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The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical
role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that
ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with
primary tumor development and functions as a tumor suppressor by inducing cell growth arrest
in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis,
cell survival against genotoxic stress and distant metastasis. In this review, we summarize the
current understanding on the biological and pathological functions of ERp29 in cancer and discuss
the pivotal aspects of ERp29 as ‘‘friend or foe’’ in epithelial cancer.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This
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1. Introduction

The endoplasmic reticulum (ER) is found in all eukaryotic cells
and is complex membrane system constituting of an extensively
interlinked network of membranous tubules, sacs and cisternae.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fob.2015.01.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.fob.2015.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:brenda77@163.com
mailto:dave6503@gmail.com
http://dx.doi.org/10.1016/j.fob.2015.01.004
http://www.elsevier.com/locate/febsopenbio


Fig. 1. ERp29 triggers mesenchymal–epithelial transition. Exogenous expression of
ERp29 in mesenchymal MDA-MB-231 breast cancer cells inhibits stress fiber
formation by suppressing MLC phosphorylation. In addition, the overexpressed
ERp29 decreases the expression of mesenchymal markers (e.g., vimentin, N-
cadherin and fibronectin) and reactivates the expression of epithelial marker (e.g.,
E-cadherin) and epithelial cell differentiation marker (e.g., cytokeratin 19).
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It is the main subcellular organelle that transports different mole-
cules to their subcellular destinations or to the cell surface [10,85].

The ER contains a number of molecular chaperones involved in
protein synthesis and maturation. Of the ER chaperones, protein
disulfide isomerase (PDI)-like proteins are characterized by the
presence of a thioredoxin domain and function as oxido-reduc-
tases, isomerases and chaperones [33]. ERp29 lacks the active-site
double-cysteine (CxxC) motif and does not belong to the redox-
active PDIs [5,47]. ERp29 is recognized as a characterized resident
of the cellular ER, and it is expressed ubiquitously and abundantly
in mammalian tissues [50]. Protein structural analysis showed that
ERp29 consists of N-terminal and C-terminal domains [5]: N-ter-
minal domain involves dimerization whereas the C-terminal
domain is essential for substrate binding and secretion [78]. The
biological function of ERp29 in protein secretion has been well
established in cells [8,63,67].

ERp29 is proposed to be involved in the unfolded protein
response (UPR) as a factor facilitating transport of synthesized
secretory proteins from the ER to Golgi [83]. The expression of
ERp29 was demonstrated to be increased in cells exposed to radi-
ation [108], sperm cells undergoing maturation [42,107], and in
certain cell types both under the pharmacologically induced UPR
and under the physiological conditions (e.g., lactation, differentia-
tion of thyroid cells) [66,82]. Under ER stress, ERp29 translocates
the precursor protein p90ATF6 from the ER to Golgi where it is
cleaved to be a mature and active form p50ATF by protease (S1P
and S2P) [48]. In most cases, ERp29 interacts with BiP/GRP78 to
exert its function under ER stress [65].

ERp29 is considered to be a key player in both viral unfolding
and secretion [63,67,77,78] Recent studies have also demonstrated
that ERp29 is involved in intercellular communication by stabiliz-
ing the monomeric gap junction protein connexin43 [27] and traf-
ficking of cystic fibrosis transmembrane conductance regulator to
the plasma membrane in cystic fibrosis and non-cystic fibrosis
epithelial cells [90]. It was recently reported that ERp29 directs
epithelial Na(+) channel (ENaC) toward the Golgi, where it under-
goes cleavage during its biogenesis and trafficking to the apical
membrane [40]. ERp29 expression protects axotomized neurons
from apoptosis and promotes neuronal regeneration [111]. These
studies indicate a broad biological function of ERp29 in cells.

Recent studies demonstrated a tumor suppressive function of
ERp29 in cancer. It was found that ERp29 expression inhibited
tumor formation in mice [4,87] and the level of ERp29 in primary
tumors is inversely associated with tumor development in breast,
lung and gallbladder cancer [4,29].

However, its expression is also responsible for cancer cell sur-
vival against genotoxic stress induced by doxorubicin and radiation
[34,76,109]. The most recent studies demonstrate other important
roles of ERp29 in cancer cells such as the induction of mesenchy-
mal–epithelial transition (MET) and epithelial morphogenesis
[3,4]. MET is considered as an important process of transdifferenti-
ation and restoration of epithelial phenotype during distant metas-
tasis [23,52]. These findings implicate ERp29 in promoting the
survival of cancer cells and also metastasis. Hence, the current
review focuses on the novel functions of ERp29 and discusses its
pathological importance as a ‘‘friend or foe’’ in epithelial cancer.

