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Abstract

In this study, we propose algorithms based on subspace learning in the GMM mean supervector space to improve performance of
speaker clustering with speech from both reading and singing. As a speaking style, singing introduces changes in the time-frequency
structure of a speaker’s voice. The purpose of this study is to introduce advancements for speech systems such as speech indexing
and retrieval which improve robustness to intrinsic variations in speech production. Speaker clustering techniques such as k-means
and hierarchical are explored for analysis of acoustic space differences of a corpus consisting of reading and singing of lyrics for each
speaker. Furthermore, a distance based on fuzzy c-means membership degrees is proposed to more accurately measure clustering diffi-
culty or speaker confusability. Two categories of subspace learning methods are studied: unsupervised based on LPP, and supervised
based on PLDA. Our proposed clustering method based on PLDA is a two stage algorithm: where first, initial clusters are obtained using
full dimension supervectors, and next, each cluster is refined in a PLDA subspace resulting in a more speaker dependent representation
that is less sensitive to speaking style. It is shown that LPP improves average clustering accuracy by 5.1% absolute versus a hierarchical
baseline for a mixture of reading and singing, and PLDA based clustering increases accuracy by 9.6% absolute versus a k-means baseline.
The advancements offer novel techniques to improve model formulation for speech applications including speaker ID, audio search, and
audio content analysis.

� 2012 Elsevier B.V.

Keywords: Speaker clustering; Singing; Speaking styles; Subspace learning

Open access under CC BY-NC-ND license.
1. Introduction

Speaker clustering is the task of identifying all segments
from the same speaker in a set of speech segments, and can
be considered to be a special form of unsupervised speaker
recognition (Makhoul et al., 2000). The goal of this study is
to introduce advancements into speech systems which
improve robustness to intrinsic variations in speech pro-
duction. As a first attempt to advance speaker clustering
with alternative speaking styles for each speaker, this study
has scientific value by distinguishing speaker dependent
subspaces that are less sensitive to changes in speaking
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style, as well as contributing to audio indexing and retrieval
applications.

Most studies regarding robustness for speaker recogni-
tion systems have focused on the impact of extrinsic varia-
tions such as noise and channel, while only a few have
explored the effects of intrinsic variations in spoken data
for speaker recognition systems (Hansen et al., 2000; Shri-
berg et al., 2008; Hansen and Varadarajan, 2009). As men-
tioned, speaker clustering is a type of unsupervised speaker
recognition, which does not require training data. Speaker
clustering systems can be viewed as a preprocessing stage,
in order to provide training data for new speech systems
such as speech and speaker recognition by grouping unla-
beled speech data. Furthermore, with an increasing number
of sources to obtain speech data such as the internet, tele-
vision, radio, meetings, voice mails, etc., as well as virtually
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unlimited data storage capabilities, audio indexing and
retrieval is attracting more attention with increased
demands on effective speech and audio search applications.
Speech segments obtained from any of these sources are
more likely to be unlabeled, and carry unknown informa-
tion including: who is speaking?, what is the topic?, what
is the environment?

Speaker diarization (Tranter and Reynolds, 2006;
Wooters and Huijbregts, 2008; Reynolds et al., 2009) which
basically addresses the question of ”who spoke when?” is a
combination of speaker segmentation and clustering.
Although it is possible to perform these two tasks jointly,
most speaker diarization systems perform speaker segmen-
tation and clustering separately (Tranter and Reynolds,
2006). While the present study focuses on speaker cluster-
ing, the techniques developed here can be applied to
speaker diarization. For speaker diarization systems, it is
important to group all speech segments from the same
speaker, even though the speaker may not speak in the
same manner. In other words, in a public presentation or
person to person conversation, the speaker may change
her/his speaking style, such as getting excited (Wu et al.,
2006), whispering (Fan and Hansen, 2008), increased stress
(Hansen, 1996), etc. All these speaking styles are due to
intrinsic changes in speech production, and will affect
speaker clustering systems. Multi-style training was devel-
oped by Lippmann et al. (1987) to improve speech recogni-
tion when subjects vary production. Bou-Ghazale and
Hansen (1998) explored ways to model training data under
specific speaking styles (loud, angry, Lombard effect) to
improve speech recognition for new speakers with only
neutral training data.

Singing is a good example of speaking style which has
not been considered in order to address robustness of
speaker clustering systems. Due to the inherent deviation
of singing speech production versus spoken text, time-fre-
quency structure of a speaker’s voice changes while singing.
Fig. 1 and Fig. 2 depict examples of speech signals and
spectrograms, respectively, in order to compare reading
and singing, where the same speaker reads and sings the
same text. As will be shown in the next section, from speak-
ing to singing, there is a shift towards higher vocal efforts
which is similar to loud and excited speech. In addition,
as a speaking style, singing data is easier to collect in a
Karaoke style, while for collecting other speaking styles,
speakers will have to spontaneously produce excitement
or anger, which takes on perhaps non natural traits (i.e.,
exaggerated).

For the above reasons, the results from studying and
improving robustness of speaker clustering for singing,
can be applied to a variety of speaking styles. Furthermore,
speaker clustering for singing has applications in music
information retrieval. Popular music is becoming one of
the most dominant data types on the internet, and there-
fore singer based clustering of unlabeled music recordings
has attracted more attention. Tsai et al. (2004) proposed
a system to cluster recordings on the basis of a singer’s
voice. In this study, we consider a more challenging task
by mixing reading and singing samples of the same speak-
ers. In other words, we assume that we do not have infor-
mation regarding speaking style (reading or singing) while
performing speaker clustering. This can be applied to
speaker diarization systems for audio where both speaking
and singing samples are present from one or more speak-
ers. Many instances of such audio streams are available
on the internet, radio, or TV, from interviews or talk shows
with popular singers. There is also an increasing interest in
singing competitions which include auditions with speaking
and singing speech samples of the participants.

