BM OC Progenitors
(A) BM cells from WT or MT1-MMP null mice were cultured with M-CSF and RANKL for 4 days and lysed for pull-down assay with GST-PBD. A representative blot

is shown. The histogram shows the average fold induction ± SE of active Rac1 quantified by densitometric analysis (n = 4 independent experiments from cells

pooled from a total of 20 mice).

(B) Cells treated as in (A) were fractionated, and particulate/membranous (P) and soluble/cytosolic (S) fractions were analyzed by western blot; a representative

blot is shown. The histogram shows arithmetic means ± SE of the percentage of Rac1 in the particulate fraction, quantified by densitometric analysis (n = 3 inde-

pendent experiments from 15 mice).

(C) BM progenitors from WT or MT1-MMP null mice were infected with retrovirus encoding human MT1-MMP (pR-MT1) and cultured as in (A). Cells were frac-

tionated, and particulate (P) and soluble (S) fractions were analyzed by western blot; a representative blot is shown. The histogram shows arithmetic means ± SE

of the percentage of Rac1 in the particulate fraction, quantified by densitometric analysis (n = 5 independent experiments from 15 mice). Images of cells stained

for Rac1 (green) are shown. The scale bar indicates 20 mm.

(D) Cells were infected as in (C) or with the inactive MT1-MMP mutant (pR-E240A) and lysed for pull-down assay with GST-PBD. A representative blot is shown.

The histogram shows the average fold induction ± SE of active Rac1 quantified by densitometric analysis (n = 3 independent experiments from 9 mice).

(E) BM progenitors were infected with retrovirus encoding constitutively active Rac1 (pM-Rac1) and cultured as in (A). Morphological parameters were analyzed

as in Figure 3E. The scale bar indicates 20 mm. Data are arithmetic means ± SE. A total of 100 cells was analyzed per genotype (n = 4).

(F) Motility parameters for BM cells infected with pM-Rac1 were measured as in Figure 3B for at least 100 cells per genotype (n = 4). Data are arithmetic

means ± SE.

Developmental Cell

MT1-MMP in Myeloid Cell Fusion

84 Developmental Cell 18, 77–89, January 19, 2010 ª2010 Elsevier Inc.



Developmental Cell

MT1-MMP in Myeloid Cell Fusion
modulation of membrane receptors. MT1-MMP can process the

hyaluronan receptor CD44, which has diverse roles in OC devel-

opment and macrophage fusion (Cui et al., 2006; de Vries et al.,

2005; Kajita et al., 2001). However, we found no link between

impaired CD44 shedding in the absence of MT1-MMP and the

multinucleation defect (unpublished data).

MT1-MMP participates in human monocyte migration and

transmigration (Matias-Roman et al., 2005), and efficient migra-

tion is required for proper macrophage fusion. Our data showing

defective chemotaxis and motility of MT1-MMP null BM cells and

the partial rescue of the multinucleation phenotype in high-

density cultures indicate that impaired locomotion contributes

to the fusion defect in the absence of MT1-MMP. However, the

incomplete rescue even at high cell densities indicates that other

MT1-MMP actions are involved, including regulation of cell

spreading and lamellipodia formation, important events in the

fusion process.

MT1-MMP is a pericellular collagenase also involved in the

proteolytic activation of pro-MMP-2 (Sato et al., 1994). Similar

to its role in lung and submandibular gland development

(Oblander et al., 2005), the contribution of MT1-MMP to OC

and GC formation was found to be independent of pro-MMP-2

activation because the absence of MMP-2 did not impair these

processes or alter the morphology and motility of myeloid

progenitors. More importantly, the demonstration that retroviral

re-expression of an inactive MT1-MMP mutant rescues the

morphology, motility, and fusion phenotypes of null progenitors

provides convincing evidence in support of important patho-

physiological functions of MT1-MMP unrelated to its proteolytic

activity (Sakamoto and Seiki, 2009).

Signaling pathways involved in cell-cell fusion have mainly

been analyzed in mating yeast and myoblast fusion in Drosophila

melanogaster. The Drosophila Duf-Ants-Mbc-Rac-Scar pathway

and in mammals the guanine-nucleotide exchange factors

(GEFs) Brag2 and Dock180 (Mbc mammalian homolog), which,

respectively, act on ADP-ribosylation factor 6 (ARF6) and

Rac1, are important for myoblast fusion (Chen et al., 2007; Paj-

cini et al., 2008). The Dock180/Rac1 pathway also participates

in the formation of multinucleated GC (Pajcini et al., 2008).