2. ERp29 regulates mesenchymal–epithelial transition

2.1. Epithelial–mesenchymal transition (EMT) and MET

The EMT is an essential process during embryogenesis [6] and
tumor development [43,96]. The pathological conditions such as
inflammation, organ fibrosis and cancer progression facilitate
EMT [16]. The epithelial cells after undergoing EMT show typical
features characterized as: (1) loss of adherens junctions (AJs) and
tight junctions (TJs) and apical–basal polarity; (2) cytoskeletal
reorganization and distribution; and (3) gain of aggressive pheno-
type of migration and invasion [98]. Therefore, EMT has been
considered to be an important process in cancer progression and
its pathological activation during tumor development induces pri-
mary tumor cells to metastasize [95]. However, recent studies
showed that the EMT status was not unanimously correlated with
poorer survival in cancer patients examined [92].

In addition to EMT in epithelial cells, mesenchymal-like cells
have capability to regain a fully differentiated epithelial phenotype
via the MET [6,35]. The key feature of MET is defined as a process of
transdifferentiation of mesenchymal-like cells to polarized epithe-
lial-like cells [23,52] and mediates the establishment of distant
metastatic tumors at secondary sites [22]. Recent studies demon-
strated that distant metastases in breast cancer expressed an equal
or stronger E-cadherin signal than the respective primary tumors
and the re-expression of E-cadherin was independent of the E-cad-
herin status of the primary tumors [58]. Similarly, it was found that
E-cadherin is re-expressed in bone metastasis or distant metastatic
tumors arising from E-cadherin-negative poorly differentiated pri-
mary breast carcinoma [81], or from E-cadherin-low primary
tumors [25]. In prostate and bladder cancer cells, the nonmetastat-
ic mesenchymal-like cells were interacted with metastatic epithe-
lial-like cells to accelerate their metastatic colonization [20]. It is,
therefore, suggested that the EMT/MET work co-operatively in
driving metastasis.

2.2. Molecular regulation of EMT/MET

E-cadherin is considered to be a key molecule that provides the
physical structure for both cell–cell attachment and recruitment
of signaling complexes [75]. Loss of E-cadherin is a hallmark of
EMT [53]. Therefore, characterizing transcriptional regulators of
E-cadherin expression during EMT/MET has provided important
insights into the molecular mechanisms underlying the loss of
cell–cell adhesion and the acquisition of migratory properties
during carcinoma progression [73].

Several known signaling pathways, such as those involving
transforming growth factor-b (TGF-b), Notch, fibroblast growth
factor and Wnt signaling pathways, have been shown to trigger
epithelial dedifferentiation and EMT [28,97,110]. These signals
repress transcription of epithelial genes, such as those encoding
E-cadherin and cytokeratins, or activate transcription programs
that facilitate fibroblast-like motility and invasion [73,97].
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The involvement of microRNAs (miRNAs) in controlling EMT
has been emphasized [11,12,18]. MiRNAs are small non-coding
RNAs (�23 nt) that silence gene expression by pairing to the 30UTR
of target mRNAs to cause their posttranscriptional repression [7].
MiRNAs can be characterized as ‘‘mesenchymal miRNA’’ and
‘‘epithelial miRNA’’ [68]. The ‘‘mesenchymal miRNA’’ plays an
oncogenic role by promoting EMT in cancer cells. For instance,
the well-known miR-21, miR-103/107 are EMT inducer by repress-
ing Dicer and PTEN [44].

The miR-200 family has been shown to be major ‘‘epithelial
miRNA’’ that regulate MET through silencing the EMT-transcrip-
tional inducers ZEB1 and ZEB2 [13,17]. MiRNAs from this family
are considered to be predisposing factors for cancer cell metastasis.
For instance, the elevated levels of the epithelial miR-200 family in
primary breast tumors associate with poorer outcomes and metas-
tasis [57]. These findings support a potential role of ‘‘epithelial
miRNAs’’ in MET to promote metastatic colonization [15].

