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Abstract

The steady flow of an Oldroyd 8-constant magnetohydrodynamic (MHD) fluid is considered for a cylindrical geometry when
the no-slip condition between the cylinders and the fluid is no longer valid. The inclusion of the partial slip at boundaries modifies
the governing boundary conditions, changing from a linear to a non-linear situation. The non-linear differential equation along with
non-linear boundary conditions governing the flow has been solved numerically using a finite-difference scheme in combination
with an iterative technique. The solution for the no-slip condition is a special case of the presented analysis. A critical assessment
is made for the cases of partial slip and no-slip conditions.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We recall that fluids in which the shear stress is a multiple of the shear strain are called Newtonian fluids. The
proportionality coefficient is the viscosity. Other fluids are known as non-Newtonian fluids. Examples of Newtonian
fluids are: water, alcohol, benzene, kerosene and glycerine. Examples of non-Newtonian fluids are: blood plasma,
chocolate, tomato sauce, mustard, mayonnaise, toothpaste, asphalt, some greases and sewage.

The governing equation that describes the flow of a Newtonian fluid is the Navier–Stokes equation. During the past
several years, generalizations of the Navier–Stokes model to highly non-linear constitutive laws have been proposed
and studied because of their interest in applications. There is not a single governing equation which exhibits all
the properties of non-Newtonian fluids and these fluids cannot be described simply as Newtonian fluids. Moreover,
there are very few cases in which the exact analytic solution of Navier–Stokes equations can be obtained. These are
even rare if the constitutive equations for the non-Newtonian fluids are considered. One of the popular models for
non-Newtonian fluids is the model that is called the Oldroyd 8-constant fluid. It is reasonable to use the Oldroyd
8-constant fluid model to see the rheological effects even for unidirectional and steady flow. It is pertinent to mention
here that unidirectional flows of an Oldroyd 3-constant fluid (Rajagopal and Bhatnagar [1], Hayat et al. [2] and
Fetecau and Fetecau [3–5], Tan and Masuoka [6] and Chen et al. [7]) take into account the rheological effects in an
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unsteady situation only and lack the features of viscoelasticity for the steady state situation. Baris et al. [8] considered
an Oldroyd 8-constant model to discuss the steady flow in a convergent channel. In continuation, Hayat et al. [9]
discussed the Couette, Poiseuille and generalized Couette flows of an Oldroyd 8-constant magnetohydrodynamic
fluid.

In all the mentioned studies, the effect of the slip condition is not considered. Navier [10] proposed a slip boundary
condition when the slip velocity depends on the shear stress. He developed slip boundary conditions based on
molecular calculations. There is much rigorous work [11–20] concerning the flow of a Navier–Stokes-slip, threshold-
slip, etc. Since the equations for non-Newtonian fluids are of higher order than the Navier–Stokes equations, additional
boundary conditions are necessary in order to obtain the unique solution. The adherence boundary conditions are
insufficient to determine a unique solution. Rajagopal and Gupta [21] and Rajagopal and Kaloni [22] gave examples
of non-uniqueness in domains with porous boundaries. This implies that additional boundary conditions are necessary
to ensure the well-posedness, but it remains an open question what boundary conditions should be imposed. Moreover,
non-Newtonian fluids such as polymer melts often exhibit wall slip. The fluids exhibiting boundary slip have important
technological applications. For example, the polishing of artificial heart valves and internal cavities in a variety of
manufactured parts is achieved by imbedding such fluids with abrasives [23]. Several attempts have been made to
explain slip phenomena [24–27]. Examples of well-posedness results for the Navier–Stokes equations with Navier
slip, and more references, are given in [28–31]. Rao and Rajagopal [32] also examined the effect of the slip boundary
condition on the flow of fluids in a channel. Roux [33] studied in detail the existence and uniqueness of the flow of
second grade fluids with slip boundary conditions. Non-Newtonian flows with wall slip have been studied numerically
in Refs. [34–42]. The effect of the slip condition at the wall for Couette flow for steady and unsteady state conditions
has been studied respectively by Jha [43] and Marques et al. [44], and for Stokes and Couette flows by Khaled and
Vafai [45].

The object of the present analysis is to examine the partial slip effects on an MHD Oldroyd 8-constant fluid between
coaxial cylinders. The conducting fluid is permeated by an imposed uniform magnetic field when the no-slip condition
at the boundaries is invalid. The inclusion of the partial slip at boundaries modifies the governing boundary conditions,
changing from a linear to a non-linear situation. The highly non-linear problem has been solved numerically, and the
results have been discussed in detail. The considered Hartman flow of an electrically conducting fluid in the presence
of a transverse magnetic field has applications in many devices such as MHD power generators, MHD pumps, and
accelerators; in processes such as aerodynamics heating, electrostatic precipitation, polymer technology; and in the
purification of molten metals from nonmetallic inclusions and fluid-droplet sprays.

