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Random analytic solution of coupled differential models with
uncertain initial condition and source term
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Abstract

This paper deals with the construction of random power series solution of vector initial value problems containing uncertainty
in both initial condition and source term. Under appropriate hypothesis on the data, we prove that the random series solution
constructed by a random Fröbenius method is convergent in the mean square sense. Also, the main statistical functions of the
approximating stochastic process solution generated by truncation of the exact series solution are given. Finally, we apply the
proposed technique to several illustrative examples.
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1. Introduction

It is well known that deterministic differential equations are powerful tools to model a large class of important
problems appearing in a wide variety of scientific disciplines as mechanics, control systems, neural networks,
ecosystem dynamics, population genetics or economic models, for instance. However, in the last few years, in
modeling, analyzing, and predicting the behaviors of physical and natural phenomena, greater emphasis has been
placed upon probabilistic methods. This is due to combinations of complexity, uncertainties, and ignorance which are
present in the formulation of a great number of these problems. As a consequence, differential equations containing
uncertainty in their formulation are rapidly becoming an extensive way to formulate mathematical models.

In this paper we consider random coupled differential systems of the form

ĖX (t) = A(t) EX(t) + EB(t), |t | ≤ c
EX(0) = EX0,

}
, (1.1)

where the coefficient A(t) is Rr×r valued analytic function in |t | ≤ c, the source term EB(t) is a vectorial stochastic
process of size r × 1 which is also analytic in a stochastic sense that will be specified later, and the initial condition
EX0 is a random vector of the same size.
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Random linear matrix differential equations of type (1.1) appear in the study of the response of a mass-spring linear
oscillator to a random excitation [1, p. 158], when determining the effect on a earthbound structure of an earthquake-
type disturbance [2,3], in constructing compartmental models of pharmacokinetics [1, p. 223] or in formulating
epidemiologic models [4]. Modeling population growth requires the estimation of some parameters such as the birth
rate and the death rate which are difficult to obtain in practice because they are influenced by many circumstances like
sanitation and healthcare, wars, pollution, medicines, diet, psychological stress and anxiety. Other factors that have to
be considered are migration, living space restrictions, availability of food and water, climatology and epidemics. The
huge complexity of such factors recommends to introduce them into mathematical models through random variables
or stochastic processes instead of deterministic parameters or functions, respectively [1,4,5]. Then a special stochastic
calculus (namely mean square calculus) for handling these uncertainty magnitudes will be required in this paper.

On the other hand, the study of random problems of type (1.1) provides a first stage to consider non-linear random
models by means of linearization techniques. As the exact solution process of (1.1) is not available, in general, in [7,
8] one develops random numerical methods for constructing the numerical solutions of random differential systems
both linear and nonlinear that can be considered as an alternative to the present work for approximating the process
solution.

The aim of this paper is to construct random power series solutions of problem (1.1) and its organization is as
follows. Section 2 contains stochastic results, definitions, and examples related to mean square convergence of vector
random variables and vector stochastic processes that will play an important role in the following sections, particularly
providing a random matrix version of the Mertens’ theorem related to product matrix series. Section 3 deals with the
construction of a series solution of (1.1) by a random Fröbenius method, as well as to prove its convergence in the
mean square sense under appropriate conditions. This allows us to construct analytic–numerical finite series process
solution by means of truncation whose main statistic properties (mean and covariance matrix functions) are computed
in Section 4. Finally, several illustrative examples are given in Section 5.

2. Mean square calculus

For the sake of clarity in the presentation, we begin this section by introducing some concepts, notations and results
that may be found in [1, chap. 4]. Let (Ω ,F, P) be a probability space and let X : Ω → R be a second-order random
real variable (2-r.v.), that is,

E[X2
] =

∫
+∞

−∞

x2 fX (x)dx < ∞, (2.1)

where fX (x) denotes the probability density function of X and E[·] is the expectation operator. The set of all 2-

r.v.’s defined on (Ω ,F, P) is denoted by L2 and endowed with the norm ‖X‖2 =
(
E
[
X2
])1/2

has a Banach space
structure. An important fact is that the 2-norm in L2 does not provide a Banach algebra structure, i.e., it is not
submultiplicative. In general, the property ‖XY‖2 ≤ ‖X‖2 ‖Y‖2 is not true.

Given a positive integer r , a second-order random vector of size r is a vector EX whose entries X i lie in L2 for
1 ≤ i ≤ r . The set Lr

2 of all these vectors with the norm∥∥∥ EX
∥∥∥

r
= max

1≤i≤r
‖X i‖2 , (2.2)

provides a Banach structure to Lr
2. It is clear from (2.2) that mean square convergence in Lr

2 is equivalent to the

componentwise mean square convergence. We say that
{

EX(t)
}

t∈T
is a second-order vector stochastic process (2-

v.s.p.) in Lr
2, if EX(t) ∈ Lr

2 for each t ∈ T , being T the so-called space of times. The expectation function of EX(t) is the

deterministic vector function E
[

EX(t)
]

= (E [X i (t)])r×1, note that by definition one gets E
[

EXT(t)
]

=

(
E
[

EX(t)
])T

where EXT(t) denotes the transposed vector of EX(t). The covariance matrix function of
{

EX(t)
}

t∈T
is defined by

Λ EX(t) = E

[(
EX(t) − E

[
EX(t)