2.3. ERp29 promotes MET in breast cancer

The role of ERp29 in regulating MET has been established in
basal-like MDA-MB-231 breast cancer cells. It is known that myo-
sin light chain (MLC) phosphorylation initiates to myosin-driven
contraction, leading to reorganization of the actin cytoskeleton
and formation of stress fibers [55,56]. ERp29 expression in this
type of cells markedly reduced the level of phosphorylated MLC
[3]. These results indicate that ERp29 regulates cortical actin for-
mation through a mechanism involved in MLC phosphorylation
(Fig. 1). In addition to the phenotypic change, ERp29 expression
leads to: expression and membranous localization of epithelial cell
marker E-cadherin; expression of epithelial differentiation marker
cytokeratin 19; and loss of the mesenchymal cell marker vimentin
and fibronectin [3] (Fig. 1). In contrast, knockdown of ERp29 in epi-
thelial MCF-7 cells promotes acquisition of EMT traits including
fibroblast-like phenotype, enhanced cell spreading, decreased
expression of E-cadherin and increased expression of vimentin
[3,4]. These findings further substantiate a role of ERp29 in modu-
lating MET in breast cancer cells.

2.4. ERp29 targets E-cadherin transcription repressors

The transcription repressors such as Snai1, Slug, ZEB1/2 and Twist
have been considered to be the main regulators for E-cadherin
expression [19,26,32]. Mechanistic studies revealed that ERp29
Fig. 2. ERp29 decreases the expression of EMT inducers to promote MET.
Exogenous expression of ERp29 in mesenchymal MDA-MB-231 breast cancer cells
suppresses transcription and protein expression of E-cadherin transcription
repressors (e.g., ZEB2, SNAI1 and Twist), resulting in re-expression of E-cadherin
and re-establishment of epithelial cell phenotype.
expression significantly down-regulated transcription of these
repressors, leading to their reduced nuclear expression in MDA-
MB-231 cells [3,4] (Fig. 2). Consistent with this, the extracellular
signal-regulated kinase (ERK) pathway which is an important
up-stream regulator of Slug and Ets1 was highly inhibited [4].
Apparently, ERp29 up-regulates the expressions of E-cadherin
transcription repressors through repressing ERK pathway. Interest-
ingly, ERp29 over-expression in basal-like BT549 cells resulted in
incomplete MET and did not significantly affect the mRNA or pro-
tein expression of Snai1, ZEB2 and Twist, but increased the protein
expression of Slug [3]. The differential regulation of these
transcriptional repressors of E-cadherin by ERp29 in these two
cell-types may occur in a cell-context-dependent manner.

2.5. ERp29 antagonizes Wnt/ b-catenin signaling

Wnt proteins are a family of highly conserved secreted
cysteine-rich glycoproteins. The Wnt pathway is activated via a
binding of a family member to a frizzled receptor (Fzd) and the
LDL-Receptor-related protein co-receptor (LRP5/6). There are three
different cascades that are activated by Wnt proteins: namely
canonical/b-catenin-dependent pathway and two non-canonical/
b-catenin-independent pathways that include Wnt/Ca2+ and planar
cell polarity [84]. Of note, the Wnt/b-catenin pathway has been
extensively studied, due to its important role in cancer initiation
and progression [79]. The presence of Wnt promotes formation
of a Wnt–Fzd–LRP complex, recruitment of the cytoplasmic protein
Disheveled (Dvl) to Fzd and the LRP phosphorylation-dependent
recruitment of Axin to the membrane, thereby leading to release
of b-catenin from membrane and accumulation in cytoplasm and
nuclei. Nuclear b-catenin replaces TLE/Groucho co-repressors and
recruits co-activators to activate expression of Wnt target genes.
The most important genes regulated are those related to prolifera-
tion, such as Cyclin D1 and c-Myc [46,94], which are over-
expressed in most b-catenin-dependent tumors. When b-catenin
Fig. 3. ERp29 over-expression ‘‘turns-off’’ activated Wnt/b-catenin signaling. In
mesenchymal MDA-MB-231 cells, high expression of nuclear b-catenin activates its
downstream signaling involved in cell cycles and cancer stem cell self-renewal.
When ERp29 is over-expressed in this cell model, nuclear b-catenin is relocated at
the membrane where it binds to E-cadherin, and Wnt/b-catenin signaling is
switched off. Meanwhile, over-expression of ERp29 results in up-regulation of TCF3
and increases expression of genes involved in differentiation. N: Nucleus.



