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Abstract

The final stage of the Adelson–Bergen model [J. Opt. Soc. Am. A 2 (1985) 284] computes net motion as the difference between

directionally opposite energies EL and ER. However, Georgeson and Scott-Samuel [Vis. Res. 39 (1999) 4393] found that human
direction discrimination is better described by motion contrast ðCmÞ––a metric where opponent energy ðEL � ERÞ is divided by flicker
energy ðEL þ ERÞ. In the present paper, we used a lateral masking paradigm to investigate the spatial properties of flicker energy
involved in the normalization of opponent energy. Observers discriminated between left and right motion while viewing a check-

erboard in which half of the checks contained a drifting sinusoid and the other half contained flicker (i.e. a counterphasing sinusoid).

The relative luminance contrasts of flicker and motion checks determined the checkerboard’s overall motion contrast Cm. We
obtained selectivity functions for opponent-motion normalization by measuring Cm thresholds whilst varying the orientation, spatial
frequency, or size of flicker checks. In all conditions, performance (percent correct) decayed lawfully as we decreased motion

contrast, validating the Cm metric for our stimuli. Thresholds decreased with check size and also improved as we increased either the
orientation or spatial-frequency difference between motion and flicker checks. Our data are inconsistent with Heeger-type nor-

malization models [Vis. Neurosci. 9 (1992) 181] in which excitatory inputs are normalized by a non-selective pooling of inhibitory

inputs, but data are consistent with the implicit assumption in Georgeson and Scott-Samuel’s model that flicker normalization is

localized in orientation, scale, and space. However, our lateral masking paradigm leaves open the possibility that the spatial

properties of flicker normalization would be different if opponent and flicker energies spatially overlapped. Further characterization

of motion contrast will require models of the spatial, temporal, and joint space–time properties of mechanisms mediating opponent-

motion and flicker normalization.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Energy models have had a significant impact on our
current understanding of low-level motion perception.
Instead of explicitly encoding––or ‘‘tracking’’––the po-
sition of features over time, energy models rely on linear
filters sensitive to contours oriented in the space–time
domain. Several variants of the energy model, including
modified Reichardt detectors (van Santen & Sperling,
1984), have been proposed (Adelson & Bergen, 1985;

Burr & Ross, 1986; Watson & Ahumada, 1985) and
constitute the basis of other more elaborate models
of perceived motion (Qian, Andersen, & Adelson, 1994b;
Simoncelli & Heeger, 1998; Wilson, Ferrera, & Yo,
1992).
Fig. 1A sketches the Adelson and Bergen (1985)

motion energy model which processes a time-varying
luminance input Iðx; tÞ in several stages: (i) input de-
composition with pairs of linear spatial and temporal
filters in quadrature phase (giving A, A0, B, and B0), (ii)
linear combination of filter responses into four quadr-
ature components oriented in space–time (giving A� B0,
A0 þ B, Aþ B0, and A0 � B), (iii) squaring and summing
of quadrature components into directionally opposite
energies EL and ER, and (iv) subtraction of EL and ER at
the opponent-motion stage. The various stages of the
Adelson–Bergen model are neurally plausible, and most
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can be mapped to known physiological mechanisms
(De Valois, Cottaris, Mahon, Elfar, & Wilson, 2000;
Emerson, Bergen, & Adelson, 1992; Heeger, Boynton,
Demb, Seidemann, & Newsome, 1999; Hubel & Wiesel,
1968; McLean & Palmer, 1989; McLean, Raab, & Pal-
mer, 1994; Pollen & Ronner, 1981).
Several properties of energy models are consistent

with psychophysical data. For instance, the Adelson–
Bergen model correctly predicts that a counterphasing
grating (i.e. two sinewaves of equal contrasts drifting in
opposite directions) elicits a percept of flicker rather
than of motion transparency because directionally op-
posite energies cancel at the opponent stage (Levinson
& Sekuler, 1975; Lindsey & Todd, 1998; Mather &
Moulden, 1983; Qian, Andersen, & Adelson, 1994a;
Stromeyer, Kronauer, Madsen, & Klein, 1984; Zemany,
Stromeyer, Chaparro, & Kronauer, 1998), although see
Gorea, Conway, and Blake (2001) and Raymond and
Braddick (1996). Since the opponent stage computes
the difference between directionally opposite energies,
the Adelson–Bergen model is insensitive to the absolute
amount of spatiotemporal energy in the stimulus.
By analogy with Michelson luminance contrast,

Georgeson and Scott-Samuel (1999) have proposed mo-
tion contrast: a metric denoted by Cm that normalizes
motion energy ðEL � ERÞ by flicker energy ðEL þ ERÞ.