]) (
EX(t) − E

[
EX(t)

])T
]

=
(
vi j (t)

)
r×r , t ∈ T , (2.3)
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where

vi j (t) = E
[
(X i (t) − E [X i (t)])

(
X j (t) − E

[
X j (t)

])]
= E

[
X i (t)X j (t)

]
− E [X i (t)] E

[
X j (t)

]
, 1 ≤ i, j ≤ r, t ∈ T . (2.4)

Note that vi i (t) denoted by V [X i (t)] is the variance of the r.v. X i (t), 1 ≤ i ≤ r . Given two 2-v.s.p.’s in Lr
2, say{

EX(t)
}

t∈T
=
{
(X1(t), . . . , Xr (t))T}

t∈T and
{

EY (t)
}

t∈T
=
{
(Y1(t), . . . , Yr (t))T}

t∈T , one defines their covariance

matrix function by

Λ EX(t), EY (t) = E

[(
EX(t) − E

[
EX(t)

]) (
EY (t) − E

[
EY (t)

])T
]

=
(
νi j (t)

)
r×r , t ∈ T , (2.5)

where

νi j (t) = E
[
(X i (t) − E [X i (t)])

(
Y j (t) − E

[
Y j (t)

])]
= E

[
X i (t)Y j (t)

]
− E [X i (t)] E

[
Y j (t)

]
, 1 ≤ i, j ≤ r, t ∈ T . (2.6)

From the above definitions, one gets Λ EX(t), EX(t) = Λ EX(t). For t ∈ T fixed, note that if {X i (t)}r
i=1 and {Yi (t)}r

i=1 are

pairwise independent r.v.’s, then Λ EX(t), EY (t) is the null matrix of size r ×r . In the particular case where EX(t) = EY (t), for
t ∈ T fixed, being {X i (t)}r

i=1 pairwise independent r.v.’s, Λ EX(t) is the diagonal matrix Diag (V [X i (t)]), 1 ≤ i ≤ r .

Finally, note that the following property holds: Λ EY (t), EX(t) = ΛT
EX(t), EY (t)

.

We say that a sequence of second-order random vectors
{

EXn

}
n≥0

is mean square (m.s.) convergent to EX ∈ Lr
2 if

lim
n→∞

∥∥∥ EXn − EX
∥∥∥

r
= 0. (2.7)

From the corresponding properties of its components, see [1, p. 88], if
{

EXn

}
is a sequence of random vectors in Lr

2

m.s. convergent to EX , then

E
[

EXn

]
−−−→
n→∞

E
[

EX
]
, Λ EXn

−−−→
n→∞

Λ EX . (2.8)

Given a matrix A =
(
ai j
)

in Rr×r , we denote by ‖A‖ the norm defined as in [9, p. 57]

‖A‖ = max
1≤i≤r

r∑
j=1

∣∣ai j
∣∣ . (2.9)

Now we establish a result that will be crucial in the following:

Lemma 2.1. Let A be a matrix in Rr×r and EX ∈ Lr
2, then∥∥∥A EX

∥∥∥
r

≤ ‖A‖

∥∥∥ EX
∥∥∥

r
. (2.10)

Proof. By (2.2) and (2.9) it follows that∥∥∥A EX
∥∥∥

r
= max

1≤i≤r

∥∥∥∥∥ r∑
k=1

aik Xk

∥∥∥∥∥
2

≤ max
1≤i≤r

r∑
k=1

‖aik Xk‖2

= max
1≤i≤r

r∑
k=1

|aik | ‖Xk‖2 ≤

(
max

1≤i≤r

r∑
k=1

|aik |

)∥∥∥ EX
∥∥∥

r

= ‖A‖

∥∥∥ EX
∥∥∥

r
. �
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The following lemma is a direct consequence of Lemma 2.1:

Lemma 2.2. Let {Bn}n≥0 be a sequence of matrices in Rr×r and assume that limn→∞ Bn = B ∈ Rr×r . Let EX be a

second-order random vector in Lr
2. Then,

{
Bn EX

}
n≥0

is m.s. convergent in Lr
2 to B EX ∈ Lr

2.

Proof. Note that by (2.10) one gets∥∥∥Bn EX − B EX
∥∥∥

r
=

∥∥∥(Bn − B) EX
∥∥∥

r
≤ ‖Bn − B‖

∥∥∥ EX
∥∥∥

r
−−−→
n→∞

0.

Given a sequence of 2-v.s.p.’s
{

EXn(t)
}

t∈T
in Lr

2 for each t ∈ T , we say that it is uniformly mean square convergent

to
{

EX(t)
}

t∈T
∈ Lr

2, if for every ε > 0, there exists N > 0 such that for all n ≥ N (independent of t) one satisfies∥∥∥ EXn(t) − EX(t)
∥∥∥

r
≤ ε, ∀t ∈ T . �

The following result is a vector random version of Mertens’ theorem.

Proposition 2.3. Let {An}n≥0, A be matrices in Rr×r such that the series
∑

n≥0 An is absolutely convergent to

A. Let EXn be a second random vector in Lr
2 such that

∑
n≥0

EXn is mean square convergent to EX ∈ Lr
2. If

ECn =
∑n

k=0 An−k EXk , then
∑

n≥0
ECn is m.s. convergent to A EX.