Fig. 4. ERp29 regulates epithelial cell morphogenesis. Over-expression of ERp29 in
breast cancer cells induces the transition from a mesenchymal-like to epithelial-like
phenotype and the restoration of tight junctions and cell polarity. Up-regulation
and membrane distribution of these molecules result in re-establishment of cell–
cell contacts and epithelial-like phenotypic features. By contrast, ERp29 knockdown
by shRNA in epithelial breast cancer cells reduces the expression and membrane
localization of these ‘‘identity’’ proteins and disrupts cell–cell adhesion [3].
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is absent in nucleus, the transcription factors T-cell factor/lym-
phoid enhancer factors (TCF/LEF) recruits co-repressors of the
TLE/Groucho family and function as transcriptional repressors.

b-catenin is highly expressed in the nucleus of mesenchymal
MDA-MB-231 cells. ERp29 over-expression in this type of cells
led to translocation of nuclear b-catenin to membrane where it
forms complex with E-cadherin [3] (Fig. 3). This causes a disrup-
tion of b-catenin/TCF/LEF complex and abolishes its transcription
activity. Indeed, ERp29 significantly decreased the expression of
cyclin D1/D2 [36], one of the downstream targets of activated
Wnt/b-catenin signaling [94], indicating an inhibitory effect of
ERp29 on this pathway. Meanwhile, expression of ERp29 in this
cell type increased the nuclear expression of TCF3, a transcription
factor regulating cancer cell differentiation while inhibiting
self-renewal of cancer stem cells [102,106]. Hence, ERp29 may play
dual functions in mesenchymal MDA-MB-231 breast cancer
cells by: (1) suppressing activated Wnt/b-catenin signaling via
b-catenin translocation; and (2) promoting cell differentiation via
activating TCF3 (Fig. 3). Because b-catenin serves as a signaling
hub for the Wnt pathway, it is particularly important to focus on
b-catenin as the target of choice in Wnt-driven cancers. Though
the mechanism by which ERp29 expression promotes the disasso-
ciation of b-catenin/TCF/LEF complex in MDA-MB-231 cells
remains elusive, activating ERp29 expression may exert an inhibi-
tory effect on the poorly differentiated, Wnt-driven tumors.

3. ERp29 regulates epithelial cell integrity

3.1. Cell adherens and tight junctions

Adherens junctions (AJs) and tight junctions (TJs) are composed
of transmembrane proteins that adhere to similar proteins in the
adjacent cell [69]. The transmembrane region of the TJs is composed
mainly of claudins, tetraspan proteins with two extracellular loops
[1]. AJs are mediated by Ca2+-dependent homophilic interactions of
cadherins [71] which interact with cytoplasmic catenins that link
the cadherin/catenin complex to the actin cytoskeleton [74].

The cytoplasmic domain of claudins in TJs interacts with occlu-
din and several zona occludens proteins (ZO1-3) to form the plaque
that associates with the cytoskeleton [99]. The AJs form and main-
tain intercellular adhesion, whereas the TJs serve as a diffusion bar-
rier for solutes and define the boundary between apical and
basolateral membrane domains [21]. The AJs and TJs are required
for integrity of the epithelial phenotype, as well as for epithelial
cells to function as a tissue [75].

The TJs are closely linked to the proper polarization of cells for
the establishment of epithelial architecture [86]. During cancer
development, epithelial cells lose the capability to form TJs and
correct apico–basal polarity [59]. This subsequently causes the loss
of contact inhibition of cell growth [91]. In addition, reduction of
ZO-1 and occludin were found to be correlated with poorly defined
differentiation, higher metastatic frequency and lower survival
rates [49,64]. Hence, TJs proteins have a tumor suppressive func-
tion in cancer formation and progression.

3.2. Apical–basal cell polarity

The apical–basal polarity of epithelial cells in an epithelium is
characterized by the presence of two specialized plasma membrane
domains: namely, the apical surface and basolateral surface [30]. In
general, the epithelial cell polarity is determined by three core com-
plexes. These protein complexes include: (1) the partitioning-defec-
tive (PAR) complex; (2) the Crumbs (CRB) complex; and (3) the
Scribble complex [2,30,45,51]. PAR complex is composed of two
scaffold proteins (PAR6 and PAR3) and an atypical protein kinase C
(aPKC) and is localized to the apical junction domain for the assem-
bly of TJs [31,39]. The Crumbs complex is formed by the transmem-
brane protein Crumbs and the cytoplasmic scaffolding proteins such
as the homologue of Drosophila Stardust (Pals1) and Pals-associated
tight junction protein (Patj) and localizes to the apical [38]. The
Scribble complex is comprised of three proteins, Scribble, Disc large
(Dlg) and Lethal giant larvae (Lgl) and is localized in the basolateral
domain of epithelial cells [100].

