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ABSTRACT

Some expressions are given for the determinant of an mn X mn block-Toeplitz
band matrix & = [Li,j], with bandwidth (p + g +1)n < mn, in terms of the n X n
generating matrix polynomial L(X) =Z;"=’(‘)’}JLP, j» detL_, # 0. In the scalar case
this yields formulas for the determinant expressed via the zeros of the generating
(scalar) polynomial. The approach adopted in this work leans heavily on the recently
developed spectral theory of matrix polynomials.

0. PRELIMINARIES

The spectrum of an n X n matrix polynomial L(}\)=ZII-=0)\’L]-, L;e
c' ", j=0,1,...,1 of degree I is defined by the set o(L)={A€
C':det L(A) = 0}. It will be assumed throughout the work that the leading
coefficient L, of L(A) is an invertible n X n matrix.

Recall (see [3]) that any matrix polynomial L(A) with an invertible
leading coefficient can be associated with a triple of matrices (X,7,Y)
having the following properties: The matrix X has size n X nl; the nl X nl
matrix T is such that the matrix

X
- XT
Q=COI(XT])j=0== N
XT.If 1
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is nonsingular and
ZlﬁXN=0. (0.1)

Further, the matrix Y is nl X n and is the unique solution of the equation
QY =0 --- 0 (LN )", Any triple (X,7,Y) satisfying the above condi-
tions is called a standard triple for L(A). The pair (X, T') is referred to as a
standard puair for L(X).

It is clear from the definition that

iy | O j=0,1,...,1-2,
XN)=lL L (0.2)
L, j= 1.
Also,
!
Y TIYL,=0. (0.3)

j=0

To ease the use of our main reference [3] it is relevant to point out the
relation between the standard triples of L(A) and the associated monic
matrix polynomial I:(A) = L,’IL()\). Namely, (X, T,Y) is a standard triple
for L(A) if and only if (X, T,YL,) is a standard triple for L(\).

Note two important examples of a standard triple for L(A). The first is
the Jordan triple (Q, ], R), where Q =[Q, Q5 --- Q.. J={[8,J;]; -, and
()]., I <j<s, consists of a canonical system of Jordan chains for L(A)
corresponding to an eigenvalue A of L(A). The matrix J. is here a direct
sum of the Jordan blocks associated with A (see [3] for definitions). The
matrix R is uniquely defined by the matrices Q and J. Note that in the linear
case [ =1 and L, = — I the matrix ] just coincides with the Jordan canonical
form for L, while Q = R~! performs the corresponding similarity transfor-
mation.

Another example of a standard triple for L(A) is provided by the
companion triple (X, C,.Y,), where

Xo=[1 0 - o], Y():[O oo 0 (Lfl),lv]r,

I stands for the n X n identity matrix, and C; denotes a companion matrix
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associated with the matrix polynomial L(A):

0 I ]
0 I
¢, = >
i oI
_I:n - L L,y —L;,

where L, =1L, 'L, j=0,1,....1
Note that the standard triples (X, 7,,Y,) and (X,,75,Y,) of a given
n X n matrix polynomial L(X) of degree [ are similar. That is,

X,=X,8, T,=S 'T,S, Y,=S v,

for some invertible In X In matrix S. )

It turns out (3] that a triple of matrices (X,T,Y) of sizes n X nl,
nl < nl, nl X n, respectively, is a standard triple for L(A) if and only if the
following representation of the resolvent holds:

1

L Y A)=X(\I-T) Y {0.4)
where A & o(T), the spectrum of T.

Let T' denote a rectifiable simple closed contour in C! (for brevity,
contour, in the sequel) containing o(7") [or, what is equivalent, o(L)] in its
interior. Since

1 )
— [NAI=T) dA=T1,  j=0.1,.., (0.5)
Qi Jr
it follows from (0.4) that

1 , _ ,
— [ NLYA)dA = XTIY (0.6)
r R

2m7i

for j=0,1,....

