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ABSTRACT 

Some expressions are given for the determinant of an mn x mn block-Toeplitz 
hand matrix 9 = [L, j 1, with bandwidth ( p + q + 1) n < mn, ;n terms of the n x n 
generating matrix polynomial L(h) = Cy$‘XJL, ~, , det L_ ,, # 0. In the scalar case 
this yields formulas for the determinant expressed via the zeros of the generating 
(scalar) polynomial. The approach adopted in this work leans heavily on the recently 
developed spectral theory of matrix polynomials. 

0. PRELIMINARIES 

The spectrum of 
6) I( x I? j=O,l 1 
C’:det L(h) =‘;j’.‘It 

an n X n matrix polynomial L(A) =Cl,,hjL,, Lj E 
of degree 1 is defined by the set a(L) = {A E 
will be assumed throughout the work that the leading 

coefficient L, of L(X) is an invertible n X n matrix. 
Recall (see [3]) that any matrix polynomial L(X) with an invertible 

leading coefficient can be associated with a triple of matrices (X, T, Y) 
having the following properties: The matrix X has size n X nl; the nl X nl 
matrix T is such that the matrix 
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is nonsingiilar and 
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I 

C Ljxrj=o. (0.1) 
i = 0 

Further, the matrix Y is nl x n and is the unique solution of the equation 
621’ = 10 . . . 0 (Ly) ‘IT. Any triple (S, Z‘, Y) satisfying the above condi- 
tions is called a stun&d triple for L(X). The pair (S, ‘Z’) is referred to as a 
st~r~ltlorcl prlir for L( h ). 

It is clear from the definition that 

Xl’f)‘= ,f; 1, i 
j = 0,l 
j=,_;;- 

,1-z, 
(0.2) 

Also, 

C 7’W,, = 0. (0.3) 
1 = 0 

To ease the use of our main reference [3] it is relevant to point out the 
relatioii between the standard triples of L(h) and the associated rr~onic: 
matrix polynomial L(h) = L,‘L( A). Namely, (X, 1’, Y) is a standard triple 
for L(h) if and only if (X, I’, YL,) is a standard triple for i,(X). 

Note two important examples of a standard triple for Z,(X). The first is 
the Jor&ln triple (Q, J, R), where Q= [Q1 Qg.*.Q,I, J=[8j~JI]j,~=l~ ad 
Qi, 1 < _j < s, consists of a canonical system of Jordan chains for L(X) 
corresponding to an eigenvalue X j of L(h). The matrix ZI is here a direct 
sin11 of the Jordan blocks associated with h j (see [,3] for definitions). The 
matrix R is uniquely defined by the matrices Q and .Z. Note that in the lineal 
ease 1 = 1 and L, = - I the matrix J just coincides with the Jordan canonical 
form for I,,,, while Q = R ’ performs the corresponding similarity transfor- 
niatioii. 

Another example of a standard triple for L(h) is provided by the 
cwnlprrnion triple (X,,, C,,, Y,,), where 

x0= [I 0 ... 01, r;, = 0 
[ 

. . . 0 (Lp)q 7 

I stands for the n X n identity matrix, and C,, denotes a companion matrix 
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associated with the matrix polynomial I,( h ): 

c,, = 

0 1 
0 1 
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where Lj = I,, ‘L,, j = 0, 1,. . . , 1. 
Note that the standard triples (S,, 2’,, E’,) and (S,, 2i,Y2) of a given 

II X n matrix polynomial I,(h) of degree 1 are similar. That is, 

for some invertible In X In matrix S. 
It turns out [3] that a triple of matrices (K, ?‘, 1.) of sizes n x’td, 

rrl X 111, nl X II, respectively, is a standard triple for L(X) if and only if the 
following representation of the resolvent holds: 

L-‘(x)=‘Y(xz-?‘) -‘Y (0.4) 

where X GE a( ?‘), the spectnlm of 1’. 
Let I‘ denote a rectifiable simple closed contour in @’ (for brevity, 

contour, in the sequel) containing a( ?‘) [or, what is equivalent, u( I,)] in its 
interior. Since 

it follows from (0.4) that 

(0.6) 

for j = 0, 1,. . 