3.3. ERp29 restores the establishment of AJs and TJs

ERp29 is involved the establishment of the apical–junctional
complex, which is formed by AJs and TJs [3]. These complexes
are located in the upper portion of a polarized epithelial cell and
are composed of trans-membrane proteins that interact with
molecules in adjacent cells [69]. In MDA-MB-231 cells, b-catenin
is expressed and localized in nuclear. ERp29 over-expression
resulted in an increased expression and membrane localization of
E-cadherin and translocation of b-catenin from the nucleus to the
cell membrane [3] (Fig. 3). The ERp29-mediated membrane locali-
zation of b-catenin facilitates the assembly of E-cadherin/b-catenin
complex and formation of AJs [45].

ERp29 over-expression led to an increase of TJ components such
as ZO-1 and occludin at the membrane and cell–cell junctions in
breast cancer cells [3] (Fig. 4). The increased expression of ZO-1
and occludin is regulated at translational level, as ERp29 over-
expression did not affect their mRNA levels [3]. The role of
ERp29 in ZO-1 protein expression and trafficking was further
demonstrated in the ERp29-knockdown MCF-7 cells. Translational
up-regulation of ZO-1 and occludin by ERp29 in these cell models
may provide a mechanism of how ERp29 induces tumor suppres-
sion in breast cancer [4]. In addition, the formation of cortical actin
filaments is critical for the establishment of AJs and TJs and the
regulation of epithelial cell apical–basal polarity [75]. Reorganiza-
tion of the actin cytoskeleton induces recruitment of ZO-1 to cell
periphery before the assembly of junctional complexes between
adjacent cells [37]. The ERp29-induced restoration of ZO-1 expres-
sion may be associated with actin reorganization. Hence, ERp29
plays a critical role in restoration of an epithelial-like phenotype
by establishing cell–cell contact.
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3.4. ERp29 restores cell polarity

In line with the role of ERp29 in regulating MET and re-estab-
lishment of the epithelial-like phenotype, ERp29 over-expression
restores epithelial polarity [3] (Fig. 4). In mesenchymal MDA-MB-
231 and basal-like BT549 cells, ERp29 expression did not affect
mRNA levels of Par3 and Scribble, but increased their protein
translation and membrane distribution. It was reported that
Cdc42, a small GTPase, is one of the key regulators modulating
the expression of Par6 and aPKC [54,60] and has a critical role in
establishing cell polarity in epithelial cells [72]. However, ERp29
over-expression did not affect both the expression and localization
of Cdc42, Par6 and aPKC, indicating these PAR complex members
are not involved in ERp29-regulated apical polarity. Thus, ERp29
is likely to specifically up-regulate Par3 protein expression during
epithelial morphogenesis. ERp29 over-expression did not markedly
alter the expression and distribution of Crumb1 [3], a member of
the Crumbs complex [93], Similar to that observed for Par3,
ERp29 over-expression resulted in a significant increase of protein
expression of Scribble in both MDA-MB-231 and BT549 cells [3].
Suppression of ERp29 by shRNA in epithelial MCF-7 cells resulted
in reduction of these core polarity proteins, leading to the disrup-
tion of cell–cell contact and increased cell spreading [3].

Previous studies demonstrated that polarity proteins are syn-
thesized in the endoplasmic reticulum, transported to the Golgi
complex and sorted at the trans-Golgi network into distinct apical
and basolateral vesicular routes [88]. Given that ERp29 mediates
the folding and secretion of newly synthesized proteins in the ER
system [8], it is plausible that, in addition to increased protein
expression of TJs and the core polarity complex, ERp29 may also
have a critical role in protein trafficking and the maintenance of
protein stability to modulate epithelial cell integrity. In agreement
with this, the ERp29-induced tumor suppression in breast cancer
cells is linked to the integrity of apical–basal polarity that is crucial
for the prevention of tumor development [80].
4. ERp29 and primary tumor progression