We adopt the following notational conventions. Given an s X s matrix A,
the submatrix of A containing rows numbered i,,i,,...,{, and columns
jis Jase-+s j, is denoted by Ali|,... iilf,.... j,]. We also use the notation
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diag[ 7]} = [Sij];‘,\.zl, 8, being the Kronecker symbol, and

Zl
Z
col Z.)[.: =172 row( Z l,= =2, Zy Z,{. (0.7)
=1 . =1
Z,

Throughout the paper the integer n stands for the size of the matrix
polynomial and is fixed. Further, I, denotes the gn X gn identity matrix,

I,=1, while P, stands for the sn X sn reverse unit matrix [§; ;. 11]}:1-
Also,
L\‘
~ LS*I Ls
sop ‘ . - . (0.8)
Lp Ls'*l L\'

1. BLOCK-TOEPLITZ-HESSENBERG MATRIX

Consider an mn X mn block-Toeplitz band matrix of Hessenberg's type

Lo L |
L., L., L 0
L= L,
0 L
L L, Li o Ly

(y EC'””X'““), (11)

m

where L;e c", j=0,1,....k, and 1 < k < m. Introduce the n X n matrix
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polynomial
L(AN)=Ly+AL,+ -+ XL,

associated with the matrix 2,

m*

Tueorem 1. If det L, # 0, then the determinant of &,
by the formula

in (1.1) is given

i

m

2 1 "
det & :(_l)hn—l)n +l(deth)m +ldet(__'/xn+le l(}\)dA ,
2mi Jr
(1.2)

where T stands for a contour containing the spectrum of the generating
matrix polynomial LX) in its interior.

Proof. Denote by F,, the matrix obtained from the mn X mn identity
matrix on replacing its first n columns by the matrix [S] ST --- ST ]7,
where Sy =1 and §;,€C"*", i =1,2,...,m — 1. Consider the product G,, =
2L, E,,. Clearly, the elements of G, except those of the first block column,

coincide with the corresponding elements of %, . Note also that

m’

det Z, =detG,, (1.3)

for any choice of the matrices S, (i=1,2,...,m —1).

Aiming at an easy computation of the determinant of G, , we choose the
blocks S, (i =1,3,...,m — 1) so that the n X n blocks G,, (i=1,2,...,m—1)
equal the zero matrix. This yields the relations

i
YL S =0  (j=12,.. k), (1.4)
i=0

k

LLS,,=0 (j=12,...m-k-1). (1.5)

Now view the equations (1.5) as a part of the matrix difference equation

LoS;+LyiS;o 1+ -+ LS, =0 (j=12,...) (1.6)
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with initial conditions (1.4) rewritten in the form [see (0.8)]

col($,)' = — L, beol(Ly )i, (1.7)
Since
G = LS, «+ LS, o+ LS, 0,
it follows from (1.6) that G,,, = — 1., S, and hence, in view of (1.3),

det 2 =(—1)" " Ndet L) " (detS,,). (1.8)

"

where (5,,S,,...,S,,....) is the solution of the matrix difference equation
(1.6) with initial conditions (1.7).
The desired solution is given by the Lancaster formula [9]

S, =XT" e, (1.9)
where

k

c=row(T* Y)Y _ L col($)_, (1.10)

and (X.T.Y) stands for a standard triple for the matrix polynomial L(A).
Substituting from (1.7) in (1.10), we obtain from (0.3)

ko1

c=— Y TIYL,=T"YL,.
,‘:()

Appealing to (1.9) and (1.8), we thus have

det & =(—1)" " Ndet L) Ndet(NT™ R Y)Y, (1.11)

n

In view of (0.6), the proof is complete. ]

It is easily seen that for |A| sufficiently large, the n X n matrix

Z ! AL HAVAA
e AL
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is the coefficient of A "/~ ! in the Laurent expansion
LY AN)=XF*Z, +XF1Z, + .. (A > 1A >0)  (1.12)
of the resolvent L™ YA). Proceeding to the reverse matrix polynomial
LAA)y=NLA Y =ML+ N "'L+ - +AL, |+ L,,

we obtain from (1.12) the following expansion in power series:

/

L= Y MRz = YNz, 1(|A|

j=k 1 j=0

“wal

Setting L, =1 in (1.2), we arrive at a generalization of the well-known
Wronsky formula [5] for monic matrix polynomials.