Proof. Let us introduce

A′
n =

n∑
k=0

Ak, EX ′
n =

n∑
k=0

EXk, EC ′
n =

n∑
k=0

ECk, EY ′
n = EX ′

n − EX ,

and note that we wish to prove that
{

EC ′
n

}
is m.s. convergent to A EX in Lr

2. By definition of EC ′
n we have

EC ′
n = EC0 + EC1 + · · · + ECn = A0 EX0 +

(
A0 EX1 + A1 EX0

)
+ · · · +

(
A0 EXn + · · · + An EX0

)
= A0

(
EX0 + · · · + EXn

)
+ A1

(
EX0 + · · · + EXn−1

)
+ · · · + An EX0

= A0 EX ′
n + A1 EX ′

n−1 + · · · + An EX ′

0

= A0

(
EY ′

n + EX
)

+ A1

(
EY ′

n−1 + EX
)

+ · · · + An

(
EY ′

0 + EX
)

= (A0 + A1 + · · · + An) EX + A0 EY ′
n + A1 EY ′

n−1 + · · · + An EY ′

0

= A′
n

EX +

(
A0 EY ′

n + A1 EY ′

n−1 + · · · + An EY ′

0

)
.

If we denote EZ ′
n = A0 EY ′

n + A1 EY ′

n−1 + · · · + An EY ′

0, then one gets

EC ′
n = A′

n
EX + EZ ′

n . (2.11)

Note that by Lemma 2.2,
{

A′
n

EX
}

is m.s. convergent to A EX , and by (2.11) in order to prove the result it is sufficient

to show that
{

EZ ′
n

}
is m.s. convergent to the vector process E0 in Lr

2. As
{

EY ′
n

}
is m.s. convergent to the zero process in

Lr
2, given ε > 0, there exists N0 > 0 such that∥∥∥ EY ′

n

∥∥∥
r

<
ε

2α
, n ≥ N0, (2.12)

being

α =

∑
n≥0

‖An‖ < +∞. (2.13)
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Let βN0 > 0 be defined as

βN0 = max
{∥∥∥ EY ′

0

∥∥∥
r
, . . . ,

∥∥∥ EY ′

N0

∥∥∥
r

}
, (2.14)

and as sequences {An}n≥0 , {An−1}n≥1 , . . . ,
{
An−N0

}
n≥N0

are convergent to the zero matrix in Rr×r , we may also
assume that∥∥An− j

∥∥ ≤
ε

2(N0 + 1)βN0

, j = 0, 1, . . . , N0. (2.15)

Let n > N0, then by Lemma 2.1, (2.13)–(2.15) one gets∥∥∥ EZ ′
n

∥∥∥
r

≤

∥∥∥An EY ′

0 + · · · + An−N0
EY ′

N0

∥∥∥
r
+

∥∥∥An−N0−1 EY ′

N0+1 + · · · + A0 EY ′
n

∥∥∥
r

≤ ‖An‖

∥∥∥ EY ′

0

∥∥∥
r
+ · · · +

∥∥An−N0

∥∥ ∥∥∥ EY ′

N0

∥∥∥
r
+
∥∥An−N0−1

∥∥ ∥∥∥ EY ′

N0+1

∥∥∥
r
+ · · · + ‖A0‖

∥∥∥ EY ′
n

∥∥∥
r

≤ βN0(N0 + 1)
ε

2(N0 + 1)βN0

+
(∥∥An−N0−1

∥∥+ · · · + ‖A0‖
) ε

2α

≤
ε

2
+ α

ε

2α
= ε.

Hence the result is established. �

We say that the 2-v.s.p.
{

EX(t)
}

t∈T
is mean square continuous in T if

lim
τ→0

∥∥∥ EX(t + τ) − EX(t)
∥∥∥

r
= 0,

for each t ∈ T with t + τ ∈ T .

Example 2.4. Let
{

EXn

}
n≥1

be a sequence of second random vectors in Lr
2 and let t ∈ T being T an interval of R,

then the 2-v.s.p.
{

n0 EXn0 tn0−1
}

t∈T
for each n0 ∈ N is m.s. continuous for each t ∈ T . In fact,

∥∥∥n0 EXn0(t + τ)n0−1
− n0 EXn0 tn0−1

∥∥∥
r

=

∣∣∣n0

(
(t + τ)n0−1

− tn0−1
)∣∣∣ ∥∥∥ EXn0

∥∥∥
r

−−−→
τ→0

0,

because
∥∥∥ EXn0

∥∥∥
r

< ∞ as EXn0 ∈ Lr
2 for each n0 ∈ N and the continuity of the deterministic function f (t) = tn0−1

with respect to t .

If
{

EX(t)
}

t∈T
is a 2-v.s.p., we say that

{
EX(t)

}
t∈T

is m.s. differentiable at t ∈ T if

lim
τ→0

∥∥∥∥∥ EX(t + τ) − EX(t)

τ
− ĖX (t)

∥∥∥∥∥
r

= 0,

for all t ∈ T with t + τ ∈ T . In this case,
{

ĖX (t)
}

t∈T
is called the m.s. derivative of

{
EX(t)

}
t∈T

.

Example 2.5. With the notation of Example 2.4, the vector process
{

EXn0 tn0

}
t∈T

is m.s. differentiable in T and its

derivative is
{

n0 EXn0 tn0−1
}

t∈T
. Note that,
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τ
− n0 EXn0 tn0−1

∥∥∥∥∥
r

=

∣∣∣∣ (t + τ)n0 − tn0

τ
− n0tn0−1

∣∣∣∣ ∥∥∥ EXn0

∥∥∥
r

−−−→
τ→0

0.