MT1-MMP is identified as an upstream regulator of Rac1 activity

in BM progenitors that might act at a similar hierarchical level

as Duf in Drosophila myoblast fusion. Our findings also support

the participation of Rac1 in macrophage fusion during OC and

GC formation in vivo. Rac1 might contribute to myeloid

cell and myoblast fusion through distinct mechanisms; for

example, Rac1 regulates migration and actin assembly in

myeloid pre-OC but regulates postmigration events during

myoblast fusion (Wang et al., 2008; Vasyutina et al., 2009).

MT1-MMP null mice also display myoblast fusion defects and,

therefore, similar to Rac1, the contribution of MT1-MMP may

be different in these two distinct fusion scenarios (this report;

Ohtake et al., 2006).

MT1-MMP acts as a positive regulator of Rac1 in primary BM

progenitors, with Rac1 activity in MT1-MMP null OC progenitors
(G) BM cells were infected as in (D) and cultured under osteoclastogenic condi

100 mm. The histogram shows arithmetic means ± SE of the number of TRAP+ c

See also Figure S5.

Deve
less than 25% that in WT cells. This would place MT1-MMP null

progenitors between stages I and II on the Pankov scale, with

very low Rac activity and almost no migration (Pankov et al.,

2005). This low Rac1 activity might explain most of the pheno-

types of MT1-MMP null progenitors, including small size, elon-

gated morphology, low lamellipodia activity, and impaired

migration (Wang et al., 2008; Wells et al., 2004); in fact, the low

lamellipodia activity might contribute, together with impaired

migration, to the defective cell fusion observed in the absence

of MT1-MMP (Jay et al., 2007). The chemotactic defects in BM

cells might, however, be explained by impaired Cdc42 activity

(Allen et al., 1998), which was observed in MT1-MMP null

progenitors (unpublished data). Rac1 might also regulate BM

progenitor motility by modulating focal complex formation,

consistent with the reduction in vinculin-positive structures at

the lamellipodia of MT1-MMP null progenitors. This pattern

might indicate an action of MT1-MMP in the recruitment of focal

adhesion components or in the modulation of integrin binding or

recycling at these sites. This idea is supported by the suggestion

that MT1-MMP can participate in focal adhesion turnover

(Takino et al., 2006). In cell contexts in which Rac1 activity is

deregulated or dispensable, it may be that the requirement of

MT1-MMP for migration on 2D matrices can be circumvented

(Sabeh et al., 2004).

Rac1 activity can be regulated at the levels of GTP loading and

cell-membrane targeting, and Rac1 membrane targeting is, in

fact, reduced in the absence of MT1-MMP. The primary event

triggering Rac1 membrane targeting is integrin binding to the

extracellular matrix (del Pozo et al., 2002). MT1-MMP can asso-

ciate with avb3 and b1 integrins in distinct cell contexts, and

MT1-MMP localizes to adhesion sites in response to integrin

ligation through a Rab8-mediated mechanism (Bravo-Cordero

et al., 2007; Galvez et al., 2002). It is possible that MT1-MMP

acts as an integrin coreceptor, modulating Rac1 targeting.

Consistent with this, both MT1-MMP and Rac1 are localized at

similar lipid-rich membrane microdomains (del Pozo et al.,

2004; Galvez et al., 2004), but it is not known whether MT1-

MMP influences integrin-mediated Rac1 targeting at these

domains.

The independence of MT1-MMP-mediated Rac1 regulation

from proteolytic activity indicates a mechanism not involving

the extracellular catalytic domain. The p130Cas-Crk adaptor

complex is another promoter of Rac1 membrane targeting

(Cho and Klemke, 2002), and the MT1-MMP cytosolic tail can

interact with p130Cas in endothelial cells (Gingras et al., 2008).

Our data confirm the MT1-MMP-p130Cas interaction and

show that MT1-MMP Tyr573, in the cytosolic tail, plays a role

in this association. MT1-MMP participates in the recruitment of

p130Cas to the myeloid progenitor cell membrane, as shown

by the decrease in p130Cas membrane targeting in MT1-MMP

null progenitors and the rescue of this targeting by reexpression

of MT1-MMP in null cells. Because the p130Cas-Crk complex

can act upstream of Cdc42 (Liu et al., 2007), the altered

membrane localization of p130Cas might also contribute to the
tions for 12 days. Images of TRAP+ cells are shown. The scale bars indicate

ells containing R3 nuclei (n = 6).
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Figure 6. Association of the Cytosolic Tail of MT1-MMP with p130Cas in Myeloid Progenitors Contributes to Its Roles in Rac1 Activity, Cell

Morphology, Motility, and Fusion

(A) p130Cas expression in WT and MT1-MMP null myeloid progenitors was analyzed by cell fractionation as in Figure 5B. The histogram shows arithmetic

means ± SE of densitometric quantification of the p130Cas/b1 integrin ratio in the particulate fraction (n = 4 experiments from 20 mice).