We adopt the following notational conventions. Given an s x s matrix A, 
the slJ)matrix of A containing rows numbered i,, i,, , . , i, and cohmms 

]I> I?>...> j, is denoted by A[i, ,..., i,(j, ,..., j,]. We also use the notation 
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diag( Z] ; := [ Sik%] ;, k=I, S,, being the Kronecker symbol, and 

Zl 
z2 col(z,);=,:= . , I! row(Zi)i=l:= [Z1 Z, *.. Z/l’ (0.7) 

i, 

Throughout the paper the integer n stands for the size of the matrix 
polynomial and is fixed. Further, I, denotes the qn x qn identity matrix, 

I, = I, while P, stands for the sn X sn reverse unit matrix [Si, ( _i+ ,I] j=,. 
Also, 

L, 
L s-1 LI 

t,,, = : . . * I 1. . . 
Lp ..: L,-, L, 

(0.8) 

1. BLOCK-TOEPLITZ-HESSENBERG MATRIX 

Consider an inn x nzn block-Toeplitz band matrix of Hessenberg’s type 

x;4,, = 

L, ~1 Lh 
L h-2 L k-l Lk 0 

. 
. . 
. . 

I . . 
JO 

. . . 

. 

0 Lk 
L,, . . . L,-, L,~-, 

where 12iEC”X”, j=O,l,..., k, and 1 < k < n1. Introduce the n X n matrix 

(1.1) 
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polynomial 

L(X) = Lo + XL, + . . . + PL, 

associated with the matrix P,,,. 

THEOREM 1. Zfdet L, f 0, then the determinant of P,,, in (1.1) is giorn 
hy tlw fonwh 

rchrw I‘ stands for a contour containing the spectrum of the genemting 

nwtri,s polynomial L(X) in its interior. 

Proof. Denote by F,, the matrix obtained from the mn X mn identity 
matrix on replacing its first n columns by the matrix [St ST . . . !5’,:;_ 1] ‘, 
where S,=Z and Si~cnX”, i=l,.Z,...,m-1. Considertheproduct G,,,= 
.9,,,F,,,. Clearly, the elements of G,,, except those of the first block column, 
coincide with the corresponding elements of P,,,. Note also that 

det P,,, = det G,,, (1.3) 

for any choice of the matrices S, (i = 1,2,. . , m - 1). 

Aiming at an easy computation of the determinant of G,,,, we choose the 
blocks S, (i = 1,3,..., m - 1) so that the n X n blocks G,, (i = 1,2,. . . , HI - 1) 
equal the zero matrix. This yields the relations 

i L,_,S,_,=O (j=1,2 )...) k), (1.4) 
, = 0 

I; 

C Lrs,+j=o (j = 1,2 ,..., 1)~ -k - 1). (1.5) 
1 = 0 

Now view the equations (1.5) as a part of the matrix difference equation 

LOS, + L,S,+, + . . . + L,S,+k = 0 (j=1,2,...) (1.6) 
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uith initial comlitions (1.4) rewritten in the form [see (0.X)] 

col(SJ=,= -I&Ol(L, ,,t=,. (1.7) 

c:,,, 1 = L,,S,,, k + I,,S,,, k / , + . + 12, ,s,,, ,> 

it follows from (1.6) that G,,, 1 = - I,,S,,, and hence. in view Of (1.3) 

det Y,,, = ( - 1)’ “’ ‘1182 ’ ‘(det z,,)“‘(det S,,,), (1.X) 

where (S,. S,, . , S,,,, . ) is the solrltion Of the matrix difference equation 
( 1.6) \vith initial conditions ( 1.7). 