A 2-v.s.p.
{

EX(t)
}

t∈T
in Lr

2 for each t ∈ T is said to be mean square analytic in t0 in the interval T , if the vector

series∑
n≥0

EX (n)(t0)

n!
(t − t0)

n , t, t0 ∈ T ,

where EX (n)(t0) denotes the m.s. derivative of order n at t = t0 of EX(t), is m.s. convergent to the 2-v.s.p.
{

EX(t)
}

t∈T
.

In connection with the m.s. analyticity, one can extend the corresponding scalar characterization given in terms of
the correlation function associated to the process (see [1, p. 99]) to vectorial case by means of the covariance matrix
function as follows:

Proposition 2.6. A second-order vectorial stochastic process
{

EX(t)
}

t∈T
is m.s. analytic on T if, and only if, its

covariance matrix function Λ EX(t), EX(t) is analytic at point t for every t ∈ T .

The following result is a direct consequence of the corresponding scalar version (see Theorem 3.1. of [10]), because
the m.s. convergence of a process in Lr

2 is equivalent to the componentwise m.s. convergence of each of its entries.

Proposition 2.7. Assume that
{

EXn(t)
}

t∈T
is a 2-v.s.p. in Lr

2 for each n, where T is an interval, and satisfies:

• EX(t) =
∑

n≥0
EXn(t) is m.s. convergent in Lr

2.

• EXn(t) is m.s. differentiable and ĖXn(t) is m.s. continuous for each t ∈ T , n ∈ N.

•
∑

n≥0
ĖXn(t) is locally uniformly m.s. convergent in Lr

2.

Then for each t ∈ T , EX(t) is m.s. differentiable and

ĖX (t) =

∑
n≥0

ĖXn(t).

3. Random power series solutions of linear systems

Consider the random differential system (1.1) where A(t) is a matrix valued deterministic analytic function about
t = 0, i.e.,

A(t) =

∑
n≥0

An tn, |t | ≤ c, (3.1)

where An ∈ Rr×r , for each n ≥ 0, and EB(t) is an analytic 2-v.s.p. about t = 0

EB(t) =

∑
n≥0

EBn tn, |t | ≤ c, (3.2)

where EBn ∈ Lr
2 and EX0 ∈ Lr

2.

Let F( EX , t) = A(t) EX + EB(t), where EX ∈ Lr
2 and |t | ≤ c. Then, by Lemma 2.1, it follows that∥∥∥F( EY , t) − F( EX , t)

∥∥∥
r

=

∥∥∥A(t)( EY − EX)

∥∥∥
r

≤ ‖A(t)‖
∥∥∥ EY − EX

∥∥∥
r

≤ k
∥∥∥ EY − EX

∥∥∥
r

(3.3)

where, from the continuity of A(t), one gets



G. Calbo et al. / Computers and Mathematics with Applications 56 (2008) 785–798 791

ãi j = max
|t |≤c

∣∣ai j (t)
∣∣ ; k = max

1≤i≤r

r∑
j=1

ãi j < +∞. (3.4)

From Theorem 5.1.2. [1, p. 118], condition (3.3) guarantees the existence of a unique m.s. solution of (1.1).
Let us seek a formal solution process of problem (1.1) of the form

EX(t) =

∑
n≥0

EXn tn, (3.5)

where coefficients EXn are second-order random vectors of size r to be determined. Assuming that EX(t) is termwise
m.s. differentiable and applying Propositions 2.3 and 2.7, it follows that

ĖX (t) =

∑
n≥1

n EXn tn−1
=

∑
n≥0

(n + 1) EXn+1tn, (3.6)

A(t) EX(t) =

(∑
n≥0

An tn

)(∑
n≥0

EXn tn

)
=

∑
n≥0

(
n∑

k=0

An−k EXk

)
tn, (3.7)

and by imposing that EX(t) given by (3.5) satisfies (1.1), one gets

∑
n≥0

(n + 1) EXn+1tn
=

∑
n≥0

{(
n∑

k=0

An−k EXk

)
+ EBn

}
tn .

Hence

(n + 1) EXn+1 = EBn +

n∑
k=0

An−k EXk, (3.8)

with the initial condition EX0 ∈ Lr
2, or

EXn+1 =
1

n + 1

{
EBn +

n∑
k=0

An−k EXk

}
, n ≥ 0. (3.9)

Now, we prove that the stochastic process EX(t) defined by (3.5) and (3.9) is m.s. convergent, termwise differentiable
and then Proposition 2.3 is applicable. Let T̂ =

∣∣̂t∣∣ < c, we show firstly that∑
n≥0

∥∥∥ EXn

∥∥∥
r
|t |n < +∞, |t | < T̂ . (3.10)

As A(t) and EB(t) are analytic, by Cauchy inequalities, [11, p. 222], there exists M > 0 such that

‖An‖ ≤
M

T̂ n
,

∥∥∥ EBn

∥∥∥
r

≤
M

T̂ n
, n ≥ 0. (3.11)

From (3.8), taking into account (3.11) and Lemma 2.1, it follows that

(n + 1)