The numerator is identical to the opponent stage of the
Adelson–Bergen model, and flicker energy is computed
as the sum of directionally opposite energies. One can
also think of flicker energy as the total energy let through
by the spatiotemporal passband of filters in the Adelson–
Bergen model. Implementation of the Georgeson and
Scott-Samuel flicker-normalization model is sketched in
Fig. 1B.
To validate their motion-contrast metric psycho-

physically, Georgeson and Scott-Samuel (1999) tested
human direction discrimination for a stimulus which can
be represented as two superimposed sinewave gratings
drifting in opposite directions. Omitting mean lumi-
nance for clarity, the authors’ time-varying stimuli Iðx; tÞ
are described by

Iðx; tÞ ¼ c0 sinðuxþ wtÞ þ c1 sinðux� wtÞ; ð1Þ

where u and w are the spatial and temporal frequencies
respectively. Independent control over the contrast of
each grating, c0 and c1, allows motion contrast to be
varied: absolute values of c0 and c1 determine overall
flicker energy whereas relative values of c0 and c1 specify
motion energy. Data revealed that direction discrimi-
nation increases monotonically with motion contrast
but bears no lawful relation to either opponent-motion
energy or flicker energy alone.

Fig. 1. Motion energy models: A––Schematic illustration of the Adelson and Bergen (1985) motion energy model. The last stage computes motion

energy as the difference between directionally opposite energies. B––Schematic illustration of modifications proposed by Georgeson and Scott-

Samuel (1999) where motion energy is normalized by flicker energy.
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Inspection of Fig. 1B reveals that the excitatory (i.e.
opponent energy) and inhibitory (i.e. flicker energy)
components of the Georgeson and Scott-Samuel model
have identical spatial properties because both are com-
puted from the same front-end filters, but there is no a
priori reason why this must be the case. Motion energy
models rely on filters with spatial properties similar to
those of early mechanisms of mammalian vision, namely
localization in space, orientation, and spatial frequency
(DeValois, Albrecht, & Thorell, 1982; DeValois, Yund,
& Hepler, 1982; Hubel & Wiesel, 1968). However, as we
elaborate further in the Discussion, there is consider-
able evidence that the response of early visual mecha-
nisms to an optimal test stimulus can be modulated by
a masking stimulus whose spatial properties fall outside
the classical passband of these mechanisms. Evidence
of this non-specific suppression has been incorporated
into normalization models where inhibitory pathways
are less selective for stimulus properties than excitatory
pathways (e.g. Foley, 1994; Heeger, 1992).

1.1. Basic approach

The psychophysical data of Georgeson and Scott-
Samuel (1999) cannot be used to distinguish between the
spatial properties of the opponent-motion and flicker-
normalization stages because motion and flicker energies
were spatially superimposed and had the same orienta-
tion and spatial frequency. To circumvent this stimulus
limitation, we devised a lateral masking paradigm using
checkerboard patterns where spatially alternate checks
contained either pure flicker or pure motion signals.
Holding the spatial properties of motion checks con-
stant, we varied those of flicker checks and measured the
extent to which opponent-motion normalization pools
across flicker energies of different orientation, scale, or
spatial position. Examples of our checkerboard stimuli
are shown in Fig. 2 where each check contains a sine-
wave grating either counterphasing or drifting as a
function of time. In these illustrations, counterphasing
checks have a high contrast relative to that of motion
checks. We manipulated motion contrast, or the ratio
of motion energy to flicker energy, by independently
controlling the luminance contrast of flicker and mo-
tion checks. In panel A, motion and flicker checks have
the same spatial properties whereas in panels B and
C, flicker checks vary in spatial frequency and orienta-
tion respectively. Panel D illustrates checks of a different
size.
The analytical expression of motion contrast for our

stimuli is straightforward. As shown by Eq. (1), the
stimuli used by Georgeson and Scott-Samuel can be
characterized as two sinewaves of independent contrasts
drifting in opposite directions. Use of trigonometric
identities reveals that the same stimulus can be recast

as the sum of two gratings in spatial and temporal
quadrature phase,

Iðx; tÞ ¼ m0 sinðuxÞ cosðwtÞ þ m1 cosðuxÞ sinðwtÞ; ð2Þ
where m0 ¼ ðc0 þ c1Þ and m1 ¼ ðc0 � c1Þ. In the case
where either m0 or m1 is zero, a purely counterphasing
grating is obtained whereas setting m0 ¼ m1 produces
a purely drifting grating.
Appendix A in Georgeson and Scott-Samuel (1999)

shows that leftward ðELÞ and rightward ðERÞ energies
in the Adelson–Bergen model can be computed easily
from Eq. (2): motion energy M is given by