The desired solution is given by the Lancaster formula [Cl] 

s,,, = ST”’ ‘c, (1.9) 

where 

(1.10) 

and ( S, I’, 1. ) stands for a standard triple for the matrix polynomial I,( X ). 
S~llbtituting from (1.7) in (l.lO), we obtain from (0.:3) 

!. I 

(‘= - c ?“YZ,, = PYL,. 
j = 0 

Appealing to (1.0) and (1.8), we thus have 

det _Y,!, = ( - 1)“” ““’ ’ ‘(det I,,!)“’ ’ I&( .Y’/‘“’ ’ L ‘I’). (1.11) 

In view of (0.6), the proof is complete. H 

It is easily seen that for 1x1 sufficiently large, the n x n matrix 
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is the coefficient of X-j-’ in the Laurent expansion 

1, ‘(X)=XmkZkm l+x-“-‘z,+ ‘.. (IAl > I&l 0) (1.12) 

of the resolvent L ‘(A ). Proceeding to the reverse matrix polynomial 

we obtain from (1.12) the following expansion in power series: 

Setting L, = I in (1.2), we arrive at a generalization of the well-known 
Wronsky formula [5] for manic matrix polynomials. 

IM-l(X) = 2 ( -i)jxjw,. 
j = 0 

Thfvi for j = 0, 1,. . . 

u&w thv contour r is defined in Theorem 1, untl for j > k 

M, I 

M, M, I 
. 

. . 
det W, = det : (Ed= “‘xi”). 

M, . . 

I 

M, . . . . M, 
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Concernillg the scalar case n = 1, we deduce the following result stated ii1 
a different form in [7]. 

COROLLARY 2. If n = 1 in (1.1) and the (SC&~) polynomial L(X) 

( I-, f 0) has distinct zmos XI, X 2,. . , A, with multiplicities rI, r2,. . . , r, 
( r, + “2 + . . + r, = k) respectively, then 

1 
cletY,,,=( -1)“‘Lr” 2 ___ 

Cl” ’ 

,=, (,,-I)! A$W 
---[(A - X,)“f(h)] (1.1:3) 

where f( X ) = x”’ + k ‘/L(X) and k < TM. In particulru, if thr! =ero.y of I,(X) 
ur(J 011 .simple, then 

r! x1+!. ’ 
detY?,,=( -l)“‘L’;‘+’ c ___ 

,=l L’(X,) . 
(1.14) 

Proojf. By the residue theorem, 

&if(h)iih= e Resf(X,). 
!=I 

and by the relation 

1 (1’) 1 

Resf(h,)=---- ’ 
( ri - l)! h’Y, dh” I 

---[o - Wf(U] 

for i = 1,2,..., s, the formula (1.13) follows. H 

EUMPLE 1. Let Z,,, be a tridiagonal Toeplitz matrix generated by the 
(scalar) polynomial L(X) = .3 - X - 2A’ with zeros X, = 1, A, = -~ i. Then 
by (1.13) 

[ 

1 ( _ $” ’ 1 
detY,,,=( -l)“‘( -2)“‘+l -5+5p 1 2&_;y+‘] 

for t11 > 2. 
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As noted by the referee, Theorem 1, as stated, can be proved without 
Ilsing the spectral theory of matrix polynomials. Indeed, 

L(h)(Z,X~’ + Z,h-” + . . . ) = I, 

and hence the Laurent coefficients Zj of L(h) ml at infinity solve (1.6). It 
trlrns ollt, however, that in this case we lose the possibility to compute 
det Y,,, by (1.11) in which the companion triple is taken, for instance. 

2. GENERAL BLOCK-TOEPLITZ BAND MATRIX 

Let now 

. L, 

L, 

Z ‘(I . 

Lk 
. . L1 

(LjWX”, j=O,l,..., I) (2.1) 

denote an mn x nm block-Toeplitz band matrix such that 1~ k < 1 < 1~1, and 
let 

Z,(A) = z,,, + AL, + . . + A’L,, det L, f 0. 

THEOREM 2. ' If det L, f 0, then the determinunt of the nutrix .9,,, in 

(2.1) is giwn hy the forndu 

det Y,,, = ( - l)(‘r’~“)‘t’t”(det L,)“” “(&tM,,), (2.2) 
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. . AI, ~‘(A) K’(h) 1 
. . . PP( A) XL-'(x) 

dh, 

. x’l,-‘(x) 2’ IL’ ‘(A) i 

(2.:3) 

Proof. To compute the determinant of 9!,, in (2.1), we first note that 
the matrices S, used in the proof of Theorem 1 have been chosen to be of the 
forllr Xl’l)‘I,,, where (X, I’, Y) is a standard triple for the generating matrix 
polynomial with the leading coefficient I,,. This observation prompts how to 
generalize the procedure exploited in Theorem 1 for calculating det 9,,z. 