2. Governing equations

Consider the flow of an incompressible magnetohydrodynamic (MHD) fluid. The magnetic field is applied
transversely to the flow. The following set of pertinent field equations governing the unsteady motion of the conducting
Oldroyd 8-constant fluid is given by

ρ

[
∂V
∂t

+ (V · ∇) V
]

= div T + J × B, (1)

div V = 0, (2)

∇ · B = 0, ∇ × B = µmJ, ∇ × E = −
∂B
∂t

, (3)

J = σ (E + V × B) , (4)
T = −pI + S, (5)

S + λ1
DS
Dt

+
λ3

2
(SA1 + A1S) +

λ5

2
(tr S) A1 +

λ6

2
[tr (SA1)] I

= µ

[
A1 + λ2

DA1

Dt
+ λ4A2

1 +
λ7

2

[
tr

(
A2

1

)]
I
]

, (6)

A1 = L + LT, L = grad V. (7)
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In above equations V = (u, v, w) is the velocity vector, ρ is the density, T is the Cauchy stress tensor, −pI is the
constitutively indeterminate part of the stress due to the constraint of incompressibility, S is the extra stress tensor,
A1 is the first Rivlin–Ericksen tensor, and µ and λi (i = 1, 2, . . . , 7) are the material constants of the fluid. The
contravariant convected derivative D/Dt is defined as

DS
Dt

=
dS
dt

− LS − SLT, (8)

where d/dt is the material derivative. Moreover, J, µm, E and σ are the current density, magnetic permeability, electric
field, and electric conductivity, respectively, and B is the total magnetic field, so that B = B0 + b, b is the induced
magnetic field.

We further consider the following:
• The quantities ρ, µm and σ are all constants throughout the flow field.
• The magnetic field B is perpendicular to the velocity field V and the induced magnetic field is negligible compared

with the imposed magnetic field so that the magnetic Reynolds number is small [46].
• The electric field E is assumed to be zero.

Based on these considerations particularly of small magnetic Reynolds number, the magnetohydrodynamic force
involved in Eq. (1) becomes

J × B = −σ B2
0 V. (9)

For the motion under consideration, we take the stress and velocity field of the form

S (r, t) =

Srr Srθ Sr z
Sθr Sθθ Sθ z
Szr Szθ Szz

 , V (r, t) =

0
0
u

 . (10)

Using Eq. (10), the continuity equation is identically satisfied and the remaining field equations now reduce to

0 = −
∂p
∂r

+
1
r

∂

∂r
(r Srr ) −

Sθθ

r
, (11)

0 = −
1
r

∂p
∂θ

+
1
r2

∂

∂r

(
r2Srθ

)
, (12)

ρ
∂u
∂t

= −
∂p
∂z

+
1
r

∂

∂r
(r Sr z) − σ B2

0 u, (13)(
1 + λ1

∂

∂t

)
Srr + (λ3 + λ6) Sr z

∂u
∂r

= µ (λ4 + λ7)

(
∂u
∂r

)2

, (14)(
1 + λ1

∂

∂t

)
Srθ +

λ3

2
Szθ

∂u
∂r

= 0, (15)(
1 + λ1

∂

∂t

)
Sr z +

(
λ3 + λ5

2

)
(Srr + Szz)

∂u
∂r

+
λ5

2
Sθθ

∂u
∂r

− λ1Srr
∂u
∂r

= µ

(
1 + λ2

∂

∂t

)
∂u
∂r

, (16)(
1 + λ1

∂

∂t

)
Sθθ + λ6Sr z

∂u
∂r

= µλ7

(
∂u
∂r

)2

, (17)(
1 + λ1

∂

∂t

)
Sθ z +

(
λ3 − 2λ1

2

)
Sθr

∂u
∂r

= 0, (18)(
1 + λ1

∂

∂t

)
Szz + (λ3 + λ6 − 2λ1) Sr z

∂u
∂r

= µ (λ4 + λ7 − 2λ2)

(
∂u
∂r

)2

. (19)

The above equations for steady flow become

∂p
∂r

=
1
r

d
dr

(r Srr ) −
Sθθ

r
, (20)
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1
r

∂p
∂θ

=
1
r2

d
dr

(
r2Srθ

)
, (21)