Our speaker clustering system is based on modeling each
speech segment in the GMM mean supervector space. Tra-
ditional speaker clustering techniques are based on statisti-
cal modeling of low level acoustic features such as Mel
Frequency Cepstral Coefficients (MFCC) (Rabiner and
Juang, 1993) for each speech segment. The statistical mod-
els typically used in speaker clustering are Gaussian Mix-
ture Models (GMM) (Reynolds, 1995). The GMMs are
usually obtained by Maximum A Posterior (MAP) adapta-
tion (Reynolds et al., 2000) of a Universal Background
Model (UBM), previously trained on a considerable
amount of speech data, to each utterance or speech seg-
ment. Next, a similarity measure is used to compare the
obtained statistical models for the purpose of clustering
(Solomonoff et al., 1998; Ben et al., 2004). Recent studies
in speaker recognition and verification have illustrated
the benefit of a speaker representation known as the
GMM mean supervector which is formed by stacking the
means of the GMM model (Campbell et al., 2006). Speaker
GMM mean supervectors have also proven to be successful
in modeling speakers for speaker clustering (Faltlhauser
and Ruske, 2001; Tsai et al., 2005; Chu et al., 2009a;
Chu et al., 2009b).

This study is focused on unsupervised and supervised
subspace learning methods to improve speaker clustering
performance for singing and a mixture of reading and sing-
ing. Fig. 3 represents the flow diagram of speaker clustering
approaches in this study. Our investigation is based on a
singing corpus we collected, in which each speaker reads
and sings the lyrics of selected songs. In order to concen-
trate on vocal changes, and to eliminate effects of back-
ground music, only the singing voice of the speakers are
recorded while singers are listening to the music. Section 2
describes the singing database. In Section 3 and 4, unsuper-
vised dimensionality reduction techniques, namely Princi-
pal Component Analysis (PCA) and Locality Preserving
Projections (LPP) are explored and compared to baselines
for speaker clustering for reading, singing, and a mixture of
reading and singing. It is shown that LPP significantly
improves performance for a mixture of reading and sing-
ing. In addition, a novel similarity measure based on fuzzy
c-means membership scores is proposed in Section 4 which
estimates the degree of clustering difficulty or confusability
between a pair of speakers. Section 5 explains our proposed
clustering method based on supervised subspace learning,
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Fig. 1. Waveforms of reading and singing speech for “Any time she goes away”.
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namely Probabilistic Linear Discriminant Analysis (PLDA).
The proposed method consists of two stages. First, initial
speaker clusters are built without considering the effects
of speaking styles. Next, each cluster is refined in a sub-
space of the supervectors based on PLDA. Results of the
proposed clustering technique is compared to baselines
and shown to improve the average clustering accuracy by
approximately 6� 9%. A probe experiment is also pre-
sented to show the effect of adding background music to
the singing on speaker clustering. Finally, conclusions are
drawn in Section 6.

2. Database

Our experiments are based on a new database (UT-Sing)
which includes singing and reading speech samples for each
speaker. We collected UT-Sing for the purpose of compar-
ing singing to reading speech, as well as analyzing the
effects of singing on various speech systems. UT-Sing was
collected in four languages: American English, Farsi,
Hindi, and Mandarin. In the present study, the focus is
on the English portion of the database based on the
increased number of speakers for this language. We have
recorded 33 subjects including 18 females and 15 males
whose native language was English.

UT-Sing consists of two components: singing and read-
ing. Each speaker selected 5 popular songs in their native
language. Each song was approximately 3-5 minutes. We
tried to have a variety of song styles, including pop, rock,
and country. Though we had a list of suggested songs,
we also let each subject select their songs even if it was
not on the list, so they would be familiar with the songs
they were singing, and could follow the melody.

Next, the speaker’s voice was recorded in a soundbooth
with a close-talk microphone while singing as well as read-
ing the lyrics of the same songs. The singing was collected
using Karaoke system prompts. While subjects were listen-
ing to the music through headphones, the lyrics were dis-



Fig. 2. Spectrograms of reading and singing speech for “Any time she goes away”.
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Fig. 3. Flow diagram of clustering approaches based on subspace learning
in the GMM mean suprevector space.
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played, and only the subject’s singing voice was recorded.
Recording the singing voice without the background
music, lets us concentrate only on the vocal changes in
singing compared to reading. Another unique advantage
of this database is that singing and reading voices of the
same speakers have been collected with the same text for
each speaker. Therefore, the only factor that changes is
the speaking style which is singing.

In order to illustrate the vocal effort variation from
reading to singing, we used another corpus (UT-VocalEf-
fort I) (Zhang and Hansen, 2007; Zhang and Hansen,
2011) , consisting of independent subjects. Vocal effort is
a variation in a speaker’s voice due to either speaker-lis-
tener distance, or due to relative background noise levels,
or sensitivity of text content. UT-VocalEffort includes 12
native English speaking males, each reading 20 TIMIT sen-
tences with five vocal efforts: whispered, soft, neutral, loud,
and shouted. Each vocal effort was modeled using 19
dimensional MFCCs and 64 mixture GMMs. Utterances
in UT-Sing corpus were first silence removed using an
energy threshold, and then each reading or singing speech
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frame with the duration of 20 msec., and skip rate of 10
msec., was classified as one of the 5 vocal efforts using max-
imum likelihood classification. Since the vocal effort corpus
was collected for male speakers, the vocal effort classifica-
tion here is based on reading and singing data from English
male speakers. Fig. 4 presents the results of vocal effort
classification for reading and singing.

Comparing the two histograms shows the speech pro-
duction differences between reading and singing. For sing-
ing speech frames there is a shift towards higher vocal
efforts with 31.3% of frames classified as loud and shouted
(i.e., some subjects were enthusiastic when singing their
selected songs). This confirms a fundamental shift in the
manner of speech production between reading and singing,
which is more than a simple overall gain term.
3. Speaker clustering using unsupervised subspace learning in

GMM mean supervector space

3.1. Baseline: no dimensionality reduction

Our baseline system is based on modeling each utterance
or speech segment in the GMM mean supervector space, fol-
lowed by clustering the obtained high dimensional supervec-
tors in which each cluster represents a speaker. GMM mean
supervectors have proven to be effective speaker representa-
tions in speaker verification (Campbell et al., 2006; Kuhn
et al., 2000 as well as speaker clustering (Tang et al., 2009;
Tang et al., 2012; Chu et al., 2009a; Chu et al., 2009b).