(B) BM progenitors from WT or MT1-MMP null mice were infected with retrovirus encoding human MT1-MMP (pR-MT1) and cultured with M-CSF and RANKL for

4 days. Cells were fractionated, and particulate (P) and soluble (S) fractions were analyzed by western blot for p130Cas; a representative blot is shown. The histo-

gram shows arithmetic means ± SE of densitometric quantification of the p130Cas/b1 integrin ratio in the particulate fraction (n = 5 independent experiments from

15 mice).

(C) GST fusion proteins of the MT1-MMP cytosolic tail (GST-MT1) and a mutated version in which Y573 is replaced by F (GST-MT1Y-F) were used in pull-down

assays with WT BM cells treated for 4 days with RANKL and M-CSF. A representative blot of p130Cas is shown. The histogram shows arithmetic means ± SE of

densitometric quantification of the p130Cas/GST ratio normalized to MT1-GST values (n = 3).

(D) MT1-MMP null BM progenitors were infected with retrovirus encoding nonmutated or Y573F mutated human MT1-MMP (pR-MT1 or pR-MT1Y-F) and cultured

under osteoclastogenic conditions for 12 days. Images of TRAP+ cells are shown. The scale bars indicate 100 mm. The histogram shows arithmetic means ± SE of

the number of TRAP+ cells containing R3 nuclei (n = 10).

(E) MT1-MMP null BM progenitors were infected with retrovirus encoding p130Cas (pP-p130Cas), cultured with M-CSF and RANKL for 4 days, and lysed for pull-

down assays with GST-PBD. A representative blot is shown. The histogram shows the average fold induction ± SE of active Rac1 quantified by densitometric

analysis (n = 3 independent experiments from 9 mice).

(F) BM progenitors from WT or MT1-MMP null mice were infected as in (E). Morphological parameters were analyzed as in Figure 3E. The scale bar indicates

20 mm. A total of 100 cells was analyzed per genotype. The histograms show arithmetic means ± SE of the average adhesive area and EF (n = 5).
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Figure 7. MT1-MMP Contributes to Myeloid Cell Fusion by Regu-

lating Rac1 Signaling

MT1-MMP is expressed in BM myeloid progenitors and is required for optimal

Rac1 activity in these cells. The functional impact of this regulation is under-

lined by the defects in morphology, motility, and cell fusion observed in the

absence of MT1-MMP and that can be rescued by constitutively active

Rac1. The role of MT1-MMP in this process does not require its catalytic

activity. Instead, the MT1-MMP cytosolic tail can bind the adaptor protein

p130Cas, and MT1-MMP Tyr573 seems to play a role in this association.

p130Cas acts as an intermediate modulator of Rac1 activity in this setting

because overexpression of p130Cas also rescues Rac1 activity and the multi-

nucleation phenotype in MT1-MMP null progenitors.
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impaired Cdc42 activity found in MT1-MMP null progenitors

(unpublished data). The importance of the interaction of Tyr573

with p130Cas for myeloid cell fusion is demonstrated by the

inability of the MT1-MMP Y573F mutant to rescue the multinu-

cleation phenotype. Moreover, the increased Rac1 activity in

MT1-MMP null cells overexpressing p130Cas indicates that

p130Cas is a signaling intermediate between MT1-MMP and

Rac1. However, additional mechanisms cannot be ruled out,

such as regulation by the MT1-MMP cytosolic tail of Rac1

GEFs; in this regard, the MT1-MMP cytosolic tail can interact

with p27RF-Rho, a regulator of RhoA activation (Hoshino et al.,

2009).

Our results suggest a model in which MT1-MMP at the

membrane of BM myeloid progenitors contributes to the efficient

recruitment and activation of the p130Cas-Rac1 complex at

lamellipodia (Figure 7). Impairment of this signaling pathway in

the absence of MT1-MMP would decrease lamellipodia activity

and cell migration, resulting in inefficient cell fusion.

EXPERIMENTAL PROCEDURES

Mice and Cells

Mmp14-deficient mice (MT1-MMP�/�) in the C57BL/6 background were

generated as described (Zhou et al., 2000). Mmp2-deficient mice (Itoh et al.,

1997) were kindly provided by S.J. Weiss (University of Michigan, Ann Arbor).

