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equations in physics.

Here, an extended discrete tanh function method with a computerized symbolic compu-
tation is used constructing a new exact travelling wave solutions of nonlinear differential difference
equations of special interest in physics, namely, Hybrid equation, Toda lattice equation and
Relativistic Toda lattice difference equations.

As a result, we obtain many kinds of exact solutions which include soliton solutions, periodic
solutions and rational solutions in a uniform way if solutions of these kinds exist. The method is
straightforward and concise, and it can also be applied to other nonlinear difference differential

© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

A large class of nonlinear evolution equations have been
derived and widely applied in various branches of natural
science. The investigation of the travelling wave solutions for
nonlinear evolution equations arising in physics plays an
important role in the study of nonlinear physical phenomena.
A variety of powerful methods for obtaining the exact solu-
tions of nonlinear evolution equations have been presented
(Abdou and Soliman, 2005; Abdou, 2008, 2007, 2008a,b;
Abdou and Zhang, 2009; Abulwafa et al., 2007, 2008; He
and Abdou, 2007; He, 2006).
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The nonlinear differential-difference equations (DDEs)
have been the focus of many nonlinear studies. DDEs describe
many important phenomena and dynamical processes in many
different fields, such as particle vibrations in lattices, currents
in electrical networks, pulses in biological chains (Ablowitz
and Clarson, 1991; Kevrekidis et al., 2001; Tsuchida et al.,
1999; Hirota, 2004; Qian et al., 2004; Ma and Geng, 2001)
and so on.

DDEs play an important role in the study of modern phys-
ics and also play a crucial role in numerical simulations of non-
linear partial differential equations (NLPDEs), queueing
problems, and discretization in solid state and quantum
physics.

There have been developed many methods to solve DDEs,
such as inverse scattering method (Tsuchida et al., 1999) and
Hirota bilinear method (Hirota, 2004), Variables separate
method (Qian et al., 2004), Buacklund transformation (Ma
and Geng, 2001) and Darboux transformation can also be
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applied to solve DDEs and other methods (Xie and Wang,
2009; Dai and Zhang, 2006; Ahmet, 2009; Wang and Zhang,
2007; Baldwin et al., 2004; Wang, 2009).

The rest of the paper is organized as follows: In Section 2,
extended discrete tanh-function method is presented. In Sec-
tion 3, we choose three nonlinear difference differential equa-
tions, namely, Hybrid equation, Toda lattice equation and
Relativistic Toda lattice difference equations to illustrate the
validity and advantage of this method. Finally conclusion
and discussion are given in Section 4.

2. Methodology

In what follows is the summarized discrete tanh method
(Wang, 2009). For a given nonlinear difference equations as

Y, +ed

l//n+l _H‘TAIP,,7 (1)
Y, —ed

wnilil*éAl//i’

8’#17 _ 2

9E. €— oy, 2)

where &, = kn+ At. Fora givene = 1,0 = 1, 4 = tanh(k), the
equation system has solutions y, = tanh(£,) and
W, =coth(£,). In case of the parameters taken as
e=1,0 = —1,4 = tan(k), the equation system has solutions
. = tan(&,) and ¥, = —cot(&,). For the parameters taken as
e =0, = 1,4 =k, the equation system has solutions v, = L.
For a given nonlinear difference differential equations as
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where the dependent variable u, have N components u;,, and so
do its shifts; the continuous variable x has 4 components x, the
discrete variable n has s components #;; the k shift vectors p;,
and u'(x) denotes the collection of mixed derivative terms of
order r. By introducing wave transformation

s h
w (x) = U(E,) = Up &y => kimi+» I+,
=1 =1

s h
Upyp (X) = U(énﬂ)) = Un+p7 én+p = Zki(ni +p) + Z’ljx/' +c, (4)
=1 =

where, k; and 4; are all arbitrary constants to be determined
later, ¢ is constant.

In the context of discrete tanh function method, many
authors (Baldwin et al., 2004; Wang, 2009) used the ansatz

U(C,n) = Zailp;(ﬁn)v (5)
i=0

where a; are constants to be determined. In order to construct
more general, it is reasonable to introduce the following ansatz

UE) = S awi(E) + 3 bi(E) (6)
=0 =1

It is observed that the solution of the ansatz (8) goes back to
that obtained from (7) once b; = 0, where b; are constants to

be determined later, i, satisfy the system of Egs. (1) and (2),
M can be determined.

Case(1): We set the degree of U,,, — U,_,, p#0 is zero. For
the other terms in DDE, U, is of degree M; is , and
U,p, p70 is of degree zero. Then we can balance the highest
nonlinear terms and the highest linear terms to determine M in
Eq. (7). If M is odd, then give the value of M to my,

Case(2): Replacing zero by —1 as the degree of U,1, — U,_,,
p#0, we balance the term again. If M is even, then give the
value of M to m,, otherwise omit it.