Our speaker clustering approach includes: preprocessing,
feature extraction, model adaptation, and finally clustering
of supervectors. In preprocessing, silence removal is per-
formed for each utterance based on an energy threshold.
Next, acoustic features, namely Mel Frequency Cepstral
Coefficients (MFCC) are extracted from each utterance. A
speaker-independent UBM is trained over all utterances
and all speakers of a separate data set. In model adaptation
stage, the pretrained UBM is MAP adapted to each speech
segment to obtain a GMM on a per speech segment basis.
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Fig. 4. Vocal effort classification for reading (left bars) and singing (right
bars) speech frames.
Next, mean vectors for the obtained GMMs are stacked to
build a supervector per each speech segment. Assuming that
d-dimensional MFCCs are extracted from each speech seg-
ment and modeled by a GMM with M mixtures:

p xjkð Þ ¼
XM

i¼1

wigðxjli;RiÞ ð1Þ

where k ¼ wi; li;
P

i

� �
; i ¼ 1; . . . ;M is the Gassian Mixture

Model, and g xjli;Rið Þ represents a d-variate Gaussian
probability density function, with mean vector li and
covariance matrix

P
i, and wi’s are the mixture weights that

satisfy the constraint:
PM

i¼1wi ¼ 1, the GMM mean super-
vector representing the speech segment is a vector with
dimension: M� d:

lT
1 ; . . . ; lT

M

� �T ð2Þ

Finally, the GMM mean supervectors are clustered
using two traditional techniques: k-means and hierarchical.
K-means clustering partitions the data into a predefined
number of clusters, defining k centroids: one for each clus-
ter, and each data point is associated to the nearest cen-
troid. The following objective function is minimized in
order to calculate the centroids:

Xk

i¼1

Xn

j¼1

xj � ci

�� ��2 ð3Þ

where xj � ci

�� ��2
is a chosen distance measure between a data

point xj and the cluster centroid ci. In this study Euclidean
distance is used for k-means clustering. Hierarchical cluster-
ing is a clustering method that builds a hierarchy of the data
partitions. Hierarchical clustering algorithms are either top-
down or bottom-up. Bottom-up hierarchical clustering or
hierarchical agglomerative clustering starts with each data
point being a cluster and subsequently links the closest clus-
ters together based on a similarity measure until a stopping
criterion is satisfied. Various objective functions can be ap-
plied as linkage criteria to merge the clusters. In this study,
we used Ward’s linkage method (Ward Jr, 1963). Ward’s
minimum variance criterion minimizes the total within-clus-
ter variance. The initial cluster distances in Ward’s minimum
variance method are defined to be the squared Euclidean dis-
tance between points.

Despite the fact that GMM mean supervectors effectively
model speakers, in cluster analysis and pattern recognition
tasks, they are burdened with ”curse of dimensionality”.
Next, we employ unsupervised dimensionality reduction
algorithms to perform the clustering in a subspace of the
data set with lower dimensionality.
3.2. Locality Preserving Projections

Locality Preserving Projections (LPP) (He and Niyogi,
2003) is a linear unsupervised dimensionality reduction
technique that optimally preserves the local neighborhood
structure of the data. LPP is an alternative to Principal
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Component Analysis (PCA), a classical linear unsupervised
dimensionality reduction that projects the data along the
directions with maximal variances. The observations in a
high dimensional space, usually lie on a low dimensional
manifold, and LPP and PCA seek the linearly embedded
manifold in the data set. While PCA aims to preserve the
global structure of the data set, LPP preserves the local
structure. LPP has proven to perform better than PCA in
face recognition applications (He et al., 2005). It has also
been shown to be successful in speaker clustering (Chu
et al., 2009b).

Given a set of n-dimensional data points: x1; . . . ; xm, a lin-
ear dimensionality reduction algorithm finds a transforma-
tion matrix A which maps these m data points to a set of
vectors in an l-dimensional subspace: y1; . . . ; ym such that
l� n and yi ¼ AT xi; i ¼ 1; . . . ;m. LPP is in fact a linear
approximation of nonlinear manifold learning technique:
Laplacian Eigenmap (Belkin and Niyogi, 2002). The LPP
subspace learning algorithm first constructs an adjacency
graph G with m nodes, where each node represents a data
point. Two nodes i and j are connected if the corresponding
data points xi and xj are ”close”. The concept of ”closeness”
of two data points is defined either in the sense of k nearest
neighbor (i.e., i and j are connected if xi is among k nearest
neighbors of xj and vice versa), or in the sense of e-neighbor-
hood (i.e., i and j are connected if xi � xj

�� ��2
< e). Next, a

weight is associated with each edge or each two connected
nodes. The common weight function is the Heat Kernel:

W ij ¼ e�
xi�xjk k2

t ð4Þ

where W is the weight matrix. Finally, the following objec-
tive function is minimized:X

ij

ðyi � yjÞ
2W ij ð5Þ

Simple algebraic formulation (He and Niyogi, 2003)
reduces the objective function to:

XLX T a ¼ kXDX T a ð6Þ

where X ¼ ½x1 . . . xm� is an n� m matrix of data vectors, D is
a diagonal matrix such that: Dii ¼