The association of ERp29 with primary tumor development has
been studied in only a few types of cancer. In lung tumors, ERp29
expression was observed to be variable within and between tumor
stages, and inversely correlated with tumor progression [87]. A
tissue array study in 98 breast tumors showed that ERp29 expres-
sion was reduced with the progression of tumor stage and grade
[4]. In gallbladder adenocarcinoma, ERp29 positive rate is signifi-
cant lower in poorly differentiated tumors (vs well differentiated
tumors) and tumors at T4 stage (vs T1 stage) [29]. Taken together,
these results indicate a negative association of ERp29 expression
with primary tumor progression in these cancers. However, to
further substantiate ERp29’s role in primary tumor development,
extensive studies are needed in a large cohort of clinical specimens.
5. ERp29 and metastasis

The association of MET and distant metastasis has been well
studied. For instance, analysis of MDA-MB-468 xenografts revealed
that some tumor cells exist a metastable phenotype, characterized
by the expression of both vimentin and E-cadherin [9], The cells at
the invasive front showed a positive expression for vimentin and
negative expression for E-cadherin, consistent with an EMT. On
the other hand, the lymphovascular-invaded tumor cells showed
a gradual transition of invaded tumor cells from mesenchymal to
metastable and then to the epithelial phenotype, indicating that
a MET process occurs as an early event in the metastatic process.
Given the function of ERp29 in promoting MET in breast cancer
cells [4], the role of ERp29 in cancer cell metastasis has been exam-
ined. Recent studies showed that ERp29 was significantly increased
in the highly metastatic variant of parental MDA-MB-231 cells
compared to the parental cells [104]. Similarly, ERp29 was found
to be one of the proteins that were highly expressed in the meta-
static tissues compared to the primary uveal melanoma tissues
[61]. In colon cancer, ERp29, together with CLIC4 and Smac/DIABLO,
was integrated into a novel panel associated with metastasis and
was stratified for the prognostic risks of colorectal cancer [29].
These results may implicate an important role of ERp29 in cancer
cell metastasis and disease recurrence. Indeed, our recent studies
revealed that high expression of ERp29 in breast tumors strongly
associated with reduced relapse time of disease and short survival
time of patients (unpublished data). The role of MET in facilitating
distant metastasis has been clinically recognized by the observation
that MET is able to reversibly convert the disseminated mesenchy-
mal cancer cells to an epithelial cell state [23]. Hence, ERp29 may
have a critical role in promoting distant metastasis during cancer
progression, although this needs to be investigated further. Conse-
quently, understanding the association of ERp29 with disease
recurrence and distant metastasis is of significance in assessing
its prognostic value in clinical applications.

The tumor microenvironment is an important factor in regulat-
ing cancer metastasis via MET [41,89]. The interplays between
tumor cells, host cells, and the extracellular matrix in tumor ecosys-
tem endow cancer cells with malignant properties, leading to met-
astatic dissemination. It has been reported that the expression of
ERp29 was significantly affected by the culture conditions, where
ERp29 expression was significantly increased in xenografts com-
pared with the same cell types cultured in monolayer or spheroid
condition [87]. This indicates that ERp29 could be physiologically
regulated in the tumor ecosystem. When MDA-MB-231 cells were
co-cultured with hepatocytes, E-cadherin was re-expressed, result-
ing in an increased chemo-resistance [24]. In vivo studies demon-
strated that MDA-MB-231 cells formed E-cadherin-negative
primary tumors, but showed a re-activated E-cadherin expression
in lung metastatic site via MET, suggesting an effect of the microen-
vironment on cells at the metastatic site [25]. However, it is uncer-
tain whether ERp29 was increased in parallel with metastasis in this
in vivo experiment. Although the tumor microenvironment-induced
MET and metastasis is a complex process, investigating the involve-
ment of ERp29 in MET and metastasis may enhance our understand-
ing of its pathological functions in cancer progression.

6. ERp29 confers resistance to genotoxic stress in cancer cells

To survive from the stress environment, cells have developed a
variety of responsive mechanisms to cope with stress-induced cell
death, such as cell cycle arrest and activation of the DNA repair.
Recent studies have demonstrated that ERp29 is a novel molecule
protecting cells from the genotoxic stress induced by doxorubicin
and radiation [76,108,109].