∥∥∥ EXn+1

∥∥∥
r

≤

∥∥∥ EBn

∥∥∥
r
+

n∑
k=0

‖An−k‖

∥∥∥ EXk

∥∥∥
r

≤
M

T̂ n
+

n∑
k=0

M

T̂ n−k

∥∥∥ EXk

∥∥∥
r

=
M

T̂ n

{
1 +

n∑
k=0

T̂ k
∥∥∥ EXk

∥∥∥
r

}
. (3.12)
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Let us introduce positive numbers yn , such that

y0 =

∥∥∥ EX0

∥∥∥
r
, (3.13)

and inductively yn is defined by the equation

(n + 1)yn+1 =
M

T̂ n

{
1 +

n∑
k=0

T̂ k yk

}
, n ≥ 0. (3.14)

By definition and (3.12) it follows that∥∥∥ EXn

∥∥∥
r

≤ yn, n ≥ 0. (3.15)

From (3.14) it follows that

yn+1 =
M + nT̂ −1

n + 1
yn,

and for |t | < T̂ one gets

lim
n→∞

yn+1 |t |n+1

yn |t |n
= lim

n→∞

MT̂ + n

(n + 1)T̂
|t | =

|t |

T̂
< 1. (3.16)

As T̂ = |t | < c is arbitrary, by (3.16) one gets the absolutely norm convergence in Lr
2 of the series defined by (3.5)

and (3.9) for all t with |t | < c. Let us prove that EX(t) defined by (3.5) and (3.9) is termwise m.s. differentiable at t
with 0 < |t | < c. Take ρ with 0 < |t | < ρ < c, and since∑

n≥0

∥∥∥ EXn

∥∥∥
r
ρn < +∞, (3.17)

given ε > 0, there exists N0 such that∥∥∥ EXn+1

∥∥∥
r
ρn+1 < ε, ∀n ≥ N0.

Note that for n ≥ N0, |t | <
∣∣t ′∣∣ < ρ,

∥∥∥(n + 1) EXn+1
(
t ′
)n∥∥∥

r
≤ (n + 1)

∥∥∥ EXn+1

∥∥∥
r

∣∣t ′∣∣n = (n + 1)

∥∥∥ EXn+1

∥∥∥
r
ρn+1 1

ρ

(∣∣t ′∣∣
ρ

)n

<
n + 1

ρ
ε

(∣∣t ′∣∣
ρ

)n

= cn,

with

lim
n→∞

cn+1

cn
= lim

n→∞

n + 2
n + 1

∣∣t ′∣∣
ρ

=

∣∣t ′∣∣
ρ

< 1.

Hence, the series
∑

n≥0(n + 1) EXn+1τ
n is m.s. uniformly absolutely convergent in |τ | ≤

∣∣t ′∣∣. Thus hypotheses of
Proposition 2.7 are satisfied and series (3.5) and (3.9) are termwise m.s. differentiable.

Remark 1. If EB(t) is the null vector stochastic process and EX0 is a random vector in Lr
2, then applying the above

random Fröbenius method one gets that the m.s. solution of (1.1) is given by EX(t) = exp(At) EX0,as it is well known,
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see [1, chap. 6]. However this result does not hold, in general, if coefficient A(t) is a matrix stochastic process or even
a matrix random variable without imposing additional conditions on A(t), see [12].

Remark 2. From a practical point of view it is important to point out that processes such as the Brownian motion or
white noise are not allowed to play the role of EB(t) into (1.1) because they are not m.s. differentiable anywhere, but
in the last section we shall show some interesting examples where the developing work can be applied successfully.

4. Statistic properties of the approximating process

From a practical point of view, it is interesting to compute the expectation vector and the covariance matrix of the
approximating solution stochastic process. Using the property for scalar 2-r.v.’s, [1, p. 97], in the vector case one gets

d
dt

(
E
[

EX(t)
])

= E
[

ĖX (t)
]
, (4.1)

where the derivative of the left-hand side of (4.1) is the deterministic one, and the one of the right-hand side is the
m.s. derivative. Then taking expectations in (1.1), one gets the deterministic analytic system

d
dt

(
E
[

EX(t)
])

= A(t)E
[

EX(t)
]

+ E
[

EB(t)
]
, |t | ≤ c

E
[

EX(0)
]

= E
[

EX0

]
.

 . (4.2)

Problem (4.2) admits a series solution whose construction is the same as the one of above section, although (4.2) is
a deterministic problem. This allows to construct an approximating process by the truncation of the series defined by
(3.5) and (3.9)

EX N (t) =

N∑
n=0

EXn tn . (4.3)

In order to compute its expectation, note that

E
[

EX N (t)
]

=

N∑
n=0

E
[

EXn

]
tn, (4.4)

where taking into account (3.9), series coefficients are given by

E
[

EXn

]
=

1
n

{
E
[

EBn−1

]
+

n−1∑
k=0

An−k−1 E
[

EXk

]}
, n ≥ 1, (4.5)

where E
[

EX0

]
as well as E

[
EBn

]
for n ≥ 0 are known. In a similar way, from (3.9) one gets

E
[

EXT
n

]
=

1
n

{
E
[

EBT
n−1

]
+

n−1∑
k=0

E
[

EXT
k

]
AT

n−k−1

}
, n ≥ 1. (4.6)

It is worth pointing out that in [6] one develops an analytic–numerical procedure for constructing approximations of
(4.2) with a prefixed accuracy.