P
jW ij, and L ¼ D� W

is the Laplacian matrix. Eq. (6) is a generalized eigenvalue
problem, and the solutions a1; . . . ; al which are the eigen-
vectors ordered based on their corresponding eigenvalues
are columns of an n� l matrix A such that:

yi ¼ AT xi;A ¼ ½a1; . . . ; al�: ð7Þ

We have applied both PCA and LPP to reduce the
dimensionality in the supervector space. First, the dimen-
sionality of supervectors which present test speech seg-
ments is reduced using PCA or LPP. Next, clustering is
performed in the obtained subspace. The results are pre-
sented in the next section, and compared to the baseline
with no dimensionality reduction. As it will be shown
PCA renders approximately the same results as the
baseline, while LPP improves the results. This suggests that
local manifold structure is more important than global
Euclidean structure.
4. Results and analysis

4.1. Experimental results

The results of speaker clustering for two types of speak-
ing styles are presented here: reading and singing. In addi-
tion, we present results for a mixture of these speaking
styles, seeking a subspace in the mean supervector space
that is speaker dependent but is not sensitive to the changes
in speaking style. Speaker clustering is performed on 10
sec. speech segments. The UT-Sing corpus includes 5 read-
ing and 5 singing utterances for each speaker in which each
reading utterance is approximately 1 min., and each singing
utterance 2 min. after silence removal. Therefore, on the
average there are 30 reading segments and 60 singing seg-
ments per speaker. We divided our data set into two sets:
train and test. As will be explained later, the train set will
be used to train our PLDA model. All clustering experi-
ments are performed on the same test set, in order to have
a reliable comparison between the results. The train set
includes 15 speakers: 8 females and 7 males, and the test
set includes 18 separate speakers: 10 females and 8 males.
19-dimensional MFCCs were extracted from each utter-
ance using a 20 msec. window at 10 msec. intervals. We
trained our UBM on all the TIMIT data with 64 mixtures,
and MAP adapted the UBM to each reading or singing 10
sec. segment. MAP adaptation was performed only on the
UBM means. Next, the mean vectors for each adapted
UBM were concatenated to obtain a mean supervector of
the dimension 64� 19 ¼ 1216 to represent each speech seg-
ment. In this study, we assume no prior knowledge about
speaking style which makes the clustering very challenging.
Therefore, to focus on the speaking style and make the
interpretation of the results less complicated, the number
of speaker clusters is considered to be known. In addition,
in order to analyze and compare the confusion between any
two speakers with a change in the speaking style, all the
reported accuracies are for two-speaker clustering. How-
ever, the proposed speaker clustering algorithms can be
expanded for more speakers, and even to the point of
unknown number of speakers. For each two speaker set
in the test space, all speech segments are mixed and then
clustered. We present three clustering accuracies: first,
when only the reading segments of the speakers are clus-
tered; second, when the singing segments are clustered;
and third, when all speech segments including reading
and singing are mixed and then clustered. The clustering
accuracy for each two speakers is the number of correctly
clustered segments divided by the total number of seg-
ments. The clustering is performed for all unique pairs of

speakers in the test set, which represents
18
2

� �
¼ 153 pairs
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in our experiments and the reported clustering accuracy is
the mean of all accuracies. (Chu et al., 2009a; Chu et al.,
2009b) have also used average clustering accuracies to eval-
uate clustering techniques.

First row of Table 1 shows the speaker clustering results
with the baseline system for reading, singing, and a mixture
of reading and singing with two traditional clustering tech-
niques: k-means and hierarchical. The baseline clustering
system renders almost perfect results for reading, and more
than 90% clustering accuracy for singing. However,
speaker clustering for a mixture of reading and singing seg-
ments represents the most challenging task with an approx-
imate 20% loss in clustering accuracy compared to a
reading baseline.

Second and third rows in Table 1 present the clustering
results with PCA and LPP, respectively, when the dimen-
sion is reduced to only 2 dimensions for clustering. As
shown in the tables PCA subspace learning prior to speaker
clustering renders approximately similar performance to
the baseline system, while LPP subspace learning improves
the clustering accuracies up to 2.1% for singing versus the
k-means baseline, and 5.1% for a mixture of reading and
singing versus the hierarchical baseline. As previously
noted, LPP preserves the local manifold structure of the
data, while PCA preserves the global structure. Therefore,
LPP especially works better with nearest neighbor like clas-
sifiers, and has discriminating power even though it is
unsupervised (He et al., 2005). Since clustering algorithms
such as k-means and hierarchical are based on a distance
measure between data points and clustering the closest vec-
tors, LPP is a suitable subspace learning technique for
speaker clustering. The results show that LPP increases
clustering accuracy more when there are both reading
and singing speech samples for each speaker. In our exper-
iments, the best results were achieved when using 3 nearest
neighbors to build the adjacency graph for LPP, with a
cosine distance as the distance measure. Increasing the
reduced dimension from 2, would change the accuracies
less than 1%. Next, we will analyze speaker clustering
results in more detail.

4.2. Speaker similarity measure for clustering tasks based on

fuzzy c-means

Speaker clustering accuracy is a viable measure to show
clustering performance. However, it does not exactly show
Table 1
Average clustering accuracies (%) for reading, singing, and a mixture of reading
LPP subspace learning methods.

Subspace learning Clustering method

Baseline(Full dimension) K-means
Hierarchical

PCA K-means
Hierarchical

LPP K-means
Hierarchical
the difficulty of a clustering task for a pair of speakers. In
addition, perfect clustering scores for reading for a major-
ity of speaker pairs, makes it difficult to compare reading
and singing speaker clustering for two speakers. Therefore,
we propose a similarity measure based on fuzzy c-means
membership degrees, which estimates the clustering diffi-
culty for a pair of speakers. Fuzzy c-means (Dunn, 1973;
Bezdek, 1981) is a clustering technique which allows a data
point to belong to more than one cluster. Its objective func-
tion is similar to k-means with the difference that it also
includes a membership degree:

Xk

i¼1

Xn

j¼1

um
ij xj � ci

�� ��2 ð8Þ

where uij is the degree of membership, and 1 6 m.

xj � ci

�� ��2
is a chosen distance measure between a data

point xj and the cluster centroid ci, and k is the number
of clusters. Fuzzy c-means clustering assigns k numbers
in the interval [0 1] to each data point which is the member-
ship degree of that data point to each cluster. The points
closer to the edge of a cluster will have lesser membership
degrees than the points closer to the center. Based on this
feature of fuzzy clustering, we will define a similarity mea-
sure which shows the degree of confusion between speech
segments from a pair of speakers, but first, we will compare
the statistics of these membership degrees between reading
and singing.