CoroLLARY 1. Let M(A)=1+AM,+ --- + XM, and for || suffi-
ciently small

MY\ = i (—1D'NW,.

Then for j=0,1,...

W.=( fw*k IMZM(N)dA,

i 27i

where the contour U is defined in Theorem 1, and for j > k

(M, 1 ]
M, M, I
deth=det . . . ( eCan]'”)'
M, .
I
| M, - Co e M|
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Concerning the scalar case n = 1, we deduce the following result stated in
a different form in (7].

CoroLLary 2. If n=1 in (1.1) and the (scalar) polynomial L(\)

(L, #0) has distinct zeros A, A,,..., A, with multiplicities r,1,,....1,
(r;+ 1+ - -+ +r,=k) respectively, then
”l 1 (1 " !
detZ, =(-1)"Ly"! Z hm : [(}\ AL) A)] (1.13)

et CTED § N7 ) O

where fAxy=N""*"1/L(X) and k < m. In particular, if the zeros of L(\)
are all simple, then

k A'“”\ 1
det#, =(—1)"Ly+! Z X7 (1.14)
Proof. By the residue theorem,
> sz A)clx—l;lResf
and by the relation
Res f(A Lo & [(>\ A" F(N))
es fIN,) = GoD A v T DA

fori=1,2,..., s, the formula (1.13) follows. [ ]

ExampLe 1. Let ., be a tridiagonal Toeplitz matrix generated by the

(scalar) polynomial L(A)=3— A — 2\ with zeros A,=1,A,= - ;. Then
by (1.14)

. 1 ( - g)m t 1 g - .
det £, - <~1>"'<—2>’”[-:+ S-S0
-5 5

for m > 2.
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As noted by the referee, Theorem 1, as stated, can be proved without
using the spectral theory of matrix polynomials. Indeed,

LM(ZA Y +Z A2+ ) =1,

and hence the Laurent coefficients Z, of L(A) ! at infinity solve (1.6). It
turns out, however, that in this case we lose the possibility to compute
det £, Dby (1.11) in which the companion triple is taken, for instance.

"

2. GENERAL BLOCK-TOEPLITZ BAND MATRIX

Let now
Ly L, ) ) ) L, W
Ly 5 Li,
L,
l’yﬂt =
Lo :
L,
| L, . . . . L., |

(Lyecm, j=01,...1) (21)

denote an mn X mn block-Toeplitz band matrix such that 1 <k <! <m, and
let

L(A)=L,+AL,+---+XL,, detL,+#0.

THeOREM 2. - If det L, # 0, then the determinant of the matrix £, in

(2.1) is given by the formula ‘

det & = ( _ 1)(qumi+q(det Ll)mv ll(det Mq)> (22)

m
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where k<l<m, g=1~k+1, and

NCILTYAY oo ALY L7Y(N\)
I NL-YA S AL -t
YR S 0 AL
2ai Iy : : :
N 2LY Y oo MLTHAY NI X))
(2.3)

in which U denotes a conlour in the complex plane containing the spectrum
of the generating matrix polynomial L(X) in its interior.

Proof.  To compute the determinant of %, in (2.1), we first note that
the matrices S, used in the proof of Theorem 1 have been chosen to be of the
form XTIYL,, where (X, T,Y) is a standard triple for the generating matrix
polynomial with the leading coetficient L,. This observation prompts how to
generalize the procedure exploited in Theorem 1 for calculating det %2,

me
Define mn X m matrices

m- 1

R =col(XT™IYL)" ' (j=1-110-2.. k=1),

where (X,T,Y) is a standard triple for L(A). Denote by F,, the matrix
obtaining from I, on replacing its first gn columns by the matrix
[R,_, R,_, --- R,_,]. The relations (0.2) show that F, is a lower