M ¼ 4S2m0m1; ð3Þ
where S is the gain of the spatiotemporal filters at ðu;wÞ,
and flicker energy F is obtained by

F ¼ 2S2ðm20 þ m21Þ: ð4Þ

Recalling that motion contrast, Cm, is defined as M=F ,
we obtain

Cm ¼ 2m0m1
m20 þ m21

: ð5Þ

Opponent energy increases with the product of contrasts
m0 and m1, and flicker energy increases with the sum of
squared contrasts m0 and m1. Motion contrast depends
only on the luminance contrast ratio m0=m1 and is in-
dependent of overall contrast energy.
Computing motion contrast for our checkerboard

stimuli involves only one additional intermediate step.
Since the luminance contrast of motion and flicker

Fig. 2. Checkerboard variant of Georgeson and Scott-Samuel (1999)

A––Adjacent checks spatially alternate between flickering and drifting

sinewave gratings. Holding the spatial properties of motion checks

constant while varying those of flicker checks allowed us to dissociate

the spatial properties of opponent-motion and normalization mecha-

nisms. B–D––Flicker checks vary in spatial frequency, orientation, and

size respectively.
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checks can be varied independently, we can reuse Eq. (2)
to compute local values of m0 and m1 at the individual
check level and compute global values of m0 and m1 by
summing over space. Let us replace m0 and m1 by local
values d0 and d1 for motion checks and by f0 and f1 for
flicker checks.
According to Eq. (2), pure motion requires that

d1 ¼ d0, and pure flicker requires that either f0 or f1 be
zero (choosing one or the other to set to zero simply
changes the spatiotemporal phase of flicker checks but
otherwise does not affect motion contrast). Summing
values of m0 and m1 over space is simplified given that
motion and flicker checks cover equal areas of our
stimuli: global values are m0 ¼ d0 þ f0, and m1 ¼ d1 þ f1
respectively. Inserting the global values m0 and m1 into
Eq. (5) returns the motion contrast for our stimuli.
Motion contrast is independent of check size, orienta-
tion, or scale provided the areas covered by motion and
flicker checks are in a one-to-one proportion.

2. Method

2.1. Observers

Two of the authors (SR and NSS), a third informed
observer (RH), and two naive observers (LC and AA)
participated in the study. All observers had normal or
corrected-to-normal vision.

2.2. Hardware and calibration

Experiments were carried out using a Macintosh
Powerbook G4/500 (for NSS) and a Macintosh Desktop
G4/450 (for all other observers). The two computers
hosted standard 8-bit/gun color video cards driving a
LaCie Electron 22 Blue monitor (NSS) and a 2100 Apple
Studio Display monitor (other observers) respectively.
Both displays were set to a spatial resolution of
1152� 870 pixels and a refresh rate of 75 Hz. Lumi-
nance profiles were measured using a calibrated spot
photometer, and grayscale lookup-tables with linear
relationships to luminance were derived. After lineari-
zation, displays had mean luminances of 33.0 and 29.4
cd/m2 respectively. Viewing distance was set such that
one pixel corresponded to 10.

2.3. Stimuli

Stimuli consisted of a checkerboard pattern whose
checks spatially alternated between drifting and counter-
phasing sinewave gratings (see Fig. 2). The ‘‘phase’’ of
the checkerboard was randomized on each trial such
that observers could not predict whether a given check
would contain motion or flicker. The initial spatial