The polynomial form expression of difference terms
Uup = z?ioa,-w;ﬂ + Z/}Z]b,l//;ip in the similar way as Eq.
(6). Inserting the expression of U,,...... ,Ussp in to Eq. (5)
yields an ordinary DDE in terms of ,,....,¥,,,. With the
aid of Egs. (1)-(3), we reduce the equation obtained.

Collecting coefficients of all terms, y,,i=1,2,..... and
setting to zero yield a system of algebraic equation.

Solving the system of algebraic equations by computer
algebra systems such as Maple.

Substituting the result relation obtained above and combin-
ing the solutions of Egs. (1)-(3), we could get the solutions of
given DDE Eq. (4)

3. New applications

To illustrate the effectiveness and the advantages of the pro-
posed method, three models of nonlinear differential difference
equations in physics are chosen, namely, Hybrid equation,
Toda lattice equation and Relativistic Toda lattice difference
equations. As a result, many exact travelling wave solutions
are obtained including solitary wave solutions expressed by
hyperbolic functions, periodic solutions expressed by trigono-
metric functions and rational solutions.

3.1. Example(1). Hybrid nonlinear difference differential
equation

Let us first consider the Hybrid nonlinear differential differ-
ence equation (Baldwin et al., 2004),

ou,,
ot

where o and f are constants. The Hybrid nonlinear difference
Eq. (9) describes the discretization of the KdV and modified
KdV equations. Making use the travelling wave solution as

u(n7 t) = U(in)7 én = kn + At + ¢, (8)

where k, ¢ and A are constants. Then the discrete Hybrid non-
linear difference equation reduces to

ou,
e,

Consider the balancing between the highest nonlinear term
BU*(Unyy — Uyyy) with the highest derivative term 2 ;’g'"
according to case(2) mentioned above, we have M =2. We

assume the solution of Eq. (11) can be expressed as

b b,
— et 10
V(&) Y& (10)
where ay, a;, a,, by and b, are to be determined later, y, sat-
isfy the system of nonlinear Egs. (1)—(3). With the aid of the

= (1 + ou, + ﬁui)(u/ﬂrl - un71)7 (7)

= (1 + aUn(én) + ﬁUi(én))(Un-H(én) - Un—l(én)) (9)

Un(én) =ap+ all//”(f,,) + azl//i(f,,) +
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expressions of U,, U,,1, U,_; in Eq. (9), we have a nonlinear
DDE which respect to ,,, ¥,,,,, ¥,_,, we reduce the difference
terms in Eq. (11) by using Egs. (1) and (2) and reduce the dif-
ferential terms by Eq. (3). We get an expression in rational
polynomial form of ,. Collecting the coefficients of
npg, i=0,1,2,...... and setting to zero yield an algebraic equa-
tion system for ay, a;, a», by, b, and A. Solving this system of
equations by Maple, we have three kinds of coefficients as

B o _ A(a? — 4B)
a =0, ao——%, i__Tv

B A/ o2 — 4p0 B _ o —4f
al—iT7 b2—07 bl— 4ﬁA(5 (11)

Family(1). For 6 =1, e=1, A = tanh(k), , = tanh(¢,) or
coth(&,), with Eq. (1), admits to solitary wave solutions of
Eq. (9) as follows

R tanh(k) /o> — 4B o —4p
(G =—apt g ) S (&)
(12)

o« tanh(k)\/o22 — 4po o2 —4p
e A T T (A
(13)

Family(2). For 6 =—1, e=1, 4 =tan(k), ¥, = tan(&,) or
—cot(&,), with Eq. (13), admits to triangular function solutions
of Eq. (9) as

o tan(k)\/o? — 4o ; o — 4B
R N TR
(14)
o tan(k)\/o? — 4o o> —4p
(&) = T Tc‘m(fn) " Ban(k)cot(&,)’
(15)
Family(3). For 6 =1, e=0, 4=k, y, =+, with Eq. (13),
admits to rational solution of Eq. (9) as "
_a ke —d4p o —4pe,
un(fzz) __ﬁ:l: 4[}611 + 4ﬁk ’ (16)
2 _
f,,:kn—A(dg—ﬂ‘m)H-c (17)

It is to be noted that the solutions obtained from Egs. (14)-
(18) are exactly the same with that obtained in Wang (2009)
by setting b = b, = 0.