H

triangular matrix with ones on the main diagonal. Let %% =
&L [1,2,...,sn1,2,..., mn]. The relation (0.1) yields for j >k —1

m

L I)Hj = =P 1oy 2P ol XTT quLz),‘Z 11,
and it thus follows from (0.2) that
“?n(,kil)R]‘=0 (24)

for j <! — L. Further, the relation (0.1) implies

LR =0, (2.5)

m
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and for k~1<j<i—1

1

LYR = =Ly oy col(XT IO (2.6)

where L4 =2 [(m—g)n+1,...,mn|1,2,...,mn]. Combining (2.4)—(2.6),
we obtain

Im q 0 \
L F = = G, 2.7
m m () _ LI‘[ q‘ . i ( ‘)
where G, differs from %, by the first gn columns:
. 01, a
G, [1,2,...,mnjl,2,...,gn] = % diag[ L, 1
with the gn < gn block-Toeplitz matrix
Xr]w,,|+] 1)r . XT‘“ ik 1)7
- vymtly St ks
. X1 . )i X1 ‘ ) (2.9)
X7me I+q Z) . XTme ! lY

It is now easily checked that in view of (2.7)

det &, =det L, F, =(—1)" " "(det L))" “(det X),  (2.9)

meom

which along with (0.6) gives the required result. [ ]

The following immediate consequence of Theorem 2 extends the assertion
of Corollary 2 to an arbitrary Toeplitz band matrix. This formula, even for
the case of arbitrary rational functions, was given by Day [2]. For other
proofs see [1] and [6]. It is stated in [1] that Day’s formula was generalized in
(4]. The latter article is difficult to obtain, and the author has not seen it.

CoroLLARY 3 [2].  Let n =1, and the (scalar) polynomial L(\) (L., # 0)
have distinct zeros A\, Ao,..., A, with multiplicities r,ry,..., 1, (r,+1,

s
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+ - -+ +r,=1), respectively. Then for m > |

det 2, = ( —1)"'L’,"“’det( Y A,,),

m
i=1

where fori=1,2,... s

A 1 i di! [ NP
B PRTY A A ] (A =X)"f(N)]
— A(i -1 . . . A) 1 —
A,
>< .
A‘.’;q -2 : . . . Nz 1 J

with fixy=N""1"49/L(\).
In particular, if the zeros of L(N\) are all simple, then for m > [

[ A\
detx,,:(-1)"‘1:;H~det( y Aj),
j=1

where

i q- 1

2q-2 . . . . q 1
_)\j }\j

3. EXPRESSION FOR det.#,, IN TERMS OF SOLVENTS

Following [8], we say that an n X n matrix Z is called a (right) solvent
for L(A) if

Lo+ L\ Z+ -+ L, Z'=0.
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An n X n matrix Z is a (right) solvent for L(A) if and only if
L(A) = LM = 2)

for some matrix polynomial L ,(A) of degree { —1. If, in addition, o(1. )N
a(Z)=9, then 7 is referred to as a (vight) spectral solvent for L(A). Let vy
denote a rectifiable simple closed contour such that o(Z) and o(l,) are
inside and outside v, respectively. As stated in [10],

fNL*%A)dA=zi[L~%A)dA (s=12,...) (3.1)

v

for any (right) spectral solvent of L(A). Further, if Z,, Z,,..., Z, are (right)
solvents for L(A), a(Z,)N olZ,)=2 (ij= 12,....L i # j)and the In X In
“Vandermonde’ matrix

1 o
Z, 7, Z,

V=W(Z,,Zy,....2,)=| - ; :
z{'*l Zi"‘ z," ‘J

is invertible, then Z,, Z,,..., Z, generate a complete set of (right) solvents for
L(A). It is shown in [10] that the matrices in the complete set of solvents for
L(A) are spectral solvents for the polynomial and that o(L)= U;'=1 o(Z;).
Clearly, in the scalar case n =1, the complete set of solvents for L(A) (if it
exists) coincides with the set of all its distinct roots.

The theorem below generalizes formula (2.10) for block-Toeplitz band
matrices.