phase of flicker and motion gratings was independently
randomized across checks, but initial temporal phase
was not, and thus flickering checks reached peak con-
trast simultaneously. Motion checks invariably con-
sisted of a 1.9 cpd vertical sinusoid (32-pixel period)
that drifted either leftwards or rightwards in quadra-
ture steps. Flicker checks were also displayed in quadr-
ature steps and consisted of counterphasing sinusoids
of variable spatial frequency and orientation. In all ex-
periments, check size was held fixed at 0:53� 0:53 deg
(32� 32 pixels) with motion checks containing exactly
one grating cycle except in Experiment 4 (Fig. 2D)
where check size was varied parametrically. Unless
otherwise noted, stimuli were composed of 16� 16
checks with total dimensions subtending 8:3� 8:3 deg
(512� 512 pixels). Stimuli consisted of five frames pre-
sented for a total of 200 ms (or the equivalent of 15
screen refreshes at 75 Hz). Since the first and fifth frames
were identical, observers could not infer direction of
motion by comparing the initial and final phase of
gratings in motion checks. Stimuli were computed in the
Matlab 5.2.1 environment and displayed using high-
level interfaces from the PsychToolbox (Brainard, 1997)
that called lower-level routines from the VideoToolbox
(Pelli, 1997).

2.4. Procedure

In all experiments, observers discriminated between
left and right motion in a two-alternative forced-choice
task and pressed one of two keys to report perceived
direction. Levels of motion contrast were presented using
the method of constant stimuli and were randomly shuf-
fled across trials. Each run consisted of a variable num-
ber of trials depending on the number of conditions to
be tested. Although the total number of trials varied
across conditions and observers, each data point in Ex-
periment 1 is computed from no less than 50 judgements.
Each data point in Experiments 2 through 4 includes no
less than 60 judgements.
Stimulus presentations were separated by a variable

intertrial interval that depended on the speed at which
stimuli were computed and on self-pacing by the ob-
server. A low-contrast fixation dot was shown in the
screen’s center before every presentation to ensure stim-
uli were foveated. Observers received auditory feedback
on incorrect responses. All thresholds were computed
at the 75%-correct level. Error bars (�1 SD) were com-
puted using a bootstraping technique (Efron & Tibsh-
irani, 1993) that modeled our data as a binary random
process. 1000 samples were computed from this process,
a log x cumulative normal was fitted to each sample, and
hence a distribution of threshold values was obtained
whose standard deviation we took as our confidence
interval.
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3. Experiment 1: Validating motion contrast for check-

erboard stimuli

The purpose of this experiment was to replicate re-
sults from Georgeson and Scott-Samuel (1999) with our
checkerboard patterns and validate the motion-contrast
metric for our stimulus configuration. Observers LC,
NSS, RH, and SR participated. Observer performance
was measured for all possible combinations of the fol-
lowing luminance contrasts (d0 ¼ 2%, 4%, 8%, 16%,
32%, and 64%) and motion contrasts (Cm ¼ 0:062,
0.125, 0.246, 0.471, 0.8, and 1.0).
Direction discrimination data (proportion correct)

are shown in Fig. 3 for all observers as a function of
opponent energy (first column), flicker energy (second
column), and motion contrast (third column). In line
with the findings of Georgeson and Scott-Samuel (1999),
performance bears no systematic relationship to either
opponent energy ðEL � ERÞ or flicker energy ðEL þ ERÞ
alone but is well described as a monotonic function
of motion contrast ðCmÞ. Data in the third column
were fitted using a log x cumulative normal (solid line)
and motion-contrast thresholds were estimated at the
75%-correct level. Thresholds were 0.51, 0.42, 0.38,
and 0.34 for observers LC, NSS, RH, and SR respec-
tively and are similar to those reported in Georgeson
and Scott-Samuel. These results validate the motion-
contrast metric for the checkerboard configuration of
our stimuli.

4. Experiment 2: Orientation selectivity of opponent-

motion normalization

In this experiment, motion-contrast thresholds were
measured as a function of the orientation of flicker
checks while holding that of motion checks vertical
ðorientation ¼ 0�Þ. Fig. 2C gives an example of such a
stimulus where flicker and motion checks are orthogo-
nal although actual displays contained 16 checks on a
side. The luminance contrast of motion checks ðd0 ¼ d1Þ
was fixed at 2%, and motion contrast was varied over
the same levels used in Experiment 1. Levels of motion
contrast were randomized across trials, and flicker ori-
entation was randomized across runs.
Fig. 4 plots motion-contrast thresholds as a function

of flicker orientation for observers AA, LC, NSS, and
SR respectively. Solid lines represent the least-squares
fit of a three-parameter log y Gaussian to the data. The
fit’s peak was constrained to fall on the orientation of
motion checks (0�). Selectivity (half bandwidth) was
defined as the orientation where thresholds dropped by
a factor of two from the highest point on the fitted
curve. We chose this criterion to better compare these