Let us compute the covariance matrix of the approximating process EX N (t) defined by (4.3). For that we will
assume that Λ EX0, EX0

= Λ EX0
, Λ EBi , EX0

= ΛT
EX0, EBi

and Λ EBi , EB j
= ΛT

EB j , EBi
, 0 ≤ i, j ≤ N are data. Considering (4.3) and

the corresponding definition, the covariance matrix of EX N (t) is given by
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Λ EX N (t) = E

[(
EX N (t) − E

[
EX N (t)

]) (
EX N (t) − E

[
EX N (t)

])T
]

= E
[

EX N (t) EX N (t)T
]

− E
[

EX N (t)
]

E
[

EX N (t)
]T

= E

[(
N∑

n=0

EXn tn

)(
N∑

n=0

EXT
n tn

)]
−

(
N∑

n=0

E
[

EXn

]
tn

)(
N∑

n=0

E
[

EXT
n

]
tn

)

=

N∑
i=0

N∑
j=0

E
[

EX i EXT
j

]
t i+ j

−

N∑
i=0

N∑
j=0

E
[

EX i

]
E
[

EXT
j

]
t i+ j

=

N∑
i=0

N∑
j=0

(
E
[

EX i EXT
j

]
− E

[
EX i

]
E
[

EXT
j

])
t i+ j

=

N∑
i=0

N∑
j=0

Λ EX i , EX j
t i+ j . (4.7)

In order to save computations, considering in (4.7) the property Λ EX j , EX i
= ΛT

EX i , EX j
, then

Λ EX N (t) =

N∑
i=0

Λ EX i , EX i
t2i

+

N∑
i=1

i−1∑
j=0

(
Λ EX i , EX j

+ ΛT
EX i , EX j

)
t i+ j .

For the sake of clarity in the next computations, let us write the above expression in the form:

Λ EX N (t) = Λ EX0, EX0
+

N∑
i=1

Λ EX i , EX i
t2i

+

N∑
i=1

(
Λ EX i , EX0

+ ΛT
EX i , EX0

)
t i

+

N∑
i=2

i−1∑
j=1

(
Λ EX i , EX j

+ ΛT
EX i , EX j

)
t i+ j . (4.8)

Now we show that the computations involved in (4.8) can be handled in practice. From (3.9) and (4.5) one gets

Λ EX i , EX0
= E

[(
EX i − E

[
EX i

]) (
EX0 − E

[
EX0

])T
]

= E

[(
1
i

{
EBi−1 +

i−1∑
k=0

Ai−k−1 EXk

}
−

1
i

{
E
[

EBi−1

]
+

i−1∑
k=0

Ai−k−1 E
[

EXk

]})(
EX0 − E

[
EX0

])T
]

=
1
i

E

[((
EBi−1 − E

[
EBi−1

])
+

i−1∑
k=0

Ai−k−1

(
EXk − E

[
EXk

]))(
EX0 − E

[
EX0

])T
]

=
1
i
Λ EBi−1, EX0

+
1
i

i−1∑
k=0

Ai−k−1Λ EXk , EX0
, i ≥ 1, (4.9)

thus, the terms Λ EX i , EX0
appearing in (4.8) can be computed from the data Λ EX0, EX0

and Λ EBi−1, EX0
.

In (4.8), it only remains to explain the computation of matrices Λ EX i , EX j
for i ≥ 1, 1 ≤ j ≤ i . For this goal, note

that

Λ EX i , EX j
= E

[(
EX i − E

[
EX i

]) (
EX j − E

[
EX j

])T
]

= E

[(
EX i − E

[
EX i

])(1
j

{(
EB j−1 − E

[
EB j−1

])T
+

j−1∑
l=0

(
EXl − E

[
EXl

])T
AT

j−l−1

})]

=
1
j
Λ EX i , EB j−1

+
1
j

j−1∑
l=0

Λ EX i , EXl
AT

j−l−1, i ≥ 1, 1 ≤ j ≤ i, (4.10)
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then, one requires to know the matrices Λ EX i , EB j−1
and Λ EX i , EXl

for 0 ≤ l ≤ j − 1. Following the same procedure as the
one used to obtain (4.10), one gets

Λ EX i , EB j−1
=

1
i
Λ EBi−1, EB j−1

+
1
i

i−1∑
k=0

Ai−k−1Λ EXk , EB j−1
. (4.11)

Thus, Λ EX i , EB j−1
one computes from the data Λ EBi−1, EB j−1

and Λ EX0, EB j−1
. On the other hand, for 0 ≤ l ≤ j − 1 fixed,

in order to compute Λ EX i , EXl
by (4.10) it is necessary to know Λ EX i , EBl−1

which is computable by (4.11) from the data
Λ EX0, EBl−1

and Λ EX i , EX0
.

5. Examples

Finally, we show two examples of application of model (1.1). In the first one, the solution of the deterministic
Eq. (4.2) is available, then we can compare the results obtained by the proposed method in order to approximate the
expectation of the stochastic process solution of problem (1.1).