∂p
∂z

=
1
r

d
dr

(r Sr z) − σ B2
0 u, (22)

Srr + (λ3 + λ6) Sr z
du
dr

= µ (λ4 + λ7)

(
du
dr

)2

, (23)

Srθ +
λ3

2
Szθ

du
dr

= 0, (24)

Sr z +

(
λ3 + λ5

2

)
(Srr + Szz)

du
dr

+
λ5

2
Sθθ

du
dr

− λ1Srr
du
dr

= µ
du
dr

, (25)

Sθθ + λ6Sr z
du
dr

= µλ7

(
du
dr

)2

, (26)

Sθ z +

(
λ3 − 2λ1

2

)
Sθr

du
dr

= 0, (27)

Szz + (λ3 + λ6 − 2λ1) Sr z
du
dr

= µ (λ4 + λ7 − 2λ2)

(
du
dr

)2

. (28)

From Eq. (23) to (28) we have

Srθ = Sθ z = 0, (29)

Srr =

µ (λ4 + λ7 − λ3 − λ6)
(

du
dr

)2
+ µ {(λ4 + λ7) α2 − (λ3 + λ6) α1}

(
du
dr

)4

1 + α2

(
du
dr

)2 , (30)

Sr z =

µ du
dr + µα1

(
du
dr

)3

1 + α2

(
du
dr

)2 , (31)

Sθθ =

µ (λ7 − λ6)
(

du
dr

)2
+ µ (λ7α2 − λ6α1)

(
du
dr

)4

1 + α2

(
du
dr

)2 , (32)

where

α1 = λ1 (λ4 + λ7) − (λ3 + λ5) (λ4 + λ7 − λ2) −
λ5λ7

2
,

α2 = λ1 (λ3 + λ6) − (λ3 + λ5) (λ3 + λ6 − λ1) −
λ5λ6

2
.

3. Physical model and numerical method

Let us consider the steady flow of an incompressible electrically conducting Oldroyd 8-constant fluid between two
infinite coaxial cylinders. The motion starts suddenly due to a constant pressure gradient and by the motion of the
inner cylinder parallel to its length while the outer cylinder keeps stationary. Using Eq. (29), Eqs. (20)–(22) can be
written as

∂p
∂r

=
1
r

d
dr

(r Srr ) −
Sθθ

r
, (33)

∂p
∂θ

= 0, (34)
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∂p
∂z

=
1
r

d
dr

(r Sr z) − σ B2
0 u. (35)

In the derivation of the above equations, the transverse magnetic field is taken to be a body force. Moreover, the
z-differential of the pressure is constant since the flow is due to a prescribed pressure gradient and the motion of the
inner cylinder. From Eq. (35) the velocity field is determined. Next, the pressure field is determined from Eq. (33).

Using the value of Sr z from Eq. (31) in Eq. (35), we arrive at

1
r

d
dr

r


µ du

dr + µα1

(
du
dr

)3

1 + α2

(
du
dr

)2


 − σ B2

0 u =
dp
dz

. (36)

Here, we also consider the existence of partial slip between the velocity of the fluid and of the cylinders. The
relative velocity between the fluid and the walls of the cylinders is assumed to be proportional to the shear rate at the
wall. The equation which is to be solved is Eq. (36) subject to the following partial slip conditions:

u (r) − γ


1 + α1

(
du
dr

)2

1 + α2

(
du
dr

)2

 du
dr

= U0 at r = R0,

u (r) + γ


1 + α1

(
du
dr

)2

1 + α2

(
du
dr

)2

 du
dr

= 0 at r = R1, (37)

where γ (≥ 0) is the slip coefficient having the dimension of length, R0 is the radius of the inner cylinder, R1 is that
of the outer cylinder, and U0 is the velocity of the inner cylinder.