results with those of experiments in which we fitted data
with functions other than Gaussians.
Results show that motion-contrast thresholds drop

significantly as the orientation difference between mo-
tion and flicker checks increases, but the shape of the
data varies across observers. Orientation selectivity for
observers AA, LC, NSS, and SR, were 42.0�, 42.0�,
22.5�, and 19.2� respectively. The orientation selectiv-
ity of the two informed observers (NSS and SR) is
narrower than that of the two na€ııve observers. Thresh-
olds could not be measured beyond 45� for NSS and SR
because performance remained above 75% correct for
the range of motion contrasts that were available with
our display. Although the orientation selectivity com-
puted for observers AA and LC is identical, most of
the threshold reduction occurs between �45� for AA
whereas LC’s performance improves more gradually
with orientation. It is plausible that na€ııve observers
suffer from greater internal noise than practiced sub-
jects. Since larger internal noise raises threshold, the
range of motion contrasts used here may have been
sufficient to measure the selectivity of na€ııve observers
over the entire orientation spectrum. Nonetheless, the es-
sential finding is that for each observer, motion-contrast
thresholds decay lawfully as a function of the orienta-
tion difference between motion and flicker checks.

5. Experiment 3: Spatial-frequency selectivity of oppo-

nent-motion normalization

In this experiment, motion-contrast thresholds were
measured as a function of the spatial frequency of flicker
checks while holding that of motion checks constant
at 1.9 cpd. Fig. 2B gives an example of such a stimulus
where flicker checks have four times the spatial fre-
quency of motion checks. Actual displays contained 16
checks on a side. The luminance contrast of motion
checks ðd0 ¼ d1Þ was fixed at 2%, and motion contrast
was varied over the same levels used in Experiment 1.
Levels of motion contrast were randomized across trials,
and flicker spatial frequency was randomized across
runs.
Fig. 5 plots motion-contrast thresholds as a function

of flicker spatial frequency for observers LC, NSS, and
SR respectively. Solid lines represent the best (least-
squares) fit of a three-parameter log–log Gaussian to the
data. We defined selectivity (half bandwidth) as the
spatial frequency where thresholds dropped by a factor
of two from the highest point on the fitted curve. For all
observers, results show that motion-contrast thresholds
decay lawfully as the spatial-frequency difference be-
tween motion and flicker checks increases. LC, NSS,
and SR, have spatial-frequency selectivities of 0.41, 0.45,
and 0.66 octaves respectively.
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6. Experiment 4: Spatial selectivity of opponent-motion

normalization

In this experiment, motion-contrast thresholds were
measured as a function of check size. Motion and flicker

checks invariably contained a vertical 1.9 cpd sinewave
grating. Panel D of Fig. 2 shows an example of such
a stimulus where check dimensions have been doubled
from previous figures. Seven different check sizes were
used (0.27, 0.53, 0.60, 0.67, 0.80, 1.07, and 1.33 deg on a

Fig. 3. Three metrics compared: Direction discrimination (proportion correct) vs. opponent energy (first column), flicker energy (second column),

and motion contrast (third column) for observers LC, NSS, RH, and SR (rows). Performance vs. motion contrast is fitted with a log x cumulative

normal. Estimates of motion-contrast thresholds are reported at the 75%-correct level.
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side) although only a subset of the conditions
were shown to each observer as dictated by pilot data.
To avoid partial checks, stimulus dimensions were ad-
justed between 8.0 and 8.5 deg such that only complete
checks were included; stimulus dimensions correspond-
ing to the 7 check sizes listed above were 8.5, 8.5, 8.4,
8.0, 8.0, 8.5, and 8.0 deg respectively. Although the total
number of checks varied across conditions, every stim-
ulus was evenly divided between motion and flicker
checks.
The luminance contrast of motion checks ðd0 ¼ d1Þ

was fixed at 2%, and motion contrast was varied over
the same levels used in Experiment 1. Levels of motion
contrast were randomized across trials, and check size
was randomized across runs.
Fig. 6 plots motion-contrast thresholds as a function

of check size for observers LC, NSS, and SR respec-
tively. Solid lines represent the least-squares fit of a four-
parameter cumulative normal (with negative slope) to
the data. The size of the normalization’s pooling area
was defined as the check size where thresholds dropped
by a factor of two from the highest point on the fitted
curve.
For all observers, results show that motion-contrast

thresholds decrease rapidly as the size of motion and
flicker checks increases. The size of the opponent-
motion normalization’s pooling area for LC, NSS, and
SR is 0.63, 0.30, and 0.30 deg respectively.