Mice were handled under pathogen-free conditions in accordance with institu-

tional guidelines; the animal protocols were approved by the institutional

committee. Experiments were performed with 8-day-old MT1-MMP�/� or

WT littermates unless otherwise indicated. Single-cell suspensions were

obtained from bone marrow (BM) and spleen; only data from BM cells are pre-

sented. Serum was obtained from peripheral blood incubated for 1 hr at 37�C.

Human umbilical vein endothelial cells were cultured as described (Galvez

et al., 2002).

Osteoclastogenesis and Dentine Resorption Assays

OC were generated from BM or spleen progenitors. Cells were seeded at

1.5 3 105 per well in 96-well plates in triplicate and incubated in a-MEM

supplemented with 10% FBS, 25 ng/ml M-CSF, and 25 ng/ml RANKL (Pepro-

Tech). After washing on day 3, M-CSF was decreased to 10 ng/ml and RANKL

was kept at 25 ng/ml. Cultures were stained with tartrate-resistant acid phos-

phatase (TRAP; Sigma) on day 12. The percentage of fusion was calculated

from the number of TRAP+ cells containing R3 nuclei with respect to the total

number of TRAP+ cells. DiO and DiI probes were from Molecular Probes.

Resorption was assayed by culturing progenitors on dentine plates (BioCoat,

OAAS; BD Biosciences) for 16 days. Areas of dentine resorption were

measured with Laserpix software.

Giant-Cell Formation

GC formation in vivo was induced as described (Mariano and Spector, 1974).

Glass coverslips (5 or 12 mm diameter) were implanted subcutaneously in the

backs of mice, and after 4 days the coverslips were removed and stained with

hematoxylin and eosin (H&E). GC formation was also induced in vitro (Helming

and Gordon, 2007). BM progenitors were cultured in the presence of 25 ng/ml

M-CSF. After 3 days, cells were plated at 1.5 3 105 cells/well in 96-well plates

with 50 ng/ml IL4 (PeproTech) and cultured for a further 4 days. Cells were

stained with H&E and Hoechst 33342 (Sigma). The number of nuclei per multi-

nucleated cell was counted by two blinded observers; at least 20 cells were

counted per condition.
(G) Cells were infected and cultured as in (E) and motility parameters were meas

show arithmetic means ± SE of the velocity and total distance traveled under the

(H) BM cells infected with pP-p130Cas were cultured under osteoclastogenic con

100 mm. The histogram shows arithmetic means ± SE of the number of TRAP+ c

See also Figure S6.

Deve
GTPase Pull-Down Assay, Subcellular Fractionation,

and Western Blot Analysis

Rac1 activity was determined by GST-PBD (Pak1 p21-binding domain) pull-

down assay as described (del Pozo et al., 2002). Particulate and soluble frac-

tions were obtained from cultured OC progenitors (del Pozo et al., 2002), and

equal protein amounts were analyzed by western blot; densitometry analysis

was performed with Quantity One or ImageJ software. The percentage of

Rac1 and the amount of p130Cas in the particulate fraction (normalized to

b1 integrin levels) were calculated. Anti-Rac was from Upstate Biotechnology,

and anti-p130Cas mAb was from Pharmingen.

Time-Lapse Microscopy Imaging

BM cells were cultured with M-CSF and RANKL for 4 days, and phase-contrast

images were collected with a Leica microscope with a 103 objective. Images

were analyzed with MetaMorph software (Universal Imaging). To determine

cell trajectories in phase-contrast image series (images captured at 15 min

intervals over 16 hr), the centroids of the cell nuclei were tracked. Tracking

analysis was quantified in 12 cells from n independent movies using the track

object function.

Quantification of Cell Adhesive Area and Elliptical Factor

F-actin-stained OC progenitors (after a 4 day culture with M-CSF and RANKL)

were outlined using the Kirsch edge detection algorithm included in Meta-

Morph software. Outlines were checked and corrected by hand if necessary.

Using MetaMorph’s integrated morphometry analysis function, cell EF

(length/breadth) was also determined as a measure of elongation.
ured as in Figure 3B for at least 100 cells per genotype (n = 4). The histograms

different conditions (n = 4).

ditions for 12 days. Images of TRAP+ cells are shown. The scale bars indicate

ells containing >3 nuclei (n = 8).
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Statistical Analysis

Data are shown as arithmetic means ± SE for the independent experiments

performed for each condition determined with Prism 3.0 (GraphPad Software).

Statistical differences among experimental groups were evaluated by

Student’s t test; differences were considered statistically significant at

*p % 0.05, **p % 0.01, and ***p % 0.001.
SUPPLEMENTAL INFORMATION
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