Defining the non-dimensional variables

u =
u

U0
, r =

r
R0

, z =
z

R0
, p =

p
µU0/R0

, γ =
γ

R0
, α1 =

α1

(R0/U0)
2 , α2 =

α2

(R0/U0)
2 (38)

the governing boundary value problem in dimensionless variables after dropping the bars is

1
r

d
dr

r


du
dr + α1

(
du
dr

)3

1 + α2

(
du
dr

)2


 − M2u =

dp
dz

, (39)

u (r) − γ


1 + α1

(
du
dr

)2

1 + α2

(
du
dr

)2

 du
dr

= 1 at r = 1,

u (r) + γ


1 + α1

(
du
dr

)2

1 + α2

(
du
dr

)2

 du
dr

= 0 at r = b, (40)

where M2
= σ B2

0/
(
µ/R2

0
)

and b = R1/R0.
In the following, we are interested in obtaining the numerical solution for above boundary value problem. To obtain

the numerical solution we rewrite Eq. (39) in the form
1 + (3α1 − α2)

(
du
dr

)2
+ α1α2

(
du
dr

)4

(
1 + α2

(
du
dr

)2
)2


d2u
dr2 +

1
r


1 + α1

(
du
dr

)2

1 + α2

(
du
dr

)2

 du
dr

− M2u =
dp
dz

. (41)
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The above equation and the partial slip conditions (40) are non-linear, so the solution cannot be obtained directly
by the finite-difference method. In the present case, an iterative procedure is employed.

We construct an iterative procedure for the non-linear boundary value problem (41) and (40) as
1 + (3α1 − α2)

(
du(n)

dr

)2
+ α1α2

(
du(n)

dr

)4

(
1 + α2

(
du(n)

dr

)2
)2


d2u(n+1)

dr2

+
1
r


1 + α1

(
du(n)

dr

)2

1 + α2

(
du(n)

dr

)2

 du(n+1)

dr
− M2u(n+1)

=
dp
dz

, (42)

u(n+1)
− γ


1 + α1

(
du(n)

dr

)2

1 + α2

(
du(n)

dr

)2

 du(n+1)

dr
= 1 at r = 1,

u(n+1)
+ γ


1 + α1

(
du(n)

dr

)2

1 + α2

(
du(n)

dr

)2

 du(n+1)

dr
= 0 at r = b, (43)

where the index (n) indicates the iterative step.
Eq. (42) subject to partial slip conditions (43) defines a differential boundary value problem for unknown u(n+1).

By means of the finite-difference method a linear algebraic system can be deduced and solved for each iterative
step. Thus, a sequence of functions u(0) (r) , u(1) (r) , u(2) (r) , . . . is determined as follows: for a given estimated
u(0) (r) ; u(1) (r) , u(2) (r) , . . . are calculated successively as the solutions of the boundary value problem (42) and
(43).

For a better convergence, the so-called method of under-relaxation is used. We solve the boundary value problem
(42) and (43) for the iterative step n + 1 to obtain an estimated value of u(n+1) : ũ(n+1), then u(n+1) is defined by the
formula

u(n+1)
= u(n)

+ τ
(

ũ(n+1)
− u(n)

)
, τ ∈ (0, 1] , (44)

where τ ∈ (0, 1] is an under-relaxation parameter. We choose τ so small that convergent iteration is reached. The
iteration should be carried out until the relative difference of the computed u(n+1) and u(n) between two iterative steps
are smaller than a given error chosen to be 10−16.

4. Numerical results and discussion

The differential equation (36) subject to partial slip conditions (37) is solved numerically. A comparison is made
between the profiles of the velocity for two kinds of fluids: a Newtonian fluid, for which α1 = α2, and an Oldroyd
8-constant fluid. Of particular interest here are the effects of pressure gradient, partial slip, rheological and magnetic
parameters.

Fig. 1 show the effect of the partial slip on the velocity profiles. It is obvious from these figures that the velocity
gradient for an Oldroyd 8-constant fluid (panel b) is much larger than that of a Newtonian fluid (panel a) for both
no-slip (γ = 0) and partial slip (γ > 0) conditions. Moreover, it is noted that with the increase of the partial slip
parameter γ , the velocity gradient for both fluid decreases, and hence the velocity profiles become flatter due to the
decreasing shearing force from the slip boundary. Furthermore, by the increase of slip parameter γ , the main effect
seems to be that the reduced boundary resistance leads to the increase of the velocity over the whole cross section.

The influence of the rheological parameters α1 and α2 of an Oldroyd 8-constant fluid on the velocity profiles are
shown in Fig. 2 in the presence of partial slip at the boundaries. From these figures we can see that the velocity profiles
are strongly influenced by the material parameters α1 and α2 even in the presence of partial slip. It can be seen from
Fig. 2(a) that for an Oldroyd 8-constant fluid, when the material parameter α1 increases from α1 = 2 to 10 while
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(a) Newtonian fluid (α1 = 2, α2 = 2). (b) Oldroyd fluid (α1 = 2, α2 = 8).

Fig. 1. Profiles of the dimensionless velocity u (r) for various values of partial slip parameter γ when M = 0.5, dp/dz = −5 and b = 2 are fixed.