Previously we showed that the average speaker cluster-
ing accuracy decreases when speakers were singing, and
decreases even more when speakers were reading and sing-
ing. In order to show the difficulty of the clustering task for
singing, and mixture of reading and singing, compared to
reading we performed a fuzzy c-means clustering on the
same data. Our experiments show that fuzzy c-means
two-speaker clustering in the GMM mean supervector
space renders similar results to the k-means clustering.
Data points with membership degrees more than 0.5 are
considered to belong to the cluster. For the remainder of
this section, all supervector dimensions are reduced to 2
using PCA to reduce the processing time. The fuzzy cluster-
ing accuracies were 99.9%, 91.5%, 81.1% for reading, sing-
ing, and mixture of reading and singing, respectively. Next,
the membership degrees were compared for correctly clus-
tered samples. Note that for each data point, there are two
membership degrees for each of the two clusters which add
and singing with baseline system: no dimensionality reduction, PCA, and

Reading Singing Mixture

99.7 91.3 80.6
99.9 92.8 82.9
99.6 91.3 80.5
99.9 91.9 82.4
99.5 93.4 84.7
99.9 94.0 88.0
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up to 1. Since the clustering decision is made based on the
membership degree that is greater than 0.5, in our analysis
only membership degrees in the interval [0.5 1] are
considered.

Fig. 5 depicts the normalized histograms of the member-
ship degrees for correctly clustered segments for reading,
singing, and a mixture of reading and singing. Data points
closer to the edge of the cluster which are more likely to be
confused with data points in the other cluster, have mem-
bership degrees closer to 0.5. Data points closer to the cen-
ter of the cluster which are classified with more confidence
have membership degrees closer to 1. For reading, only
2.5% of data points which are accurately clustered have
membership degrees less than 0.75. However, for singing,
10.6% of the data points which contribute to clustering
accuracy, have membership degrees less than 0.75. This
suggests that even though singing clustering accuracy
decreases only by 99.9-91.5=8.4% compared to reading,
10.6% of the 91.5% accurately clustered segments are closer
to the edge of the cluster than the center. For mixture of
reading and singing, the percentage of membership degrees
less than 0.75 increases to 14.3%. This analysis shows that
in addition to a loss in clustering accuracies, the correctly
clustered samples are more confusable and clustered with
less confidence for singing and mixture of reading and sing-
ing, compared to reading.

Next, for analysis purposes, a similarity measure is pro-
posed based on fuzzy c-means membership degrees which
shows the degree of clustering difficulty for a pair of speak-
ers. Given two speakers, with a set of utterances or speech
samples for each speaker, first, all the speech segments
from both speakers are modeled by GMM mean supervec-
tors as explained in Section 3. For the obtained set of
supervectors, two cluster centroids are calculated based
on fuzzy c-means objective function, and a degree of mem-
bership to each cluster center is computed for each data
point or supervector. The dimension of supervectors can
be reduced previous to clustering using PCA. Next, data
points are partitioned into two clusters such that a data
point with cluster membership degree of more than 0.5 is
considered to belong to that cluster. Since the ground truth
for the clusters is known, correctly clustered and incor-
rectly clustered supervectors are distinguished. The pro-
posed fuzzy cluster distance is defined as:

XNc

j¼1

uj �
XNi

k¼1

uk

 !
=ðN c þ NiÞ ð9Þ

where Nc and Ni represent the number of correctly and incor-
rectly clustered samples, respectively. uj; j ¼ 1; . . . ;N c and
uk; k ¼ 1; . . . ;Ni are the fuzzy membership degrees of cor-
rectly and incorrectly clustered samples, respectively. Note
that only the membership degrees which are more than 0.5
are used in this equation, where N c þ Ni is the total number
of data points. The proposed fuzzy cluster distance measure
is in the interval [0 1]. The more the fuzzy cluster distance is,
the less is the confusion between speech segments from the
corresponding speaker pair. The distance is 1 when all the
data points are correctly clustered with confidence or mem-
bership degree of 1. It should be noted that if the sum of the
membership degrees for incorrectly clustered data points is
more than the correctly clustered data points, simply switch-
ing the clusters will result in a higher overall clustering accu-
racy and higher fuzzy cluster distance. Therefore, the defined
distance is greater than zero and the minimum distance is 0
instead of -1. Table 2 shows the statistics of the fuzzy cluster
distances between pairs of speakers for reading, singing, and
a mixture of reading and singing. Fuzzy cluster distance
gives us a more accurate estimation of clustering difficulty
than average clustering accuracy. Compared to reading,
average fuzzy clustering accuracy reduces by 8.4% absolute
for singing and 18.8% for mixture, while average fuzzy clus-
ter distance reduces by 18% absolute for singing and 36% for
mixture.

Next, fuzzy cluster distances are compared between
reading and singing for all speaker pairs. As mentioned,
with 18 test speakers we have 153 unique speaker pairs.
For each two speakers, fuzzy cluster distance is calculated
using their reading speech segments. Fuzzy cluster distance
is also calculated for the same speakers with their singing
speech segments. This results in two 153-dimensional vec-
tors of distances. The obtained correlation coefficient
between the two vectors is 0.4. This correlation coefficient
indicates how much the confusion between two speaker’s
reading voices contributes to their confusion of singing
voices.