Define Nan X VI matrices 

R, = d( sr~+WL,):“,l’ (j=l-l,l-2 ,..., k-l), 

where (X, T, Y) is a standard triple for L(X). Denote by F,,, the matrix 
obtaining from I,,, on replacing its first qn columns by the matrix 

[RI&, R,&, ... E,_,]. The relations (0.2) show that F,,, is a lower 
triangular matrix with ones on the main diagonal. Let 3’O”’ = !,I 
9,,,[1,2 ,..., sn(1,2 ,..., mn]. The relation (0.1) yields for j > k - 1 

I L 
9”“’ “R = - P, _,.g~;,.~ 2P, ,c0i( xTj k-‘YL,)I=, ) ,,I I 

and it thus follows from (0.2) that 

pp’Aml)R.=O ?,I I 

for j < 1 - 1. Further, the relation (0.1) implies 

(2.4) 
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and for k - 1 d j G I - 1 
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@“iR = _ 1 
PII I 

‘I,, ,,+Icol(sl”~‘-“‘)I’=,:, (2.6) 

v+hre Y,!“’ = P,!,[( no - q)n + 1,. . . , nmJ1,2,. . , nln]. Combining (2.4)-(2X), 
\ve olbn 

where G,,, differs from L??,, by the first qn columns: 

G,,,(1,2 ,..., nm(1,2 ,..., qn] = 

with the (1” x qn block-Toeplitz matrix 

(2.7) 

(2.8) 

It is now easily checked that in view of (2.7) 

clet~P,,=det~,,,F,,,=( -1)‘” “)“““(det[,,)“‘* “(detz), (2.9) 

\vhich along with (0.6) gives the required result. n 

The following immediate consequence of Theorem 2 extends the assertion 
of Corollary 2 to an arbitrary Toeplitz band matrix. This formula, even for 
the case of arl)itrary rational functions, was given by Day [2]. For other 
proofs see [l] and [6]. It is stated in [l] that Day’s formula was generalized in 
[A]. The latter article is difficult to obtain, and the author has not seen it. 
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+ . . . + y, = E), respectively. Then for m > 1 
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det 2,), = ( - 1)“‘L;‘+4det 
i i 

i A, , 

t=l 

rz, = ( ,?!Jl:, (1X’! ’ ----[o - X,)“f(h)] 

x’!_’ . . . I A, 1 

A, 
x . 

det P,,, = ( - l)“‘L;“+‘/det 

3. k:XI-‘RESSION FOR det Y,,, IN TERMS OF SOLVENTS 

Following 181, we say that an n X n matrix % is called a (right) solornt 
for I,( h ) if 

I,,, + L,Z + . . + L,Z’ = 0. 



DETERMINANT OF BAND MATRICES 177 

.411 II x II matrix Z is a (right) solvent for L(X) if and only if 

L(X)=L,(h)(hI-Z) 

for some matrix polynomial L,(X) of degree 1 - 1. If, in addition, a( I,, ) n 
a( Z ) = 0 , then Z is referred to as a (right) spectral solco~t for L(h). Let y 
denote a rectifiable simple closed contour such that a(Z) and a( I,, ) are 

inside and outside y, respectively. As stated in [lo], 

s X’L~‘(X)dX=Z’ s L ~‘(X)fZh (s=1,2,...) (3.1) 
Y Y 

for any (right) spectral solvent of L( X ). Further, if Z,, Z,, . . . , %, are (right) 
solvents for I,( X ), a( Z, ) n a( Z j) = 0 ( i, j = 1,2,. . . , I, i # j ), and the In X In 

‘I Vandermonde” matrix 

1 1 1 

z, z, Z, 

V=V(Z,,Z, )..., Z,):= 1. : : . :I 
z/-l I zp . . . 7’ 1 1 ‘I 

is invertible, then Z,, Z,, . . . , Z, generate a complete set of (right) solvents for 
L(X). It is shown in [lo] that the matrices in the complete set of solvents for 
L(h) are spectral solvents for the polynomial and that u(L) = Ui=, a( Zj). 
Clearly, in the scalar case n = 1, the complete set of solvents for L(A) (if it 
exists) coincides with the set of all its distinct roots. 