(a) α1 = 2. (b) α2 = 2.

Fig. 2. Profiles of the dimensionless velocity u (r) for various values of rheological parameters α1 and α2 when γ = 0.5, M = 0.5, dp/dz = −5
and b = 2 are fixed.

α2 maintains a constant value α2 = 2, the flow profiles tend to approach a linear distribution; thus, the shearing can
extend without attenuation to the whole flow domain from the boundaries, which corresponds to a shear-thickening
phenomenon. On the other hand, the variation of α2 is given in Fig. 2(b) when α1 is fixed. From this figure, it is noted
that with the increase of α2 from α2 = 2 to 10 for fixed value of α1 = 2, an opposite phenomenon can be observed in
which the velocity near the boundary becomes sharper, which corresponds to shear-thinning behavior of the examined
non-Newtonian fluid.

Fig. 3 show the effects of pressure gradient on the velocity profile in the presence of partial slip. For both a
Newtonian fluid (panel a) and an Oldroyd 8-constant fluid (panel b), symmetric parabolic flow profiles are found.
Their amplitudes depend on the magnitude of the pressure gradient and the flow directions are against the direction
of pressure gradient. From these figures we can see that for an Oldroyd 8-constant fluid the flow velocities are
obviously much larger than those of a Newtonian fluid. Actually, it can be seen from the governing equation (36)
that if α1 < α2 (α1 > α2) the flow velocity of an Oldroyd 8-constant fluid is larger (smaller) than that of a Newtonian
fluid. Thus, the effects of the pressure gradient are similar to those for the no-slip case. The slip parameter γ tends to
increase the flow velocity; therefore, if there is partial slip at the boundary/boundaries the velocity is higher than that
of the no-slip case.
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(a) Newtonian fluid (α1 = 2, α2 = 2). (b) Oldroyd fluid (α1 = 2, α2 = 8).

Fig. 3. Profiles of the dimensionless velocity u (r) for various values of pressure gradient dp/dz when γ = 0.5, M = 0.5 and b = 2 are fixed.

(a) Newtonian fluid (α1 = 2, α2 = 2). (b) Oldroyd fluid (α1 = 2, α2 = 8).

Fig. 4. Profiles of the dimensionless velocity u (r) for various values of magnetic parameter M when γ = 0.5, dp/dz = −5 and b = 2 are fixed.

Fig. 4(a) and (b) provide the effects of the magnetic parameter M for a Newtonian fluid and an Oldroyd
8-constant fluid, respectively. As expected, increasing the magnitude of the magnetic parameter M reduces the velocity
monotonically due to the effect of the magnetic force against the direction of the flow.

5. Concluding remarks

In this paper, a non-linear analysis of an Oldroyd 8-constant magnetohydrodynamic fluid between coaxial cylinders
subject to partial slip at the boundaries is discussed numerically. The partial slip condition might also explain the flow
of polymers that has been observed through various experiments [47–50]. However, the governing equation and the
slip boundary conditions here are rather daunting, as they lead to a highly non-linear system. The pertinent controlling
parameters are pressure gradient, partial slip, rheological and magnetic parameters. The main conclusions are:

• The presented analysis includes the Oldroyd-B fluid (λi = 0; i = 3, 4, . . . , 7), second grade fluid (λi = 0; i =

1, 3, 4, . . . , 7), Maxwell fluid (λi = 0; i = 2, 3, . . . , 7) and the Newtonian fluid (λi = 0; i = 1, 2, . . . , 7) as
special cases.

• With partial slip at the walls, the reduced shearing force from the boundaries causes the velocity profiles to become
flatter.
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• When the flow caused by the moving wall dominates over that induced by the axial pressure gradient, near the
moving wall where the shearing force from the boundary is a driving force, the velocity decreases with the partial
slip condition, while near the fixed wall where the shearing force from the boundary is a resistance, the velocity
increases.

• If the flow induced by the pressure gradient dominates over that caused by the moving wall, the shearing force
from the boundary acts as a resistance force to the flow. In such a case, the partial slip condition leads the velocity
to increase over the whole cross-section.

• The variation of α1 leads to a shear-thickening property when α2 is fixed while the variation in α2 gives a shear-
thinning behavior for fixed α1.

• Keeping the pressure gradient fixed, the velocity in the case of an Oldroyd 8-constant fluid is larger (smaller) than
that of a Newtonian fluid for α1 < α2 (α1 > α2).

• Increasing the applied magnetic field will generally reduces the flow velocity even in the presence of partial slip.
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