7. Summary of results

The present study has produced the following find-
ings:

• Motion contrast is a valid descriptor of human direc-
tion discrimination in checkerboard stimuli whose
checks spatially alternate between drifting and count-
erphasing gratings (Experiment 1).

• The normalization of opponent-motion energy is se-
lective for the spatial orientation of flicker energy
(Experiment 2).

• The normalization of opponent-motion energy is
selective for the spatial frequency of flicker energy
(Experiment 3).

• The normalization of opponent-motion energy is
selective for the spatial location of flicker energy (Ex-
periment 4).

Table 1 summarizes the selectivity of opponent-mo-
tion normalization for orientation, scale, and space as
measured empirically for individual observers.

8. Discussion

The main thrust of the present paper lies in the empiri-
cal demonstration that opponent-motion normalization,

Fig. 4. Orientation selectivity of opponent-motion normalization: Motion-contrast thresholds are plotted as a function of flicker orientation for

observers AA, LC, NSS, and SR. Solid lines show the best log y Gaussian fit to the data. Error bars show �1 SD.
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as revealed by lateral masking, is selective for the ori-
entation, scale, and location of flicker energy. In the
following sections, we discuss the implications of our
results and propose directions for future work.

8.1. The spatial properties of opponent-motion normal-
ization

We tested whether or not opponent-motion normal-
ization is selective for the spatial properties of flicker
energy. Results summarized in Table 1 show that, de-
spite some quantitative disagreement between na€ııve
observer LC and informed observers NSS and SR,
performance is clearly selective for the relative orienta-
tion, scale, and location of motion and flicker energies.
The orientation and spatial-frequency selectivity of op-
ponent-motion normalization reported in Table 1 are

similar to those of direction-selective mechanisms mea-
sured in other psychophysical studies on motion per-
ception. Orientation selectivity falls within the range
measured by Anderson and Burr (1991), Anderson,
Burr, and Morrone (1991) and Georgeson and Scott-
Samuel (2000), and selectivity for spatial frequency is

Fig. 5. Spatial-frequency selectivity of opponent-motion normaliza-

tion: Motion-contrast thresholds are plotted as a function of flicker

spatial frequency for observers LC, NSS, and SR. Solid lines show the

best log–log Gaussian fit to the data. Error bars show �1 SD.

Fig. 6. Spatial selectivity of opponent-motion normalization: Motion-

contrast thresholds are plotted as a function of check size for observers

LC, NSS, and SR. Solid lines show the best cumulative-normal fit to

the data. Error bars show �1 SD.

Table 1

The spatial properties of opponent-motion normalization

Orientation

(�)
SF (octaves) Space (deg)

LC 42.0 0.41 0.63

NSS 22.5 0.45 0.30

SR 22.5 0.66 0.30

Orientation, spatial frequency, and spatial selectivity is shown for in-

dividual observers (LC, NSS, and SR). Selectivity for orientation,

spatial frequency, and space represent half bandwidths corresponding

to a halving of threshold.
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consistent with estimates of Anderson and Burr (1989).
However, the size of opponent-motion normalization
measured in our study is larger than the size of motion
mechanisms reported in other studies (Anderson &
Burr, 1987; Anderson & Burr, 1991; Anderson et al.,
1991; Georgeson & Scott-Samuel, 2000). This larger
spatial extent is compatible with the notion that motion
opponency arises primarily at the level of MT (Heeger
et al., 1999; Qian & Andersen, 1994; van Wezel, Lank-
heet, Verstraten, Maree, & van de Grind, 1996) where
receptive fields are larger than those in direction-selec-
tive V1 cells, but we cannot exclude that estimates of size
vary across studies due to pitfalls specific to different
techniques used (Fredericksen, Verstraten, & van de
Grind, 1997). Two obvious sources of such cross-study
variability in psychophysical estimates include the ar-
bitrary criterion chosen to define threshold (e.g. 75%
correct) and the criterion chosen to define selectivity
along a given dimension such as orientation (e.g. a
factor-of-two drop from peak threshold).