The theorem below generalizes formula (2.10) for block-Toeplitz band 
matrices. 

THEOREM 3. Let Z,, Z,, . . . , Z, constitute m complete set of (right) 
.solccrrts for I,( A). If det L, f 0, then, preseroing the &se notation, 

det p,,, = ( - I)(“’ 4”” ’ “(det L,)“’ + ” det (3.2) 
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where for j = 1,2,... 1 
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. . . zj 1 

‘i 

(3.0) 

and yj contains G(Zj) inside and G(L)\G(Zj) outside. 

Proof. By the definition, the spectra of Z i (i = 1,2,. . . , I) do not inter- 
sect, and therefore there exist contours yi (i = 1,2,. , I) containing a( Zj) 
illside and O( L)\a( Zj) outside. Since a(L) = U:= L( ZI), it follows, ming the 
resitllle theorem and the relation (Xl), that 

jX$L ‘(X)dX = i z; /I, m’(X)tlX. 
I- j=l ?I 

As before, r stands for a contour containing a( 1,) in its interior. The 
proof follows on applying (2.2) and (2.3). n 

COR~LIARY 4. Let T,,, denote an mn X mn block-lbeplitz tridingond 

nwtrix gcrwwted by the n x n matrix polynomial L(X) = L,, + AL, + X’L, 

wit/l det I,, # 0. If Z, and Z, are (right ) soherds for L( h ) and u( Z, ) Ti 

a( Z?) = 0, then for 7~1 > 2 

dety,;,, =( -1) (“I l”” ’ ‘(det L2)“’ 
det(%i”‘-%;“‘I) 

det(7, _ 7 ) (:3.4) 
‘L ‘1 

Proof. The matrices Bj ( j = 1,2) in (3.3) become in this case 

B, = Z;” + ’ J l,-‘(X)dh. (:3.5) 
Y, 
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According to [8] (see also [l, Section 2.51) the matrix %, - %, is invertil)le 
[along bvith V(Z,, Z,)] and 

I> ‘(A)= {(AI-Z,) -‘-(xl-z,) ‘}(Z,-Z,) ‘L, ‘. 

The, for j = 1,2 

JIA ‘(A)dX=( -l)‘J(hl-z,) “1X(%,-z,) ‘I>, ‘, 
:*, .(I 

alrtl it follows from (0.5) that 

s P(h)dX = ( - l)j274Z,- Z,) 55;‘. 
YI 

The suhstitutioll in (3.3) and subsequently in (3.2) gives (t3.4). W 

EXAMPLE 2. Let Prp,,, denote an 111 x m tridiagonal Toeplitz matrix 
generated 1)~ L(X) = u + hX + (.A’, c f 0. If cl’ = 11“ - 4ac f 0, then I,( A) 
has two distinct zeros z1,2 = ( - I? _+ ~1 )/2c. Then by (3.4) 

det Y,,, = ( - 1)“‘~“’ - : 
( 11 

( - h - cl ) “’ + l - ( - 17 + rl ) “’ * ‘](2c ) ‘I’ ’ 

EUMPLE 3. Let P,,, stand for a 2,~ X201 block-Toeplitz tridiagonal 
matrix generated by the matrix polynomial L(h) = I,,, + XI,, + A’&, where 

I,,, = -1 0 
[ I 1 0’ 

L,= ; _; ) I,,= 1 O . 
[ 1 -I 1 0 1 

The matrices 

10 0 0 

P=[ 2 1 0 10 1 0 1’ 

’ 

J= i 0 0 0 -1 0 0 

0 0 
0 0 0 2 1 
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form a Jordan pair for L( A ). Decompose Q and 1 into 2 X 2 matrices 

and observe that (0.1) implies 

LoQj + L,QjJj + L2Qj.J; = 0 (j = 1,2). 

Hence the matrices 

Z,=QJzQ2’= [ -:, ;] 

are (right) solvents for L(h). Since a( Z,)n a(Z,) =0 and Z: = Z, for all 
positive integers j, it follows by (3.4) that 

det _Y’,,, = det 
I 

I-( -q1”+’ 

2 

if m is even, 
if m is odd. 