Example 5.1. Let us consider a random prey–predator model based upon (1.1), where

A(t) = A =

[
0 1

−1 −2

]
, EB(t) =

[
0

Zet

]
, (5.1)

being Z an exponential r.v. of parameter λ = 0.5, Z ∼ Exp(λ = 0.5), then E[Z ] = 2. Note that, species S1 is predator
of S2 with null per capita growth rate and, since its per capita growth rate is negative, species S2 becomes extinct.
Moreover, we are assuming that incorporation of foreign prey individuals is allowed. Finally, let us suppose that initial
conditions are described by X1(0) = U1 and X2(0) = U2, where U1 and U2 are uniform r.v.’s on intervals [0, 2] and
[0, 10], respectively. In this case, coefficients An of (3.1) are given by

A0 =

[
0 1

−1 −2

]
, An =

[
0 0
0 0

]
, n ≥ 1. (5.2)

The covariance matrix function of EB(t) in the diagonal points is the matrix,

Λ EB(t), EB(t) = E

[(
EB(t) − E

[
EB(t)

]) (
EB(t) − E

[
EB(t)

])T
]

=

[
0 0
0 4e2t

]
, (5.3)

then applying Proposition 2.6 one deduces that EB(t) is m.s. analytic. Moreover, coefficients EBn of (3.2) are given by

EBn =

[
0

Z
1
n!

]
, n ≥ 0. (5.4)

Table 1 compares the expectation of the approximating stochastic process EX N (t) given by (4.3)–(4.5) for different
orders of truncation N on the interval t ∈ [0, 2] and the exact solution of Eq. (4.2), which is given by

E
[

EX(t)
]

=


1
2

e−t
(

1 + e2t
+ 10t

)
1
2

e−t
(

9 + e2t
− 10t

)
 . (5.5)

For that, we compute the componentwise absolute difference of vectors E
[

EX(t)
]
−E

[
EX N (t)

]
, that will be denoted by∣∣∣E [ EX(t)

]
− E

[
EX N (t)

]∣∣∣. From Table 1 one observes that for t fixed, the approximation is better when N increases,

and for a fixed value of N , the approximations are worse when t separates from the origin, where the problem is
proposed. It is worth pointing out after computing that every value of the corresponding Table 1 for N = 30 is of the
order 10−15 at least.
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Fig. 1. A two-compartment model in chemical kinetics.

Table 1
Comparison between exact and approximate expectations for Example 5.1

t
∣∣∣E[ EX(t)] − E[ EX5(t)]

∣∣∣ ∣∣∣E[ EX(t)] − E[ EX10(t)]
∣∣∣ ∣∣∣E[ EX(t)] − E[ EX15(t)]

∣∣∣
0

(
0
0

) (
0
0

) (
0
0

)
0.25

(
0.00019
0.00022

) (
3.21521 × 10−13

3.44169 × 10−13

) (
2.978644 × 10−20

6.889865 × 10−20

)

0.50
(

0.00593
0.00685

) (
6.43942 × 10−10

6.89888 × 10−13

) (
4.44089 × 10−16

4.44089 × 10−16

)

0.75
(

0.04311
0.04963

) (
5.45273 × 10−8

5.83769 × 10−8

) (
3.64153 × 10−14

3.86358 × 10−14

)

1.00
(

0.17415
0.19980

) (
1.26439 × 10−6

1.35265 × 10−6

) (
3.55005 × 10−12

3.82716 × 10−12

)

1.25
(

0.51030
0.58320

) (
0.000014422
0.000015416

) (
1.24251 × 10−10

1.33990 × 10−10

)

1.50
(

1.22120
1.38948

) (
0.000105024
0.000112173

) (
2.26358 × 10−9

2.44218 × 10−9

)

1.75
(

2.54249
2.87833

) (
0.000561249
0.000598921

) (
2.62795 × 10−8

2.83672 × 10−8

)

2.00
(

4.78222
5.38315

) (
0.002391560
0.00254969

) (
2.19401 × 10−7

2.36951 × 10−7

)

Note that coefficients of E
[

EX N (t)
]

defined by (4.5), in our case are given by

E
[

EX0

]
=

[
1
5

]
, (5.6)

E
[

EXn

]
=

1
n


 0

2
(n − 1)!

+

[
0 1

−1 −2

]
E
[

EXn−1

] , n ≥ 1. (5.7)

Example 5.2. Let us consider a two-compartment model in chemical kinetics or pharmacokinetics as shown in
Fig. 1. The quantities X1(t) and X2(t) represent the chemical concentrations in the compartments; a1(t) = e−t

and a2(t) = e−2t represent the time varying deterministic rate; B2(t) = E2 ∼ Exp (λ2 = 1000) is an exponential r.v.
with parameter λ2 = 1000, so E [E2] = 0.001. Let us assume that initial conditions X10 = U1 and X20 = U2 are
uniform r.v.’s on the interval [0, 1], then E [U1] = E [U2] = 0.5. This problem is modeled by the system (1.1) where

A(t) =

[
−a1(t) a2(t)
a1(t) −a2(t)

]
=

[
−e−t e−2t

e−t
−e−2t

]
, (5.8)

EB(t) =

[
0

−B2(t)

]
=

[
0

−E2

]
, EX(0) =

[
X10
X20

]
=

[
U1
U2

]
. (5.9)
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Fig. 2. Plotting E
[

EX N (t)
]

for N = 500 on the interval t ∈ [0, 2], for Example 5.2.

Now, coefficients An of matrix (3.1) are given by

An =
(−1)n

n!