5. Speaker clustering for a mixture of reading and singing
based on supervised subspace learning

As was shown in Section 4 the most challenging speaker
clustering task occurs when reading and singing speech
samples of a speaker are mixed. In this case, the purpose
is to cluster speech segments based on unique characteris-
tics of a speaker’s voice regardless of their speaking style.
In this section, a speaker clustering algorithm is proposed
using the scores from a Probabilistic Linear Discriminant
Analysis (PLDA) model which improves the speaker clus-
tering performance for a mixture of reading and singing.
PLDA is a supervised subspace learning method in that it
assumes there exist some reading and singing data available
for training. However, the training speaker set is indepen-
dent from test set. In other words, PLDA model is trained
on reading and singing samples of training speakers, and
the model is used to cluster test speakers which were not
present in training.

5.1. Probabilistic Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a common
method in pattern recognition using a linear combination
of the features which best separate two or more classes.
Fisher linear discriminant criterion, maximizes the between-
class data separation while minimizing the within-class
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Fig. 5. Normalized histograms of fuzzy membership degrees for correctly clustered segments.
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Table 2
Mean and standard deviation of fuzzy cluster distances between pairs of
speakers for reading, singing, and a mixture of reading and singing.

Reading Singing Mixture

Mean 0.95 0.77 0.59
Standard deviation 0.03 0.24 0.28
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Fig. 6. Average clustering accuracy for a mixture of reading and singing
with c-means baseline when the number of iterations for PLDA refining
algorithm varies from 0 to 5.
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scatter (Bishop, 1995). Probabilistic LDA is a generative
model in which probability models are derived as a result
of training, in addition to the usual LDA features (Ioffe,
2006). This suggests that PLDA is more suitable for the tasks
where recognition is performed on previously unseen classes.

PLDA has proven to be successful in face recognition
with uncontrolled conditions including variabilities in pose,
lighting, and facial expressions (Prince and Elder, 2007).
Speaker clustering with variations in speaking style defines
a similar problem, replacing image vectors with GMM
mean supervectors for our task.

Assuming that the training data set consists of I speak-
ers with J speech samples for each speaker, the j0th GMM
mean supervector from the i0th speaker is denoted by xij,
with i ¼ 1; ::; I and j ¼ 1; . . . ; J . The data generation is
modeled as:

xij ¼ lþ Fhi þ Gwij þ eij ð10Þ
where the signal component: lþ Fhi depends only on the
speaker, while the noise component : Gwij þ eij depends
on both the speaker and speaking style. The term l is the
overall mean of the training data, and F and G are matrices
which contain bases for between-speaker and within-speak-
er subspaces, respectively. hi and wij are latent variables
and finally eij is the residual noise term which is defined
to be Gaussian with a diagonal covariance matrix R (Prince
and Elder, 2007). The output of PLDA training is the mod-
el h ¼ l; F ;G;Rf g which is trained using Expectation Max-
imization (EM) algorithm.
In the testing phase, the likelihood that N supervectors:
x1; . . . ; xN belong to the same speaker, is the likelihood that
these supervectors share the same speaker variable or h

regardless of the noise variables w1; . . . ;wN . The following
equation combines N generative models for these supervec-
tors (Prince and Elder, 2007):
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ð11Þ

which can be rewritten as:

x0 ¼ l0 þ Ayþ e0: ð12Þ

The likelihood of N supervectors being from the same
speaker can now be determined as:

Prðx0Þ ¼ Nðx0 l0;AATþ
		 R0Þ: ð13Þ

R0 ¼

R 0 � � � 0

0 R � � � 0

..

. ..
. . .

. ..
.

0 0 � � � R

2
66664

3
77775 ð14Þ
5.2. Proposed speaker clustering algorithm based on PLDA

Our proposed clustering algorithm includes two stages:
1. baseline clustering with full dimensional supervectors;
2. refining the clusters obtained in the first stage in a PLDA
dimensionality reduced subspace (Mehrabani and Hansen,
2012). A PLDA model is trained on the training data set
which includes 15 speakers with reading and singing sam-
ples for each speaker. The trained model can then be used
to refine the speaker clusters on the test set with speakers
which were not present in training.

After the initial clustering, each supervector is compared
to other supervectors in its cluster, as well as supervectors
in the other clusters based on a likelihood ratio. For each
two supervectors x and y, this likelihood ratio is calculated
using the trained PLDA model:

LLRðx; yÞ ¼ LogðLikelihoodðsameÞ=Likelihoodðdiff ÞÞ
¼ LogðLikelihoodðsameÞÞ � LogðLikelihoodðdiff ÞÞ

ð15Þ

where LikelihoodðsameÞ is the likelihood that x and y be-
long to the same speaker, and Likelihoodðdiff Þ is the like-
lihood that x and y belong to different speakers. Based on
Eq. (10), x and y can be written as:

x ¼ lþ Fh1 þ Gw1 þ e

y ¼ lþ Fh2 þ Gw2 þ e
ð16Þ
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where there are two hypotheses: H 1 is the hypothesis that x

and y belong to the same speaker, and H 2 is the hypothesis
that x and y belong to different speakers. If two supervec-
tors x and y belong to the same speaker: h1 ¼ h2 ¼ h. The
likelihood for each hypothesis can be calculated as condi-
tional probabilities based on PLDA model (Prince and El-
der, 2007):

Pr x; y H 1jð Þ ¼
Z Z

Pr x h;w1jð ÞPr w1ð Þdw1:



Z

Pr y h;w2jð ÞPr w2ð Þdw2

�
Pr hð Þdh ð17Þ

Pr x; y H 2jð Þ ¼
Z Z

Pr x h1;w1jð ÞPr h1ð ÞPr w1ð Þdh1dw1:Z Z
Pr y h2;w2jð ÞPr h2ð ÞPr w2ð Þdh2dw2 ð18Þ

If LLRðx; y1Þ > LLRðx; y2Þ; x and y1 are more likely to be
from the same speaker than x and y2. Therefore, LLR can
directly be applied in clustering as a distance measure.
However, our experiments show that using LLR for refin-
ing the obtained clustered from the baseline, renders better
clustering results. The refining algorithm is as follows:

� Step 1: For each supervector xc
i in cluster c, calculate the

LLR with all the supervectors in cluster
c : LLRðxc

i ; x
c
jÞ; i ¼ 1; ::;N c; j ¼ 1; ::;Nc.