Doxorubicin is one of the conventional chemotherapeutic drugs
for cancer intervention via the intercalation of DNA and subsequent
activation of the tumor suppressor p53 [62]. While most cancer
cells are sensitive to doxorubicin and eventually killed by this drug,
some cells develop an adaptive response to doxorubicin-induced
genotoxic stress and survive. Clinically, chemo-resistance of cancer
cells is a predominant cause of cancer recurrence after long-term
treatment. It has been found that doxorubicin induced ERp29
expression and ERp29 expression is causally linked to resistance
to this drug by a mechanism that requires PERK [34]. PERK activa-
tion promotes the phosphorylation of a general translation factor
eIF2a and attenuates translation of global proteins including cyclin
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D1 [14], thereby resulting in inhibition of cell cycle. Apparently, the
doxorubicin-induced ERp29 facilitates cell’s response to genotoxic
stress that ultimately results in resistance against chemotherapy
by doxorubicin. Indeed, when ERp29 was over-expressed in MDA-
MB-231 cells, these cells showed a significant G0/G1 growth arrest
and resistant to doxorubicin treatment, whereas knockdown of
ERp29 in MCF-7 cells led to an enhanced sensitivity of these cells
to doxorubicin [109]. Mechanistic studies revealed a critical role
of up-regulated Hsp27 in the ERp29-induced doxorubicin resis-
tance in these cell models. In addition, the ERp29-induced activa-
tion of ER stress-related XBP-1/p58IPK cell survival pathway also
plays a pivotal role in this aspect [36]. In support of this, silencing
of p58IPK in MCF-7 cells and ERp29-overexpressing MDA-MB-231
clones re-sensitizes them to doxorubicin by activating ATF4/
CHOP/caspase-3 pro-apoptotic signaling [36].

In an early study, when cells were exposed to ionization radia-
tion, ERp29 expression was elevated in several types of cultured
cells [108]. Concomitantly, splicing of XBP-1 mRNA under radiation
was increased, suggesting the involvement of ER stress sensor
might be a reason to induce ERp29 gene expression [108]. In naso-
pharyngeal carcinoma (NPC) cells, ERp29 knockdown attenuated
radio-resistance of NPC CNE-1 cells, whereas ERp29 over-expres-
sion enhanced radio-resistance of NPC CNE-2 cells. Hence, ERp29
could potentiate resistance to radiation in NPC cells [76]. Further-
more, ERp29 was significantly expressed in radio-resistant naso-
pharyngeal carcinoma (NPC) tissues compared to radio-sensitive
NPC tissues, indicating a potential role ERp29 in radio-resistance
in NPC tumors [103]. Our recent studies in MBA-MD-231 and
MCF-7 breast cancer cells indicated that ERp29 expression
increased post-irradiation survival rate, whereas ERp29 repression
by siRNA reduced post-irradiation survival rate and increased
c-H2AX expression and DNA damage induced by irradiation
(unpublished data). These findings further indicate a protective
role of ERp29 in DNA integrity and stability.

Mechanistic studies revealed that ERp29 over-expression in
MDA-MB-231 cells significantly up-regulated the expression of
the DNA repair gene, O6-methylguanine-DNA methyltransferase
(MGMT). MGMT repairs the mutagenic and cytotoxic interstrand
DNA cross-links via rapidly reversing alkylation, including methyl-
ation, at the O6 position of guanine by transferring the alkyl group
to the active site of the enzyme [101]. In addition to DNA repair
function, MGMT plays a role in integrating DNA damage/repair-
related signals with replication, cell cycle progression and genomic
stability [70,105]. Hence, MGMT is also an important factor in
ERp29-induced anti-genotoxic stress and cell survival. The
ERp29-upregulated DNA repair pathway might cause resistance
to chemo- and radio- therapy, and thus targeting this pathway
might have a potential to develop alternative strategy for efficient
treatment of chemo- and/or radio-resistant cancer cells.

7. Conclusion

The current data from breast cancer cells supports the idea that
ERp29 can function as a tumor suppressive protein, in terms of
suppression of cell growth and primary tumor formation and inhi-
bition of signaling pathways that facilitate EMT. Nevertheless, the
significant role of ERp29 in cell survival against drugs, induction of
cell differentiation and potential promotion of MET-related metas-
tasis may lead us to re-assess its function in cancer progression,
particularly in distant metastasis. Hence, it is important to explore
in detail the ERp29’s role in cancer as a ‘‘friend or foe’’ and to elu-
cidate its clinical significance in breast cancer and other epithelial
cancers. Targeting ERp29 and/or its downstream molecules might
be an alternative molecular therapeutic approach for chemo/
radio-resistant metastatic cancer treatment.
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