[
−1 2n

1 −2n

]
, n ≥ 0. (5.10)

In this case, the covariance matrix function of EB(t) in the diagonal points is given by

Λ EB(t), EB(t) =

[
0 0
0 10−6

]
, (5.11)

then Proposition 2.6 assures that EB(t) is m.s. analytic. The coefficients EBn of (3.2) are given by

EB0 =

[
0

−E2

]
, EBn =

[
0
0

]
, n ≥ 1. (5.12)

Fig. 2 shows the expectation of the components of the approximating stochastic process EX N (t) given by (4.3) for the

order of truncation N = 500 on the interval t ∈ [0, 2]. Note that coefficients of E
[

EX N (t)
]

defined by (4.5), in our

case are given by

E
[

EX0

]
=

[
0.5
0.5

]
, E

[
EX1

]
=

[
0

−0.001

]
, (5.13)

E
[

EXn

]
=

1
n

n−1∑
k=0

(−1)n−k−1

(n − k − 1)!

[
−1 2n−k−1

1 −2n−k−1

]
E [Xk] , n ≥ 2. (5.14)

In order to compute the covariance matrix function, note that from a practical point of view, it is realistic to assume
that U1, U2 and E2 are pairwise independent r.v.’s, then one gets

Λ EX0, EX0
=

1
12

[
1 0
0 1

]
, Λ EX0, EB j

=

[
0 0
0 0

]
, j ≥ 0, (5.15)

Λ EB0, EB0
=

[
0 0
0 10−6

]
and Λ EBi , EB j

=

[
0 0
0 0

]
otherwise. (5.16)

The matrices Λ EX i , EB j
for i ≥ 1 and j ≥ 0 can be obtained by (4.11). Note that for each j ≥ 1, Λ EX i , EB j

is the null

matrix of size 2 × 2. Table 2 shows covariance matrices of EX N (t) for several values of N and t . From its diagonal
elements one deduces that for N fixed, standard deviation decreases as t increases. On the other hand, the negative
values of secondary diagonal for N = 10 and N = 15 are in accordance with the results shown in Fig. 2. Although
convergence of covariance matrix is not evident from values contained in Table 2, this is guaranteed because of the
m.s. convergence of EXn(t) and the property (2.8).

Remark 3. It is possible to extend the work developed in Sections 2 and 3 to matrix random models of the form
(1.1), that is, where the unknown, the initial condition as well as the source term are not vectors but matrix stochastic
processes of suitable sizes. This task requires to introduce the set, say, Lr×s

2 of all these matrix stochastic processes X
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Table 2
Covariance matrices of approximating processes for Example 5.2

t Λ EX5(t) Λ EX10(t) Λ EX15(t)

0
(

0.08333 0
0 0.08333

) (
0.08333 0

0 0.08333

) (
0.08333 0

0 0.08333

)
0.10

(
0.07005 0.01293
0.01293 0.07076

) (
0.06512 −0.01455

−0.01455 0.06814

) (
0.06432 −0.01532

−0.01532 0.06514

)
0.20

(
0.06128 0.02083
0.02083 0.06372

) (
0.05888 −0.01556

−0.01556 0.06012

) (
0.05789 −0.01876

−0.01876 0.05998

)
0.30

(
0.05489 0.02610
0.02610 0.05960

) (
0.05232 −0.01989

−0.01989 0.05774

) (
0.05012 −0.02134

−0.02134 0.05532

)
0.40

(
0.04953 0.03039
0.03039 0.05637

) (
0.04766 −0.02343

−0.02343 0.05564

) (
0.04667 −0.02445

−0.02445 0.04989

)
0.50

(
0.04422 0.03514
0.03514 0.05216

) (
0.04232 −0.02565

−0.02565 0.04932

) (
0.04144 −0.02674

−0.02674 0.04821

)

whose entries X i j lie in L2 for 1 ≤ i ≤ r , 1 ≤ j ≤ s. This set Lr×s
2 endowed with the norm

‖X‖r×s = max
1≤i≤r

s∑
j=1

∥∥X i j
∥∥

2 ,

is a Banach space. Moreover, one can establish the crucial property ‖AX‖r×s ≤ ‖A‖ ‖X‖r×s , and just to introduce the
concept of expectation of the matrix stochastic process as well as its corresponding relationships given by (4.1)–(4.6).
However, as X(t) =

(
X i j (t)

)
r×s is a matrix stochastic process, in dealing with covariance computation it is necessary

to introduce the so-called vectorization of a matrix

vec(X(t))T
=
[
X11(t) · · · Xr1(t) X12(t) · · · Xr2(t) X1s(t) · · · Xrs(t)

]
,

and define the covariance matrix function of stochastic matrix X(t) by means of

ΛX(t) = Λvec(X(t)) = E
[
(vec(X(t)) − E [vec(X(t))]) (vec(X(t)) − E [vec(X(t))])T

]
.

For this reason, dealing with random matricial models of type (1.1), it is more appropriate to consider the
corresponding vector problem resulting after taking the operator vec(·) on the original matrix equation, and then
applying the vectorial technique developed in this paper.
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et al. (Eds.), Proc. Métodos Numéricos en Ingenierı́a y Ciencias Aplicadas, CIMNE, Barcelona, 2002, pp. 267–276 (in Spanish).
[3] T.T. Soong, M. Grigoriu, Random Vibration of Mechanical and Structural Systems, Prentice Hall, México, 1993.
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