� Step 2: For each supervector xc
i in cluster c, calculate the

LLR with all the supervectors in other clusters
c0 ¼ 1; . . . ;C; c0–c : LLRðxc

i ; x
c0
j Þ; i¼ 1; ::;Nc; j ¼ 1; ::;N c0 .

� Step 3: If cm ¼ arg max
c0¼1;...;C

medianðLLRðxc
i ; x

c0
1 Þ; . . . ; LLR

ðxc
i ; x

c0
Nc0
ÞÞ–c, move xc

i to cluster cm.

Table 3 shows results of the proposed clustering method
for reading, singing, and a mixture of reading and singing.
Our experiments show that repeating the refining stage
improves the clustering accuracy. The first row represents
baseline results with no dimensionality reduction, and the
second row represents clustering accuracies with 3 itera-
tions of the proposed refining algorithm in the PLDA sub-
space when the first stage clustering method is k-means,
and hierarchical. Since the PLDA subspace learning is
based on reading and singing data for 15 training speakers,
the reduced dimension for PLDA is chosen to be 14. Com-
pared to the baseline clustering accuracies, the clustering
accuracy for a mixture of reading and singing increases
by 9.6% with k-means as the baseline, and 7.6% with hier-
archical clustering as baseline. The clustering accuracies
increase for singing, and are similar to baseline for reading.
Table 3
Average clustering accuracies (%) for reading, singing, and a mixture of readi

Subspace learning Clustering method

Baseline(Full dimension) K-means
Hierarchical

3 PLDA Refining K-means
Hierarchical
The best clustering performance for the mixture after 3
refining iterations is 90.5%.

In Section 4.2 we noted that the fuzzy c-means cluster-
ing baseline has similar clustering accuracies to k-means.
It was also explained that c-means clustering is based
on fuzzy membership degrees and for two-speaker cluster-
ing, data points with membership degrees more than 0.5
are considered to belong to a cluster. Here, we use c-
means clustering as baseline and its membership degrees
in PLDA refining to reduce the processing time. An anal-
ysis of the fuzzy membership degrees for all the reading
and singing supervectors from all 153 speaker pairs in
the test set shows that 68.5% of the incorrectly clustered
supervectors have membership degrees less than 0.9, while
63:2% of the correctly clustered samples have membership
degrees more than 0:9. This suggests that performing the
refining algorithm on data points with membership
degrees in the interval ½0:5 0:9� should render similar
results. Note that our membership degree decision thresh-
old for clustering is set to 0:5. The average clustering
accuracy for a mixture of reading and singing with c-
means baseline and no PLDA refining is 81:1%. This
accuracy increases to 86:6% with one iteration of PLDA
refining algorithm. Performing the refining algorithm only
on data points with membership degrees less than 0:9
results in the same accuracy, while processing time
reduces to half the processing time for all the data points.
Fig. 6 shows the average clustering accuracy for a mixture
of reading and singing, when the number of PLDA refin-
ing iterations increase from 0 (baseline with no refining)
to 5. The baseline clustering in this experiment is fuzzy
c-means. As shown in the figure, with the first refining
iteration, the clustering accuracy increases the most. The
second and third iterations also show an increase in accu-
racy, but after that it does not change significantly.
5.3. Frontend supervised subspace learning based on LDA

In this section, various frontend configurations are eval-
uated and compared to 19-dimensional MFCCs. Next, we
show that LDA based supervised subspace learning in fea-
ture space improves the clustering performance. Finally,
the frontend LDA transformed features are combined with
the proposed backend PLDA based cluster refining algo-
rithm to achieve higher clustering accuracies, especially
for the mixture of reading and singing.

Table 4 represents speaker clustering accuracies for
reading, singing, and a mixture of reading and singing with
ng and singing with proposed algorithm based on PLDA.

Reading Singing Mixture

99.7 91.3 80.6
99.9 92.8 82.9
99.6 93.9 90.2
99.6 93.9 90.5



Table 4
Average clustering accuracies (%) for reading, singing, and a mixture of reading and singing with various frontend configurations and baseline clustering.

Features Clustering method Reading Singing Mixture

Baseline (19d MFCC) K-means 99.7 91.3 80.6
Hierarchical 99.9 92.8 82.9

Delta MFCC (38d) K-means 99.7 90.9 77.9
Hierarchical 99.6 91.8 78.8

PLP (19d) K-means 99.9 90.6 79.7
Hierarchical 100.0 92.4 80.7

Delta PLP (38d) K-means 99.7 90.9 82.5
Hierarchical 99.9 92.4 83.7

LDA PLP (32d) K-means 100.0 86.7 76.0
Hierarchical 100.0 88.1 77.0

Table 5
Average clustering accuracies (%) for reading, singing, and a mixture of reading and singing with frontend LDA supervised subspace learning, and
combination with backend PLDA cluster refining.

Subspace learning Clustering method Reading Singing Mixture

Baseline (Full dimension) K-means 99.7 91.3 80.6
Hierarchical 99.9 92.8 82.9

Frontend LDA K-means 100.0 96.7 89.5
Hierarchical 100.0 97.5 91.9

Frontend LDA&Backend PLDA K-means 99.8 96.8 94.5
Hierarchical 99.8 96.9 94.5

Table 6
Clustering accuracies (%) for a mixture of reading and singing with background music.