(3.6) 

Note that the knowledge of a whole standard triple (Q, J, R) for L(x) 
allows one to compute det P,,, by a straightforward use of (2.8) [or (1.11) in 
this case]. Indeed, 

and hence det(QJ “I + ‘R) coincides with the right-hand expression in (3.6). 
Another possibility is, of course, to compute the determinant of the matrix 

X C”’ ’ ‘I’,;, (see Preliminaries for definition), but this is usually a difficult task. 0 ‘I. 
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4. :\ DIFFERENT APPROACH 

In the preceding sections the computation of the determinant of an 
~)III X WI block-Toeplitz band matrix dq,, is reduced to that of a qn x 9n 

determinant. We now derive a formula for det _Y>,, in terms of the determi- 
iiant of an in X In generalized Vandermonde matrix. In spite of I = 9 + k - 1 
3 q, the latter determinant has some computational advantages. 

THEOREM 4. Let dq,, he defined by (2.1), and let L, # 0. Assumer, in 
cdrlition, thut det L, z 0. If (X, 7‘) is a stun&ml pair for the generating 
rlurtrix polynomial L( h ), then for 111 > 1 > k 2 2 

detY,,,=( -1)’ 
(det L,)“‘(detV) 

det 2 ’ 

duw r = ( IJI - k)( 1 - k + 1)n” and 

Proof. Define an mn X rnn matrix 

2 = col( XT’);=:, 

(4.1) 

(4.2) 

where ,f = col( ,yTk + i 1 7” I ),=() . Note that since det I,,, + 0, it follows that 
det 7’ + 0 (take, for instance, T = C,,, the companion matrix) and therefore 
the matrix .q,, is invertible. Now use (0.1) to obtain 

=e,, > I (4.3) 
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where p,,, = 9,,,[1,2 ,..., mnlln + l,... , run] and 

G,= -P, ,L,,k~2Pk~IC.01(x~o:=~: 

c, = - tl,liCol(XT”‘+k+i-l)lI~. 

I’ernnlting rows in (4.3), we obtain, exploiting the notation in (4.2), that 

(det Y,,,)(det %)(detT)“ -’ = ( - 1)“det E1 
[ 1 (det I,,)“’ -‘, (4.4) 

2 

\shere v = [( 111 - k + 1)n + l]qn, q = 1 - k + 1. Kepresent 

where V is defined in (4.2), and observe that 

= ( - l)“‘(det L,,)km ‘(det L,)“(detV). 

It remains to observe that 

det 7’ = det C,, = ( - I) 
11,” det h, 

E 
‘I 

Theorem 4 applied to a scalar polynomial gives the expression for det Y,,, 
oljtained in [ll] and used there in studying the eigenvalue problem for 
Toeplitz band matrices. 

Let 11 = 1 in (2.1) and L,, + 0, L, + 0. Suppose that X,, X,, . . , A, are the 
distinct zeros of L(A) with multiplicities r,, r2,. . , r5 (r, + r2 + . + r, = I), 

respectively. Given integers m and k, define the Ith-order vector function 

and denote by A(j)(x) its jth derivative. Now construct the generalized 
Vandermonde matrix V,,, associated with the given polynomial L(X) as 
follows: the first r, columns of V,,, are A( X I), A’( h 1), . . , A”1 “(A ,), respec- 
tively: the next r2 columns are A( X 2), A’( h 2), . , A(‘> ’ )(A 2); and so on. 



det I’,,, 
det Y,,, = ( - 1) ’ 1,;” detv , 

0 

(detk’““) ‘, 

For the proof it suffices to observe that the Jordan pair ({I,, Ji) associated 
with the zero A, of I,( A) with multiplicity ri is given by the form& 

1 hi 1 

01, ... (II= [ 1 0 .‘. J,= x.. I 1 I ) 

h, 

Q= [Q, Q2 ... Q,]> J= ['jAlj]~,~=~ 

is a Jordakr pair for L(X) in the general case. If all the zeros of I,( A) are 
siirlple, then 

Q=[l 1 ..’ 11, .I= [$A$: A=, 

form a Jordan pair for L(h). 
Now apply Theorem 4 with X = (3, 7. = J. l 
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