THEOREM 3. Let Z,,Z,,...,Z, constitute a complete set of (right)
solvents for L(X). If det L, # 0, then, preserving the above notation,

1L
det ’%n :( _1)(1117«):1 Hl(det L[)m+" det(— Z B/-), (32)

i
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where for j =1,2,...1

_1 - ]
[z z, 1
. Zl
B]. =diag[Z"‘”"’]f’ -
2g-2 .. g1
-Ziq Z]‘l |

q
Xdiag[/l,l(}\)dk
i

1

and Y, contains G(Z;) inside and G(L)\G(Z;) outside.

Proof. By the definition, the spectra of Z.(j= 1,2,...,1) do not inter-
sect, and therefore there exist contours y; (j=L2,..., [) containing o(Z;)
inside and o( L)\G(ZI-) outside. Since o(L) = th l(Z].), it follows, using the
resichue theorem and the relation (3.1), that

/,\L YA)d YL / “YA)dA.

As before, T' stands for a contour containing o(I.) in its interior. The
proot follows on applying (2.2) and (2.3). [ ]

CoroLLaRY 4. Let &F, denote an mn X mn block-Toeplitz tridiagonal
matrix generated by the n X n matrix polynomial L(A\)=L,+ XL, + N°L,
with det L, # 0. If Z, and Z, are (right) solvents for L(A) and o(Z,)}N

o(7.,) =2, then form> 2

det(zghl_zr{n#l)

d to/ (m -2 1 1 d L m
© =(=1) ( 2) det(Z,— 7))

m

(3.4)

Proof. The matrices Bi (j =1,2) in (3.3) become in this case

B}:Z;"“/YVL"(A)d}\. (3.5)
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According to [8] (see also [1, Section 2.3]) the matrix Z, — Z, is invertible
[along with V(Z,, Z,)] and

LN ={(\-2y) '=(M-2) 'Nz,-2,) 'L, "

™
1

hus, for j=1,2

Jr == [(M=2z) "an(z,-7,) 'L

¥

and it follows from (0.5) that
/L"()\)d)\ =(-1)2ni(z,-27,) 'L
j

The substitution in (3.3) and subsequently in (3.2) gives (3.4). [ ]

ExampLe 2. Let %, denote an m X m tridiagonal Toeplitz matrix
generated by L(A)=a+bA+ A, ¢#0. If d>=h>— 4ac+ 0, then L(\)

has two distinct zeros 7, , =( — b + d)/2¢. Then by (3.4)

det £ = (- 1)'"(?"‘( - —)[( —bh-d)" = (=b+d)" l](2(') m !

e (I

1 mt1 m+1 1
=2 " Y(b+d)"" ~(b-d) -
4

ExampLe 3. Let %, stand for a 2m X 2m block-Toeplitz tridiagonal

matrix generated by the matrix polynomial L(A)=L,+ AL, + AL, where
Y 0 1 2

-1 0 0 0 1 0
I‘“z[ 1 0]’ L‘:[l —2]’ LZ:[O 1]'

The matrices

1 0 0 0

[t 0 1 0 _lo 0o 0 o
Q‘[2 1 0 1}’ =10 0o -1 o
0 0 0 2
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form a Jordan pair for L(A). Decompose Q and ] into 2 X2 matrices

J, 0
Qz[Ql Qz], ]=[0 JJ,

and observe that (0.1) implies
L()Qj+Lle]j+LZQj]j2:0 (f=1,2)-

Hence the matrices

are (right) solvents for L(A). Since o(Z,)No(Z,)=2 and Zi=17, for all
positive integers §, it follows by (3.4) that

m+1
detf,,,=det[1—(—1) 0 Vdet[‘z OJ
2 _21r1+1 “2 2

_[2™ if miseven,
{ 0 if misodd. (3.6)