3.2. Example(2). Relativistic Toda coupled nonlinear difference
equation

A second instructive model is the Relativistic Toda coupled
nonlinear difference equation (Baldwin et al., 2004),

8;;:(1—‘,—om,,)(v,,—v,,,l)7 (18)
Ovy
ot = Vn(unJrl —u, + Vpy1 — ‘“Vn—l)v (19)

where o is constant. The Toda lattice difference Egs. (20) and
(21) describe vibrations in mass-spring lattices with an expo-
nential interaction force. Using the travelling wave solution
we obtain

u(n7 t) = U(é”)’ V(n7 l) = V(én)7 é" = kn + )“t + C? (20)

where k, ¢ and 2 are constants. Then the discrete Relativistic
Toda difference equation becomes

P90 = (4ol () ValE) ~ U (6), e
)»g‘g =Vu(&) (U1 (&) = Uu(&)) + oV (&) — oV (&) (22)

Consider the balancing between the highest nonlinear term
with the highest derivative term. In Eqs. (23) and (24)
according to case(2) mentioned above, we have M = 1.
Therefore, we assume the solution of Egs. (23) and (24)
can be expressed as

. b
Un(gn) =ap+ all//n(én) + I//"(gvn) ) (23)
— dl
V() *C0+Cl'//n(5n)+mv (24)

where ay, ai, by, ¢, c1,and dy, are to be determined later, V,
satisfy the system of nonlinear Eqs. (1)—(3). Substituting the
expressions of U,, U,.;, U,_; in Egs. (23) and (24), we have
a nonlinear DDE which respect to y,,, ¥,,,,¥, ;. Collecting
the coefficients of w;, i=0,1,2,...... and setting to zero yield
an algebraic equation system for ay, a;, by, co, ¢1, dy and A.
Solving this system of equations, we have two different cases
for coefficients as follows

Case(1)
b= dea=—20 4 —ohe = erd=andy =<t
C1 )
c1(1 4 e4%d) JEA%ed” + 026 — Ac
- _ — 25
0 a5 P A0 ’ (25)
Case(2)
A
bl = 07(1 =—,d1 = 5/17(,’1 = —A(Joé,}v = /17d1 = 0,
ACO
24 A%
COZCO7aOZ_TO7 (26)
Case(3)
b] = AE,CII = O,Cl = 0,/1 = )»,d] = —AC(),C() = (o,
A j.z + AZCO
=L =T 2
x AC() » %0 A/L ’ ( 7)

According to case(l), with 0 =1, e=1, 4 =tanh(k), ¥,
= tanh(&,) or coth(¢,), admits to solitary wave solutions of
Egs. (20) and (21) as

(&)= ;Vzmnhz(l;)l;i;f”h(k)c‘ FAtanh(&,)+ ani;l(f,,f (28)
Vn(én)=*%:(2k(;{)+atanh(én)ern;'(én), (29)
(&)= ’Vz’“’1’72(’;3;;{,5;“”’1(")“+zcozh(én)+m,;(£n), (30)
e =S (et a1

In view of case(l), with 6 =—1, e=1, 4 =tan(k), ¥, =
tan(&,) or —cot(&,), admits to triangular function solutions
of Egs. (20) and (21) as
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() = }uztanz(k)t;n?; ); tan(k)c, _ Jtan(E,) + mn)(uén) (32 j.qj;ai)oczmple( 3). Toda lattice nonlinear differential difference
(&) = el = ran*(k)) + citan(é,) — Cly , (33) In this case, we consider the Toda lattice nonlinear differential
tan(k) tan(c,) difference equation (Baldwin et al., 2004),
ey =L RO e 4 s (4 P ), (50)
v,
(e = a(l z:mt?l:;(k)) _ crcot(&,) + cozc(lg) 7 (35) avt = Valths1 = thn) (51)

Using case(l), when 6 =1, e=0, A=k, , = éi, we have a
rational solution as

. ),2 — kC] A
un(gn) - k) +é_n’ (36)
fy— 9,4
n(@) = =2+ (37)
& =hkn+ A +c (38)

According to case(2), with 0 =1, e=1, 4 =tanh(k), ¥,
= tanh(&,) or coth(¢,), admits to solitary wave solutions of
Eqgs. (20) and (21) taken as

22+ tank* (k)c

un(én) = - l(ll’lh(k)/l 0+)“Zanh(én)7 (39)
Vn(fn) = CO[I - tanh(k)lanh(ﬁn)L (40)
(&) =~ o), (41)
vu(&,) = co[l — tanh(k)coth(&,)], (42)

In view of case(2), when 0=—1, e=1, 4 =tan(k), ¥,
= tan(&,) or —cot(&,), admits to triangular function solutions
of Egs. (20) and (21) as

A+ 1an (k)e

n(&n) = =+ Han(&), (43)
Vn(én) = CO[I - zan(k)tan(én)], (44)
uﬂ(én) = _W - 2601‘(511)7 (45)
V(&) = o[l + tan(k)cot(&,)] (46)

Form case(2), when d =1, e=0, A=k, ¢, =+, we have a
rational solution as ~

3 P+ ke 7
u,(&,) = *TJrav (47)
ke
vn(én) =Cy — éo ) (48)
E,=hkn+At+c (49)

It is to be noted that the solutions obtained from Egs. (30)
(50) are quite good with that obtained in Baldwin et al.
(2004). For simplicity case(3) is omitted here.