SNR (dB) 1 15 10 5 0

PLDA Clustering (accuracy in %) 68.9 67.6 56.8 56.8 55.4
Baseline Clustering (accuracy in %) 51.3 51.3 50 50 50
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5 frontend configurations using the baseline clustering sys-
tem. First row shows the results with 19-dimensional
MFCCs, and second row shows the results when 19-dimen-
sional MFCC features are concatenated with delta coeffi-
cients. The third row represents clustering accuracies with
Perceptual Linear Predictive (PLP) features (Hermansky,
1990), and fourth row shows the results of concatenating
PLP features with delta PLPs, with a 5 frame window.
The last row of Table 4 represents the clustering results
with the features proposed in (Tang et al., 2012) which
replace delta coefficients with LDA transformed features
to account for temporal dynamics of the speech signal.
Since we were using TIMIT to train our UBM, we also
used TIMIT for LDA training. 19-dimensional PLP fea-
tures extracted from every five consecutive frames (two
frames before, and two after the current frame) were con-
catenated to create long 95-dimensional vectors (five frame
window was chosen to be comparable to the window size
used to calculate delta PLPs). An LDA model was trained
with TIMIT data based on known speaker labels. The fea-
ture dimension was reduced to 32 using the LDA mapping
which was applied to UBM data as well as test data. As
shown in Table 4, PLP and LDA transformed PLP fea-
tures, increased the clustering accuracies for reading, but
had worse performance for singing and mixture compared
to the baseline. None of the other features showed
improvement for singing, and only delta PLPs improved
speaker clustering performance for a mixture of reading
and singing.

Next, LDA transformed features (Tang et al., 2012)
were evaluated including some singing data to train the
LDA model. Two LDA models were trained: one with
TIMIT for the feature transformation of UBM data, and
one with 15 train speakers from UT-Sing corpus with read-
ing and singing data for each speaker. Since there were only
15 speakers to train the second LDA model, dimension of
all features were reduced to 14. Feature transformation
from the second LDA was used for dimensionality reduc-
tion of test data which included both reading and singing.
Note that there was no overlap between train and test. Sec-
ond row of Table 5 shows clustering accuracies using the
explained LDA PLP features. As shown, clustering accura-
cies increase, especially for the mixture.

Finally, the LDA PLP features were combined with
PLDA clustering algorithm, and the results are summa-
rized in the third row of Table 5. The clustering accuracy
for a mixture of reading and singing increased to 94:5%.
Compared to the second row, proposed PLDA cluster
refining improves the speaker clustering for mixture by
5% with k-means, and 2:6% with hierarchical clustering.
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This shows that PLDA cluster refining algorithm in the
GMM supervector space adds complimentary information
to the supervised LDA transformation in the feature space,
both using reading and singing samples to train models.
Next, we will show the effects of adding background music
to the singing for speaker clustering.

5.4. Speaker clustering for singing with background music

So far, we have proposed a speaker clustering algorithm
based on PLDA which considerably improves the perfor-
mance when clustering both reading and singing speech
samples of the speakers. This has real applications in infor-
mation retrieval, and speaker diarization for audio streams
available on the internet, radio, or TV that include speak-
ing and singing of one or more of the speakers. A good
example of such audio is interview with famous singers
or when they appear on a talk show. In addition, there is
an increasing number of singing competitions on TV, and
auditions which include both speaking and singing voice
of the participants. In some of these examples, the singing
voice might be accompanied by background music.

In the literature, several studies have focused on singing
voice separation from music accompaniment in single
channel and monaural recordings (Li and Wang, 2007;
Ozerov et al., 2007). For stereo recordings this task is less
challenging and there are many tools available to make
acapellas. Though singing voice separation is out of the
scope of this paper, here we perform a probe experiments
to show the performance of our speaker clustering system
with background music. It should be noted that singing
voice separation techniques do not completely remove the
background music, therefore, we conduct an experiment
in which the performance of the system is evaluated by
increasing the background music. In addition, our goal is
to perform unsupervised speaker clustering on speech seg-
ments which may or may not be singing and may or may
not have background music. Therefore, it is important to
have an acceptable performance when music is also
present.

In this probe experiment, two female speakers are
selected who sing the same song. Next, the correct matched
music is added to the singing with varying Signal to Noise
Ratio (SNR), considering the music as noise. The resulting
audio streams are then segmented. In order to make the
task more challenging and closer to real applications which
include shorter segments, the clustering is performed on 5
sec. segments instead of 10 sec. For each SNR, the read lyr-
ics from the same speakers are also segmented and mixed
with the singing segments. Table 6 shows the speaker clus-
tering accuracies with the proposed clustering algorithm
with 5 refining iterations, compared to the hierarchical
baseline when SNR varies from 0 to 1 (when there is no
background music). Note that in a two-speaker clustering
task, 50% represents the lowest accuracy, since for accura-
cies lower than that, the clusters can simply be switched. As
shown, this is a very challenging task with low clustering
accuracy even with no music. The proposed system
increases the performance by 17:6% when there is no back-
ground music. Adding the music does not reduce perfor-
mance considerably up to SNR = 10. For 0, 5, and 10
dB SNR, the performance is similar with a 13:5% decrease
in accuracy for SNR = 0, compared to no music. However
the clustering accuracy for 0 dB SNR is still 5:4% better
than the baseline.

6. Discussion and conclusions

Speaker clustering systems were explored for singing
and a mixture of reading and singing. It was shown that
introducing various speaking styles decreases speaker clus-
tering accuracies by up to 20%. Unsupervised subspace
learning for singing speaker clustering was studied. It was
shown that dimensionality reduction techniques such as
PCA which are based on global structure of the data set
do not improve the clustering accuracy, while LPP which
preserves local structure of the data improves results for
singing and a mixture of reading and singing. Supervised
subspace learning for singing speaker clustering was also
studied. An algorithm was proposed for refining speaker
clusters based on the log likelihood ratio which decides if
two speech samples belong to the same speaker or not. This
ratio is calculated based on probabilistic discriminant anal-
ysis which attenuates the effect of speaking style on speaker
clustering.

While this study was focused on the model domain and
speaker dependent subspaces, robustness in the feature
domain including features that are less dependent on
speaking style, or feature compensation techniques can
also be studied which is our plan for future work. In addi-
tion, the results from this study can be evaluated for a
wider variety of speaking styles. These advancements offer
an important step towards improving the acoustic model-
ing of speech and speakers for speech applications includ-
ing speaker ID, spoken document retrieval, and audio
search applications.
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