Note that the knowledge of a whole standard triple (Q, J, R) for L(X)
allows one to compute det £, by a straightforward use of (2.8) [or (1.11) in
this case]. Indeed,

o0 o o o
]m*l: m+1 s R=— -1 -1 >

0 0 (-1 0 ol -1 0

0 0 0 2m+l _1 1

and hence det(QJ™*'R) coincides with the right-hand expression in (3.6).
Another possibility is, of course, to compute the determinant of the matrix
X ,C"* 1Y, (see Preliminaries for definition), but this is usually a difficult task.
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4. A DIFFERENT APPROACH

In the preceding sections the computation of the determinant of an
mn X mn block-Toeplitz band matrix %, is reduced to that of a gn X gn
determinant. We now derive a formula for det .%,, in terms of the determi-
nant of an In X In generalized Vandermonde matrix. In spite of [ = qg+k-1
> g, the latter determinant has some computational advantages.

Tueorem 4. Let &, be defined by (2.1), and let L, # 0. Assume, in
addition, that det L, # 0. If (X,T) is a standard pair for the generating

matrix polynomial L(\), then form >1>k > 2

L(det L))" (det V')

det#, =(—-1) dot X , (4.1)
where r=(m — k)l -k + )n® and
P'X .

V= ;(;k“ Ll X =col(xriy ) (4.2)

Proof. Define an mn X mn matrix

where X = col(X TH+i=hym L Note that since det L, # 0, it follows that
det T +# 0 (take, for instance, T = C,, the companion matrix) and therefore
the matrix %, is invertible. Now use (0.1) to obtain

m

(4.3)

mm no|

G, :
L F =102
o

9 *
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where &, = & (1,2,...,mn|ln +1,..., mn] and

m m

v 7 iy k2
Gy= =Py (Lo koPr col(XT");_y,

i=(

(;2 _ 'L’.kcol(XTm+k+i‘])[’k

i=0"

Permuting rows in (4.3), we obtain, exploiting the notation in (4.2), that

(det 2, )(det X)(detT)* ' =(-1)" det[g:](det )" ' (44

where v =[(m —k+1)n +1]gn, g =1— k + 1. Represent

[Gl} _ [Pkll:n,kzpk ! 0

G, i

v,
0 L,

L

where V is defined in (4.2), and observe that

Gl in k-1 a .
det| [=(~=1)"(detL,)" (detL;)"(detV).

2
It remains to observe that

b det L()

detT=detC;, =(—1) det L,
Theorem 4 applied to a scalar polynomial gives the expression for det &£,
obtained in [11] and used there in studying the eigenvalue problem for
Toeplitz band matrices.
Let n=1in(2.1)and L, # 0, L,+ 0. Suppose that A, A,,..., A are the
distinct zeros of L(A) with multiplicities r,r,,....7, (r,+1r,+ -+ +1,=1),
respectively. Given integers m and k, define the Ith-order vector function

‘A(x):[l X xk'f?, xm+k71 xm+l~l]T’

and denote by AY)(x) its jth derivative. Now construct the generalized
Vandermonde matrix V, associated with the given polynomial L(A) as
follows: the first r, columns of V, are A(X|), A(A)),..., A"t (X)), respec-
tively; the next r, columns are A(X,), A(A,),..., A271)}A,): and so on.
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CoRroLLARY 3 [11].  With the notation of the preceding paragraph,

detV

m

let £, =(—1)L} ,
de m ( ) l§ detV“

where ris defined in Theorem 4.
In particular, if all the zeros of LX) are distinct, then

! 1]
A, A,
det £, =(— 1)L} det N2 A2 (det V) b
}\nln+k 1 }\:;mk 1
RN

where VI stands for the ordinary Vandermonde matrix constructed from

Ao Ay A

For the proof it suffices to observe that the Jordan pair (Q;, J;) associated
with the zero A, of L(A) with multiplicity r; is given by the formula

where Q; € clrn, Je C"*"i., Hence
():[Ql QQ Qs]’ JZ[S]I\]]];I\:l

is a Jordan pair for L(A) in the general case. If all the zeros of L(A) are
simple, then

o=[1 1 - 1. J=[8N)

form a Jordan pair for L(A).
Now apply Theorem 4 with X =Q, T =J. [ |
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