To look for the travelling wave solutions of Egs. (52) and (53),
we use the transformation

u(”? t) = U(én)? V(n’ [) = V(é}’l)’ fﬂ = kn + j’l + C? (52)

where k, ¢ and A are constants. Then the discrete Toda differ-
ence equation reduces to

z?ff" = Uy (Val&) — Una (&), (53)
Cn

o, ) )
)azn - nén(UrH—l(gn) - Un(Cn)) (54)

Consider the balancing between the highest nonlinear term and
the highest derivative term in Egs. (53) and (54) according to
case(2) mentioned above, we have M = 1. Therefore, we
assume the solution of Egs. (55) and (56) can be expressed as

by

U,(&,) = a0+ ary, (&) + V&) (55)
Sy B d,
sz(Cn) *CO+cllpn(Cn)+lp"(én)> (56)

where ay, ai, by, co, 1, d, are to be determined later, ,, sat-
isfy the system of nonlinear Eqs. (1) and (2). Substituting the
expressions of U,, U,.1,U,_ in Egs. (55) and (56), we have
a nonlinear DDE which respect to ¥, ¥,,,, ¥,_,. Collecting
the coefficients of 1//;, i=0,1,2,...... and setting to zero yield
an algebraic equation system for ay, a;, by, ¢y, ¢, d; and A.
Solving this system of equations, we obtain

Case(1)
cre ¢ €c
by = 7%7(11 =—c,0 =0, h= *glyd] =71,
Ca(l+ed’) (14 04%)

Co = VE ydo = oA (57)
Case(2)

b] = —AECo,al = 0, c) = O,A = —ACO,dl = AC()E7

Cy = Co,dp = Co (58)
According to case(l), with o=1, e=1, 4= rtanh(k),

W, = tanh(&,) or coth(&,), admits to solitary wave solutions
of Egs. (52) and (53) as

o sech® (k)

Ci

&) =S G s (59)
n(&) = #(,g‘ﬁ atanh(&) + e, (60)
(&) = tf’“(,g‘) —acorh(&,) = e (61)
n(E) = %(,gc) +acomh(&) + o (62)
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In view of case(l), when d6=-1, e=1, 4= ran(k),
W, = tan(&,) or —cot(&,), admits to triangular function solu-
tions of Egs. (52) and (53) as

(e = ) ) - (63)
i) = =D 4 tan(e - S (64)
(e =~ O 4 o) + 0 (65)
i) = L) o) - L (66)

Using case(1), when 6 =1, e=0, A=k, y, = éi, we have a
rational solution as

. a

un(én) _E_6_7 (67)
VI1(£n) = Cl’c_l‘i’g_lv (68)
fnzkn—%t—H: (69)

According to case(2), with 6=1, e=1, 4= tanh(k),
W, = tanh(&,) or coth(&,), admits to solitary wave solutions as

(E) = o~ . (70)
o) = o+ L), )
(&) = - o), (1)
o) = o+ o) 73)

By means of case(2), when 6= -1, e=1, 4 = ran(k),
W, = tan(&,) or —cot(&,), admits to triangular function solu-
tions as

B cotan(k)
Hn(fn) =Co — toanm’ (74)
(&) = co + % (75)
u(&,) = co + %?g)) (76)
va(Ea) = co — % (77)
&, =kn— Acyt + ¢ (78)

The solutions obtained Egs. (59)-(78) are quite good with that
obtained in Baldwin et al. (2004).

4. Conclusions and discussion

In summary, the discrete tanh method (Wang, 2009) is used for
constructing exact solutions to nonlinear difference-differential
equations (DDEs) arising in mathematical phys-
ics,namely,Hybrid equation, Toda lattice equation and Rela-
tivistic Toda lattice difference equations.

As a result, we obtain many kinds of exact solutions includ-
ing soliton solutions,periodic solutions and rational solutions
in a uniform way if solutions of these kinds exist.

Here, we presented a generalized discrete tanh method based
on the general ansatz (8) in which the exponent of function may
take both positive and negative values on the contrary to the
solution ansatz (7) where its exponent is only positive values.

Finally, it is worth noting that the new solutions obtained
by the proposed method confirm the correctness of those
obtained by other methods. The method is straightforward
and concise, and it can also be applied to other nonlinear dif-
ference differential equations in mathematical physics. This is
our task in future work.
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