8.2. Lateral vs. superposition masking

There is considerable evidence that mechanisms re-
sponding to a mask falling outside their excitatory
passband have different spatial properties depending on
whether the mask is superimposed on the test or pre-
sented laterally. In physiological studies, when test and
mask are spatially superimposed, response inhibition
is largely non-selective for mask orientation (Bonds,
1989; Carandini, Barlow, O’Keefe, Poirson, &Movshon,
1997; Carandini, Heeger, & Movshon, 1997; DeAngelis,
Robson, Ohzawa, & Freeman, 1992; Morrone, Burr, &
Maffei, 1982; Sengpiel & Blakemore, 1994)––although
recent evidence suggests cross-orientation inhibition is
not intracortical (Anderson, Carandini, & Ferster, 2000;
Carandini, Heeger, & Seen, 2001)––and only broadly
tuned for mask spatial frequency (Albrecht & Hamilton,
1982; Bonds, 1989; De Valois & Tootell, 1983; DeAn-
gelis et al., 1992; Morrone et al., 1982). If test and
mask are presented laterally, response inhibition becomes
more selective for mask orientation (DeAngelis, Free-
man, & Ohzawa, 1994; Levitt & Lund, 1997; Li, Thier,
& Wehrhahn, 2000; Nelson & Frost, 1978; Nothdurft,
Gallant, & van Essen, 1999; Polat, Mizobe, Pettet, Kas-
amatsu, & Norcia, 1998; Sengpiel, Sen, & Blakemore,
1997; Toth, Rao, Kim, Somers, & Sur, 1996) and spatial
frequency (DeAngelis et al., 1994; Li & Li, 1994).
Similar results are found in the psychophysical liter-

ature, although selectivity is generally narrower than
measured physiologically. If test and mask are spatially
superimposed, masking is selective for orientation and
spatial frequency (e.g. Phillips & Wilson, 1984; Wilson,
McFarlane, & Phillips, 1983), but there is some evidence
that superimposed masks that differ significantly from
the test can also have inhibitory effects (Foley, 1994; Itti,

Koch, & Braun, 2000; Olzak & Thomas, 1992; Snowden
& Hammett, 1992). If test and mask are presented lat-
erally, inhibition is generally tuned for orientation and
spatial frequency (Cannon & Fullenkamp, 1991; Chubb,
Sperling, & Solomon, 1989; Olzak & Laurinen, 1999;
Xing & Heeger, 2000). At both the physiological and
psychophysical levels, however, the effects of masking
are complex (even facilitatory) and depend on the rela-
tive spatial properties and contrast levels of masks and
tests (Gilbert, Das, Ito, Kapadia, & Westheimer, 1996;
Kapadia, Ito, Gilbert, & Westheimer, 1995; Levitt &
Lund, 1997; Nelson & Frost, 1985; Polat & Sagi, 1993;
Polat & Sagi, 1994), on whether masks and tests are
viewed dichoptically (e.g. DeAngelis et al., 1992), and on
modulation from attentional processes (Freeman, Sagi,
& Driver, 2001; Ishai & Sagi, 1995).
The distinction between mechanisms mediating lat-

eral and superposition masking is important given that
in our study, counterphasing gratings were spatially
adjacent to––rather than superimposed on––the drifting
gratings. Our results are in line with those of previous
psychophysical findings on lateral masking, although it
remains to be shown whether the mechanisms mediating
opponent-motion normalization are the same as those
isolated in the spatial vision literature. The key impli-
cation of distinguishing between lateral and superposi-
tion masking, however, is that it limits the scope of the
conclusions we can draw from the present study. Our
results are consistent with the Georgeson and Scott-
Samuel model in its current form where flicker energy,
like motion energy, is derived from the same front-end
filters localized in orientation, scale, and space. How-
ever, we must leave open the possibility that selectivity
for orientation and spatial frequency could be different
if flickering masks were superimposed on drifting tests.

8.3. Modeling opponent-motion normalization

Our understanding of mammalian vision has been
influenced by models where stimuli are decomposed by a
bank of linear filters whose output pass through non-
linear transduction and internal noise before reaching a
decision stage (e.g. Legge & Foley, 1980). However,
such models are excitatory in nature and cannot explain
data where the response of a visual mechanism is af-
fected by masks falling outside its passband. To account
for such findings, several authors have proposed divi-
sive gain control schemes in which the response of each
mechanism is normalized by the pooled response of
mechanisms tuned to other stimulus properties (e.g.
Albrecht & Geisler, 1991; Carandini et al., 1997; Foley,
1994; Heeger, 1992; Ross & Speed, 1991; Snowden &
Hammett, 1992; Thomas & Olzak, 1997; Watson & Sol-
omon, 1997; Wilson & Humanski, 1993). Heeger’s nor-
malization model where inhibitory signals are pooled
non-selectively across orientations, scales and positions
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has been particularly influential because of its ability to
account for a large body of physiological data.
While the localization of flicker normalization in ori-

entation, scale, and space is consistent with the model
proposed by Georgeson and Scott-Samuel (1999), our
findings cannot be explained by models such as Heeger’s
in which normalization is strictly non-selective for the
spatial properties of the stimulus. In several of the
models cited above, however, the pooling of normaliza-
tion signals is preceded by a broadly tuned function
that gives greater inhibitory weight to mechanisms se-
lective for properties similar to the test stimulus. A more
quantitative comparison between the spatial properties
of mechanisms mediating opponent-motion and flicker
normalization would require studying both mechanisms
within the same paradigm and inferring their underly-
ing spatial tuning and transducer functions with the help
of a psychophysical model that explicitly takes into ac-
count the relative spatial tuning of excitatory and inhib-
itory pathways (e.g. Foley, 1994; Foley & Chen, 1997).

8.4. The joint space–time properties of opponent-motion
normalization

As it currently stands, the opponent-motion normal-
ization stage proposed by Georgeson and Scott-Samuel
(1999) has no dynamics other than those imposed by the
front-end temporal filters of the Adelson–Bergen model.
It remains to be determined empirically whether nor-
malization mirrors the temporal properties of these
front-end filters or whether it has dynamics of its own. A
full characterization of opponent-motion normaliza-
tion, however, requires not only a better description of
its dynamics but also a description of its joint spatial
and temporal properties. For example, pooling across
orientation, scale and space presumably requires inte-
gration across (and feedback from) remote cortical loci,
and therefore investigating either spatial or temporal
properties alone cannot reveal whether normalization
becomes spatially more or less selective at time scales
other than those used in the present study.
Another incentive for investigating the joint spatio-

temporal properties of opponent-motion normalization
comes from the properties of receptive fields of cells
found in area MT/V5. Current evidence points to MT/
V5 as the principal cortical area involved in motion
opponency (Heeger et al., 1999; Qian & Andersen, 1994;
van Wezel et al., 1996), and cells in MT/V5 have a richer
spatiotemporal selectivity than that found in their di-
rection-selective V1 afferents. Several authors have sug-
gested that the space–time inseparable properties of
MT/V5 cells effectively solve the aperture problem
of direction-selective units––the ‘‘oriented energy’’ stage
in the Adelson and Bergen (1985) model––by imple-
menting an approximation to the intersection-of-con-
straints (Adelson & Movshon, 1982; Albright, 1984;

Movshon & Newsome, 1996; Perrone & Thiele, 2001;
Simoncelli & Heeger, 1998; Wilson et al., 1992). Recent
psychophysical evidence has revealed better summation
of spatiotemporal energy when it is distributed on an
intersection-of-constraints plane in the Fourier domain
(Schrater, Knill, & Simoncelli, 2000). Whether oppo-
nent motion is normalized by flicker energy lying on the
same plane remains an open issue.

9. Conclusions

The present study has revisited Georgeson and Scott-
Samuel’s (1999) notion of motion contrast––a metric of
human direction discrimination that normalizes oppo-
nent-motion energy by flicker energy. We tested two
competing hypotheses, namely whether or not the mech-
anisms involved in flicker normalization are selective for
orientation, scale, and position. Our data disagree with
non-selective normalization models in which response is
divided by the pooled activity of visual mechanisms ir-
respective of their spatial properties (Carandini et al.,
1997; Heeger, 1992) but are consistent with the implicit
assumption in Georgeson and Scott-Samuel’s model
that the normalization stage shares the opponent-motion
stage’s selectivity for orientation, spatial frequency, and
space. However, our data are derived from a lateral
masking paradigm and it is currently unknown whether
the selectivity of normalization carries over to condi-
tions where flicker and motion spatially overlap. Future
studies will need to model the spatial properties of
mechanisms underlying the selectivity of opponent-
motion and flicker-normalization stages and determine
the extent to which they are similar. Additional charac-
terization of opponent-motion normalization will re-
quire data and modeling on its dynamics as well as on its
joint spatiotemporal properties.
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